×
25.08.2017
217.015.d073

Результат интеллектуальной деятельности: Способ получения высокодисперсных стабилизированных частиц йодида серебра в водных растворах

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу получения стабилизированных частиц йодида серебра. Способ включает приготовление первого раствора, представляющего собой раствор йодида калия с концентрацией 0,216-3,6 ммоль/л, приготовление второго раствора, образованного из водного раствора нитрата серебра с концентрацией 0,36-6,0 ммоль/л и из раствора полиэлектролитного стабилизатора с концентрацией 1,0-10,0 ммоль/л, смешение обоих растворов при нормальных условиях путем приливания первого раствора ко второму раствору с образованием стабилизированных частиц йодида серебра, имеющих средний размер 1,3-1,9 нм. Заявленный способ обеспечивает получение наномерных частиц йодида серебра с узким распределением по размерам, а также упрощение способа их получения. Cтабилизированные частицы йодида серебра можно применять в качестве каталитических систем в процессах деструкции органических веществ или антимикробных растворов. 2 ил., 4 пр.

Изобретение относится к способу получения стабилизированных частиц йодида серебра наноразмера в водных растворах, применяемых в частности в качестве каталитических систем в процессах деструкции органических веществ или антимикробных растворов.

Известен метод синтеза частиц йодида серебра с использованием полимерного стабилизатора - поливинилпиралидона (Concaving Agl sub-microparticles for enhanced photocatalysis / Changhua An [et al.] // Nano Energy. - 2014. - V. 9. - P. 204-211). Синтез частиц йодида серебра основан на смешении двух растворов, содержащих исходные компоненты. Первый раствор готовят смешением абсолютного этилового спирта с этилендиамином, далее добавляют в виде порошка ацетат серебра (АС) и гранулы поливинилпиролидона (ПВП). Перемешивают смесь до полного растворения АС и ПВП и добавляют спиртовой раствор йодида калия со скоростью 1 мл/мин с помощью шприца. Получившийся продукт центрифугируют, отбирают осадок и промывают его дистиллированной водой.

К недостаткам метода можно отнести многокомпонентность, а значит, необходимость четкого контролирования соотношения большого числа реагентов; сложность исполнения, связанная с большим количеством операций, несчитая потерь конечного продукта в процессе его выделения; получение частицы йодида серебра имеющих минимальный средний диаметр около 350 нм.

Наиболее близким аналогом является способ получения стабилизированных солей металлов (Патент RU 2436594, A61L 12/08, A61L 27/54, A01N 25/12, A01N 59/16, А01Р 1/00, 20.12.2011), включающий получение первого раствора, содержащего предшественник соли и получение второго раствора, содержащего комплекс, который образован из реагента - металла и диспергирующего реагента (водный раствор полимера) в эффективном количестве, обеспечивающем стабилизацию размера частиц. Затем проводится добавление второго раствора к первому раствору со скоростью, достаточной для сохранения прозрачности раствора в течение всего процесса добавления, с получением результирующего раствора, содержащего стабилизированные частицы соли металла со средним размером частиц менее чем 200 нм. Полученный раствор высушивают с получением антимикробного порошка соли металла. В частном случае осуществления изобретения предшественник соли может представлять собой йодид натрия (NaJ), комплекс может быть образован из нитрата серебра (AgNO3) и поливинилпирролидона (ПВП), а образующийся антимикробный порошок представляет собой йодид серебра (AgJ).

В данном методе необходимо использовать концентрированные растворы полимеров, применяемых в качестве диспергирующих агентов. Так, например использование 1 об. % ПВП приводит к образованию частиц йодида серебра со средним размером 270 нм, а при использовании 35 об. % ПВП приводит к образованию 20 нм частиц. Однако, чем больше концентрация полимера, тем выше вязкость раствора диспергирующего агента, что препятствует равномерному смешению реагентов. Кроме этого,необходим контроль скорости смешения реагентов с целью получения прозрачных растворов. Так при скорости добавления второго раствора к первому 20 мл/с чаще всего получаются мутные растворы. В свою очередь, уменьшение скорости добавления приводит к возрастанию времени приготовления итоговой композиции.

Задачей изобретения является получение стабилизированных частиц йодида серебра размера наноуровня и с узким распределением по размерам.

Техническим результатом являются наномерные частицы йодида серебра с узким распределением по размерам, а также упрощение способа их получения.

Технический результат достигается в способе получения высокодисперсных стабилизированных частиц йодида серебра в водных растворах, включающем приготовление первого раствора - раствора йодида щелочного металла, приготовление второго раствора, образованного из водного раствора нитрата серебра и водного раствора полиэлектролитного стабилизатора, смешение обоих растворов при нормальных условиях с образованием результирующего раствора, содержащего стабилизированные частицы йодида серебра, при этом полиэлектролитный стабилизатор представляет собой натриевую соль полиакриловой кислоты или полиэтиленимин, йодид щелочного металла представляет собой йодид калия, первый раствор готовят из йодида калия с концентрацией 0,216-3,6 ммоль/л, второй раствор готовят из раствора нитрата серебра с концентрацией 0,36-6,0 ммоль/л и из раствора полиэлектролитного стабилизатора с концентрацией 1,0-10,0 ммоль/л, а смешение растворов ведут путем приливания первого раствора ко второму раствору, с образованием стабилизированных частиц йодида серебра, имеющих средний размер 1,3-1,9 нм.

В качестве стабилизаторов частиц йодида серебра используется водорастворимый полиэлектролит (ПЭ), например натриевая соль полиакриловой кислоты (ПАК) или иолиэтиленимин (ПЭИ).

Перед синтезом частиц необходимо приготовить прекурсор, содержащий водный раствор стабилизатора и нитрат серебра (Ag(NO)3). Использование прекурсора такого состава позволяет получать частицы йодида серебра малого размера и с узким распределением по размерам. Известно, что уменьшение размера частиц твердой фазы приводит к увеличению удельной поверхности, что способствует улучшению свойств получаемых реагентов, например увеличению каталитической активности. Получение частиц малого размера с узким распределением по размерам способствует проявлению заданных свойств у максимально возможного количества частиц, что ведет к повышению эффективности итоговой композиции, содержащей данные частицы йодида серебра.

В водных растворах полиэлектролиты способны образовывать комплексы с ионами металлов, в частности с ионами серебра, за счет своих функциональных групп. Образование комплексов будет проходить до определенного состава, после чего в растворе будет наблюдаться избыток несвязанных ионов серебра. Таким образом максимальное количество нитрата серебра, добавляемое к раствору стабилизатора будет определяться максимальным составом комплекса полиэлектролит - ионы серебра (ПЭ-Ag+). Функциональные группы большинства полиэлектролитов входят в структуру элементарного звена полиэлектролита. Поэтому количественной характеристикой для описания растворов полиэлектролитов была выбрана концентрация его функциональных групп. Размерность концентрации - моль/л.

Расчет концентрации функциональных групп производится по формуле

,

где СПЭ - концентрация полиэлектролита, равная концентрации функциональных групп, моль/л;

m - масса навески полиэлектролита, г;

М - молекулярная масса элементарного звена полиэлектролита, г/моль;

V - объем раствора полиэлектролита, л.

В изобретении используются водные растворы исходных реагентов, при смешении которых необходимо создать условия равномерного перемешивания. Ключевым параметром при определении условий смешения является вязкость растворов. Раствор нитрата серебра концентрацией 0,36-6,0 ммоль/л и раствор йодида калия концентрацией 0,216-3,6 ммоль/л, значительного вклада в общую вязкость композиции не вносят. Вязкость растворов полиэлеткролитов концентрацией 1,0-10,0 ммоль/л близка к вязкости чистого растворителя, в нашем случае к вязкости дистиллированной воды.

Таким образом, при смешении таких растворов не требуется контролирования скорости перемешивания, а равномерное распределение реагентов по объему раствора достигается за малые промежутки времени (около 10 мин). Это значительно упрощает приготовление как исходных растворов, так и их дальнейшее смешение.

Для определения среднего диаметра частиц и распределения частиц по размерам проводили исследования образцов синтезируемых частиц йодида серебра с помощью просвечивающей электронной микроскопии с использованием электронного просвечивающего микроскопа LEO912 АВ OMEGA фирмы Карл Цейс (Германия).

На фиг. 1 представлено численное распределение по размеру частиц йодида серебра, полученных с использованием натриевой соли полиакриловой кислоты как стабилизатора. На фиг. 2 представлено численное распределение по размеру частиц йодида серебра, полученных с использованием полиэтиленимина как стабилизатора.

Из представленных фиг. 1 и 2, где N - число частиц йодида серебра со средним диаметром, N0 - общее число частиц йодида серебра, D - средний диаметр частиц йодида серебра, видно, что при использовании натриевой соли полиакриловой кислоты в качестве стабилизатора получили частицы йодида серебра со средним диаметром 1,5±0,2 нм, содержание которых достигает 63% от всех присутствующих частиц, и соответственно при использовании полиэтиленимина получили частицы, средний диаметр которых 1,7±0,2 нм и их содержание достигает 66%.

Изобретение иллюстрируется следующими примерами.

Пример 1. Получение стабилизированных высоко дисперсных частиц йодида серебра с использованием в качестве стабилизатора натриевой соли полиакриловой кислоты.

В колбу с мешалкой помещают 50 мл дистиллированной воды и добавляют 0,03 г йодида калия. Перемешивание ведут в течение 10 мин при нормальных условиях. Получают первый раствор концентрацией 3,6 ммоль/л йодида калия.

Далее во вторую колбу с мешалкой помещают 50 мл дистиллированной воды и добавляют 0,036 г натриевой соли полиакриловой кислоты, затем добавляют 0,05 г нитрата серебра. Перемешивание ведут в течение 10 мин при нормальных условиях. Получают второй раствор, содержащий комплекс стабилизатора - натриевой соли полиакриловой кислоты концентрацией 10,0 ммоль/л и нитрата серебра концентрацией 6,0 ммоль/л.

Получение частиц йодида серебра осуществляют смешением первого и второго растворов путем приливания ко второму раствору первого раствора при перемешивании и продолжают перемешивать в течение 10 мин при нормальных условиях. Получают частицы йодида серебра со средним диаметром 1,5±0,2 нм.

Пример 2. Получение стабилизированных высоко дисперсных частиц йодида серебра с использованием в качестве стабилизатора полиэтиленимина.

Получение проводят аналогично примеру 1 с использованием 0,018 г йодида калия (2,16 ммоль/л), 0,022 г полиэтиленимина (10,0 ммоль/л) и 0,031 г нитрата серебра (3,6 ммоль). Получают частицы йодида серебра со средним диаметром 1,7±0,2 нм.

Пример 3. Получение стабилизированных высоко дисперсных частиц йодида серебра с использованием в качестве стабилизатора натриевой соли полиакриловой кислоты.

Получение проводят аналогично примеру 1 с использованием 0,003 г йодида калия (0,36 ммоль/л), 0,0036 г натриевой соли полиакриловой кислоты (1,0 ммоль/л) и 0,005 г нитрата серебра (0,6 ммоль). Получают частицы йодида серебра со средним диаметром 1,5±0,2 нм.

Пример 4. Получение стабилизированных высоко дисперсных частиц йодида серебра с использованием в качестве стабилизатора полиэтиленимина.

Получение проводят аналогично примеру 1 с использованием 0,0018 г йодида калия (0,216 ммоль/л), 0,0022 г полиэтиленимина (1,0 ммоль/л) и 0,0031 г нитрата серебра (0,36 ммоль). Получают частицы йодида серебра со средним диаметром 1,7±0,2 нм.

Таким образом, заявленный способ получения высокодисперсных стабилизированных частиц йодида серебра в водных растворах является простым и обеспечивает получение частиц йодида серебра с узким распределением по размеру и со средним диаметром частиц 1,3-1,9 нм.

Способ получения высокодисперсных стабилизированных частиц йодида серебра в водных растворах, включающий приготовление первого раствора - раствора йодида щелочного металла, приготовление второго раствора, образованного из водного раствора нитрата серебра и водного раствора полиэлектролитного стабилизатора, смешение обоих растворов при нормальных условиях с образованием результирующего раствора, содержащего стабилизированные частицы йодида серебра, отличающийся тем, что полиэлектролитный стабилизатор представляет собой натриевую соль полиакриловой кислоты или полиэтиленимин, йодид щелочного металла представляет собой йодид калия, первый раствор готовят из йодида калия с концентрацией 0,216-3,6 ммоль/л, второй раствор готовят из раствора нитрата серебра с концентрацией 0,36-6,0 ммоль/л и из раствора полиэлектролитного стабилизатора с концентрацией 1,0-10,0 ммоль/л, а смешение растворов ведут путем приливания первого раствора ко второму раствору с образованием стабилизированных частиц йодида серебра, имеющих средний размер 1,3-1,9 нм.
Способ получения высокодисперсных стабилизированных частиц йодида серебра в водных растворах
Источник поступления информации: Роспатент

Showing 41-50 of 416 items.
13.01.2017
№217.015.8643

Способ получения полимерного покрытия на поверхности хлопчатобумажной ткани

Изобретение относится к способу получения на поверхности хлопчатобумажной ткани полимерных покрытий, обладающих гидрофобными свойствами, которые могут быть использованы как защитные, водо-, грязеотталкивающие покрытия. Технический результат достигается в способе получения полимерного покрытия...
Тип: Изобретение
Номер охранного документа: 0002603734
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.8863

Туннель для автодорог, железных дорог и метрополитенов

Изобретение относится к горному и подземному строительству, в частности к конструкциям туннелей для автодорог, железных дорог и метрополитенов. Туннель для автодорог, железных дорог и метрополитенов с защитной обделкой, имеющий поперечное сечение в виде фигуры постоянной ширины. Поперечное...
Тип: Изобретение
Номер охранного документа: 0002602533
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.9187

Производные 2-(адамант-2-ил)этиламина, обладающие потенциальной противовирусной активностью

Изобретение относится к новым адамантансодержащим аминам нижеуказанной общей формулы, конкретно к 2-(адамант-2-ил)пентан-1-амину и 2-(адамант-2-ил)фенилэтил-1-амину, Новые соединения проявляют антивирусную активность. В общей формуле R=СН, СН. 1 табл., 2 пр.
Тип: Изобретение
Номер охранного документа: 0002605698
Дата охранного документа: 27.12.2016
25.08.2017
№217.015.a63b

Продольная галерея-потерна бетонной плотины

Изобретение относится к гидротехническому строительству, в частности к конструкциям продольных галерей-потерн бетонных плотин. Продольная галерея-потерна 5 бетонной плотины 1 выполнена в поперечном сечении в виде треугольника Рело. Причем один из углов треугольника Рело направлен в верхнюю...
Тип: Изобретение
Номер охранного документа: 0002608066
Дата охранного документа: 12.01.2017
25.08.2017
№217.015.a9ef

Грунтовая плотина, возводимая на слабых основаниях в районах с повышенной сейсмичностью

Изобретение относится к гидротехническому строительству и может быть использовано при возведении грунтовых сооружений на слабых основаниях в районах с повышенной сейсмичностью. Грунтовая плотина, возводимая на слабых основаниях в районах с повышенной сейсмичностью, включает криволинейную с...
Тип: Изобретение
Номер охранного документа: 0002611805
Дата охранного документа: 01.03.2017
25.08.2017
№217.015.aa09

Напорный туннель округлой формы для гидроэлектростанций

Изобретение относится к гидротехническому строительству и предназначено для напорных туннелей гидроэлектростанций с обделкой. Напорный туннель округлой формы для гидроэлектростанций включает выработку 3 с углами и со сводом во вмещающей туннель породе и бетонную обделку 2 с расположенными...
Тип: Изобретение
Номер охранного документа: 0002611718
Дата охранного документа: 28.02.2017
25.08.2017
№217.015.aa6f

Дренажная труба

Изобретение относится к мелиорации, а именно к дренажным трубам. Дренажная труба с перфорационными отверстиями 3 в поперечном сечении выполнена в виде треугольника Рело и имеет донную часть 1 и боковые части 2. Один из углов 4 треугольника Рело расположен в верхней сводной части трубы....
Тип: Изобретение
Номер охранного документа: 0002611803
Дата охранного документа: 01.03.2017
25.08.2017
№217.015.aa9d

Кротодренажное устройство

Изобретение относится к гидромелиоративной технике и используется при создании кротодрен. Устройство включает вертикальный нож, горизонтальный нож с симметрично расположенными относительно вертикального ножа открылками с прикрепленными к каждому из них дренером с поперечным сечением в виде...
Тип: Изобретение
Номер охранного документа: 0002611787
Дата охранного документа: 01.03.2017
25.08.2017
№217.015.aaa0

Рабочий орган кротодренажной машины

Изобретение относится к гидромелиоративной технике и используется при создании кротодрен. Рабочий орган кротодренажной машины включает вертикальный нож 1 с двумя Г-образными крыльями 2 и дренеры 4, прикрепленные к Г-образным крыльям 2 вертикального ножа 1 посредством расположенных сзади него...
Тип: Изобретение
Номер охранного документа: 0002611800
Дата охранного документа: 01.03.2017
25.08.2017
№217.015.aae8

Осушительная дренажная труба

Изобретение относится к мелиорации и может быть использовано для устройства дренажа. Осушительная дренажная труба выполнена с расположенной в ее нижней части лотковой частью и верхней части - водоприемной частью с перфорационными отверстиями. В поперечном сечении осушительная дренажная труба...
Тип: Изобретение
Номер охранного документа: 0002611717
Дата охранного документа: 28.02.2017
Showing 41-50 of 162 items.
25.08.2017
№217.015.aae8

Осушительная дренажная труба

Изобретение относится к мелиорации и может быть использовано для устройства дренажа. Осушительная дренажная труба выполнена с расположенной в ее нижней части лотковой частью и верхней части - водоприемной частью с перфорационными отверстиями. В поперечном сечении осушительная дренажная труба...
Тип: Изобретение
Номер охранного документа: 0002611717
Дата охранного документа: 28.02.2017
25.08.2017
№217.015.ab95

Теплозащитный материал

Изобретение относится к теплозащитным материалам на основе этиленпропилендиеновых каучуков, которые могут использоваться в авиа- и ракетостроении. Теплозащитный материал на основе этиленпропилендиенового каучука содержит серу, оксид цинка, стеарин, технический углерод,...
Тип: Изобретение
Номер охранного документа: 0002612304
Дата охранного документа: 06.03.2017
25.08.2017
№217.015.ac3d

Способ образования кротовых дрен

Изобретение относится к гидротехническому строительству и может быть использовано при прокладке кротового дренажа, а также при осушении строительных площадок. Способ образования кротовых дрен включает прорезание в толще грунта 1 по трассе дренажа Ш-образной щели 2 с охватом дрены 3 по бокам и...
Тип: Изобретение
Номер охранного документа: 0002612203
Дата охранного документа: 03.03.2017
25.08.2017
№217.015.b066

Способ получения композиционных изделий с внутренней полостью сваркой взрывом

Изобретение относится к технологии получения изделий цилиндрической формы с помощью энергии взрыва и может быть использовано для изготовления изделий с внутренней полостью, например, теплозащитых экранов, деталей термического, химического оборудования. В способе берут биметаллический...
Тип: Изобретение
Номер охранного документа: 0002613511
Дата охранного документа: 16.03.2017
25.08.2017
№217.015.b06c

Гидротехнический отводящий туннель с железобетонной обделкой

Изобретение относится к гидротехническому строительству, в частности к конструкциям безнапорных отводящих туннелей с железобетонной обделкой. Гидротехнический отводящий туннель с железобетонной обделкой выполнен в виде выработки 1 в горной породе с поперечным сечением в виде фигуры постоянной...
Тип: Изобретение
Номер охранного документа: 0002613461
Дата охранного документа: 16.03.2017
25.08.2017
№217.015.b163

Способ получения меланина из лузги подсолнечника

Изобретение относится к фармацевтической, химической и пищевой отраслям промышленности, а именно к способу получения меланина из лузги подсолнечника. Способ получения меланина из лузги подсолнечника, включающий промывание водой неизмельченной лузги подсолнечника, сушку, экстракцию раствором...
Тип: Изобретение
Номер охранного документа: 0002613294
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.b45c

Способ повышения жизнестойкости икры, личинок и молоди рыб

Способ предусматривает инкубацию икры, выдерживание предличинок и подращивание личинок в минеральной воде, обедненной по дейтерию с концентрацией 4-136 ppm. Молодь также выращивают в обедненной дейтерием воде с концентрацией 4-136 ppm. Способ обеспечивает повышение жизнестойкости икры, личинок...
Тип: Изобретение
Номер охранного документа: 0002613971
Дата охранного документа: 22.03.2017
25.08.2017
№217.015.b5ad

Рабочий орган кротователя

Изобретение относится к области сельскохозяйственного машиностроения, в частности к орудиям для глубокой обработки почвы, а именно к гидромелиоративной технике и используется при создании кротодрен. Рабочий орган кротователя содержит вертикальный нож с дренером (2), уширитель (3),...
Тип: Изобретение
Номер охранного документа: 0002614380
Дата охранного документа: 24.03.2017
25.08.2017
№217.015.b77a

Способ интуитивно копирующего управления одноковшовым экскаватором

Изобретение относится к области машиностроения, может быть использовано в ручных гидравлических системах управления подвижными наземными, авиационными и морскими объектами и предназначено для формирования посредством гидрораспределителей команд по четырем каналам управления для одноковшовых...
Тип: Изобретение
Номер охранного документа: 0002614866
Дата охранного документа: 30.03.2017
25.08.2017
№217.015.badb

Способ получения полимерного покрытия на поверхности хлопчатобумажной ткани

Изобретение относится к способу получения на поверхности хлопчатобумажной ткани полимерных покрытий, обладающих гидрофобными свойствами, которые могут быть использованы как защитные, водо-, грязеотталкивающие покрытия. Способ включает обработку ткани окуночным методом в растворе прививаемого на...
Тип: Изобретение
Номер охранного документа: 0002615698
Дата охранного документа: 06.04.2017
+ добавить свой РИД