×
25.08.2017
217.015.d026

Результат интеллектуальной деятельности: Способ определения направления и дальности до источника сигналов

Вид РИД

Изобретение

Аннотация: Способ относится к измерениям, в частности к пеленгу. Техническим результатом является уменьшение погрешности использования его на однопозиционном пункте наблюдения и увеличение помехоустойчивости при наличии мешающих сигналов, приходящих во время прохождения инфразвуком расстояния от источника сигнала до пункта наблюдения. Технический результат достигается тем, что отмечают время прихода электромагнитного излучения (ЭМИ), инфразвука и разность времени сигналов. До прихода инфразвука по сигналам от двух антенн, направленных в стороны света, находят азимут, дальность до источника - по высоте отражения от ионосферы, времени задержки сигнала, по трем ортогональным антеннам - угол. Фиксируют азимут и этот угол. Находят времена сигналов от земли и ионосферы. В последующих сигналах сравнивают их азимут с фиксированным и при близких значениях сличают углы. Далее находят: дальность до источника, координаты, угол между вектором на источник и прямой между датчиками. По скорости инфразвука находят время его прихода и погрешность, по углам, расстоянию между точками и времени - скорость инфразвука, дальность - по разностям времен сигналов и скорости инфразвука, координаты - по азимуту и дальности. 1 ил.

Изобретение относится к измерительной технике, к пеленгаторам, и предназначается для местоопределения источников сигналов электромагнитного излучения (ЭМИ) и инфразвука искусственного и естественного происхождения (например, молниевых разрядов) и может быть использовано в метеорологии, в службе наблюдения за грозовой деятельностью, в морском транспорте и авиации.

Оценка направления и дальности до источника сигналов при установке одного устройства на однопозиционном пункте наблюдения возможна с помощью способов, анализирующих соотношение параметров ЭМИ (амплитуд сигналов на приемниках ЭМИ с дипольными диаграммами направленности, взаимно перпендикулярными в горизонтальной плоскости) и изменение параметров принимаемого сигнала ЭМИ (длительность переднего фронта, длительность пика, отношение амплитуд частотных составляющих и др.) в зависимости от расстояния, пройденного сигналом. Для уменьшения погрешности оценки дальности устанавливают два устройства на расстоянии друг от друга (измерительная база) и применяют триангуляционный метод определения дальности. Способ заключается в том, что из двух пунктов наблюдения, расстояние между которыми известно, определяют углы прихода ЭМИ относительно линии, соединяющей пункты наблюдения, и решают геометрическую задачу нахождения сторон треугольника по известной стороне и двум измеренным углам [1]. Однако при малых углах относительно линии, соединяющей пункты наблюдения, применение способа дает большую погрешность [2].

Большинство регистрируемых явлений (грозовые разряды и др.) сопровождается сигналами, распространяющимися с низкой скоростью (например, инфразвук), но пеленгация с использованием этих сигналов не дает лучших результатов из-за зависимости скорости распространения этих сигналов от состояния среды распространения, т.е. из-за незнания точного значения скорости распространения в данный момент в данном месте, а также из-за мешающих сигналов других источников, возникающих за время прохождения инфразвука.

Однако использование обоих видов сигналов (например, электромагнитного излучения и инфразвука) на двухпозиционном пункте наблюдения дает новое качество, так как позволяет одновременно с пеленгом определить значение скорости распространения инфразвука в данный момент и, соответственно, более точно определить дальность до источника сигнала при известном расстоянии между точками регистрации. С другой стороны, использование разности времени прихода инфразвука на точки регистрации позволяет уменьшить размеры измерительной базы до однопозиционной за счет более низкой скорости распространения инфразвука по сравнению с ЭМИ.

Аналогично могут быть использованы акустические, сейсмические и ультразвуковые волны, сопровождающие регистрируемое явление.

Наиболее близким техническим решением к предлагаемому является способ, раскрытый в статье [3] (комбинированная система грозоопределения, состоящая из инфразвукового комплекса и электрической антенны), где местоположение и дальность до источника сигнала определяются после события по результатам дальнейшей обработки оператором записанных сигналов. Для определения азимута используются разности времени прихода инфразвуковых сигналов на не менее чем три микробарометра, разнесенных друг от друга более чем на 90 метров (трехпозиционная система регистрации), а для определения дальности до источника сигнала используется разность времени прихода сигналов на электростатический флюксметр и инфразвуковой микрофон (или микробарометры).

При появлении двух или более инфразвуковых сигналов от аналогичных событий на рассмотренном пункте наблюдения во время прохождения инфразвуком расстояния от источника сигналов до микробарометра определить, какому источнику принадлежат сигналы, практически невозможно в рамках указанного способа.

Недостатками прототипа являются большая погрешность использования его на однопозиционном пункте наблюдения или на средстве передвижения, а также малая помехоустойчивость при наличии мешающих сигналов, приходящих во время прохождения инфразвуком расстояния от источника сигнала до пункта наблюдения.

Техническим результатом, обеспечиваемым заявляемым изобретением, является уменьшение погрешности использования его на однопозиционном пункте наблюдения или на средстве передвижения и увеличение помехоустойчивости при наличии мешающих сигналов, приходящих во время прохождения инфразвуком расстояния от источника сигнала до пункта наблюдения.

Технический результат достигается тем, что в способе определения направления и дальности до источника сигналов, заключающемся в том, что регистрируют время прихода электромагнитного излучения (ЭМИ) на однопозиционный пункт наблюдения с двумя точками регистрации инфразвука, а также время прихода инфразвука на две точки регистрации и определяют для каждой точки регистрации разность времени прихода ЭМИ и инфразвука, дополнительно, до прихода инфразвука на две точки регистрации регистрируют магнитные компоненты сигнала ЭМИ двумя взаимно перпендикулярными в горизонтальной плоскости магнитными антеннами, ориентированными максимумами диаграмм направленности соответственно на Север-Юг и Запад-Восток, определяют по соотношению сигналов магнитных антенн азимут и определяют приближенную дальность до источника сигналов по известной высоте отражающего слоя ионосферы и времени задержки ионосферного отраженного сигнала ЭМИ относительно сигнала ЭМИ земной волны, для чего регистрируют магнитную компоненту сигнала вертикальной третьей магнитной антенной, по полученным первичным сигналам трех ортогональных магнитных антенн определяют угол наклона магнитной составляющей сигнала относительно горизонтальной плоскости, запоминают значение азимута и угла наклона магнитной составляющей сигнала относительно горизонтальной плоскости в момент прихода первичных сигналов ЭМИ и начинают отсчет разности времени сигнала ЭМИ земной волны и ионосферного сигнала ЭМИ, для последующих сигналов ЭМИ сравнивают текущее значение азимута с запомненным, для последующих сигналов ЭМИ с азимутом прихода, близким к запомненному, сравнивают текущее значение угла наклона магнитной составляющей сигнала с запомненным и при отклонении от заданного значения разности углов наклона магнитной составляющей сигнала прекращают отсчет времени задержки ионосферного сигнала ЭМИ относительно сигнала ЭМИ земной волны, по полученному значению времени задержки ионосферного сигнала ЭМИ и азимуту определяют приближенные дальность до источника сигналов и его местоположение, определяют по приближенному местоположению для каждой точки регистрации угол прихода сигнала между направлением на источник сигнала и прямой, соединяющей точки регистрации, определяют приближенное расстояние до источника сигнала и по заданной скорости инфразвука определяют ожидаемый интервал времени прихода инфразвука для каждой точки регистрации с учетом погрешности заданной скорости инфразвука и определения приближенной дальности и прекращают анализ сигналов до наступления ожидаемых интервалов времени прихода инфразвука, а в течение ожидаемых интервалов времени после прихода инфразвука и определения разности времени прихода ЭМИ и инфразвука для каждой точки регистрации, по углам прихода сигналов, известному расстоянию между точками регистрации и разностям времени прихода ЭМИ и инфразвука для каждой точки регистрации уточняют скорость инфразвука во время прохождения сигналов, по разностям времени прихода ЭМИ и инфразвука для каждой точки регистрации и уточненной скорости инфразвука во время прохождения сигналов уточняют значение дальности до источника сигналов, а по азимуту и уточненному значению дальности уточняют местоположение источника сигналов.

Способ иллюстрируется схемой, приведенной на чертеже.

Из схемы следует:

где a, b - расстояния до источника сигналов, γ, β - углы между направлением на источник сигналов и линией, соединяющей обе точки регистрации (точку 1 и точку 2), V - скорость инфразвука, Δt1 - разность времени между приходом ЭМИ и приходом инфразвука в точку 1, Δt2 - разность времени между приходом ЭМИ и приходом инфразвука в точку 2, D - известное расстояние между точками регистрации (база), которое может быть уменьшено до нескольких метров.

На практике достаточно определить направление на источник сигнала из любой одной точки регистрации на пункте наблюдения, определить угол между направлением на источник сигнала и базой и приближенную дальность от точки регистрации до источника сигнала по изменению параметров принимаемого сигнала ЭМИ и построить треугольник направлений с последующим уточнением дальности после прихода инфразвука.

Такой способ работоспособен и при малых углах, и при нулевых углах, когда источник сигнала расположен на линии, проходящей через точки регистрации.

Предлагаемый способ реализуется следующим образом.

Принимают сигналы ЭМИ на однопозиционном пункте наблюдения с двумя точками регистрации и размещенным на каждой точке микробарометром, а на одной из двух точек регистрации (например, на первой точке) с размещенными двумя взаимно перпендикулярными в горизонтальной плоскости магнитными антеннами, ориентированными максимумами диаграммы направленности соответственно на Север-Юг (ось X) и на Восток-Запад (ось Y), и вертикальной магнитной антенной, установленной перпендикулярно плоскости XY (ось Z), подключенными через усилители и аналого-цифровые преобразователи к вычислителю.

В случае превышения сигналом от любой из магнитных антенн заданного уровня начинают цикл обработки сигналов и отсчет времени задержки инфразвука для каждой из двух точек регистрации.

Определяют направление на источник сигнала, вычисляя отношение амплитуд сигналов двух взаимно перпендикулярных в горизонтальной плоскости антенн (X и Y) [4],

tgα=Ay/Ax,

где α - азимут; Ax, Ay - амплитуды сигналов магнитных антенн, ориентированных максимумами диаграммы направленности соответственно на Север-Юг (ось X) и на Восток-Запад (ось Y).

Формируют и запоминают верхнее tgα1 и нижнее tgα2 допустимые значения, исходя из известных местных условий.

Полученное направление соответствует углу γ прихода сигнала для первой точки регистрации.

Вычисляют отношение квадратов амплитуд сигналов трех антенн , формируют и запоминают верхнее tg2β1 и нижнее tg2β2 допустимые значения, исходя из известных местных условий.

Для всех последующих сигналов проверяют значение tgα, и, если оно не находится между верхним и нижним допустимыми значениями tgα1 и tgα2, сигнал не обрабатывается, отсеиваются помехи ЭМИ, приходящие с других азимутов α.

Для всех последующих сигналов с допустимыми значениями tgα проверяют значение tg2β и, если оно не находится между верхним и нижним допустимыми значениями tg2β1 a tg2β2, этим сигналом останавливают отсчет времени задержки ионосферного сигнала, так как с приходом отраженного от ионосферы сигнала изменяется угол β наклона магнитной составляющей сигнала.

По полученному времени задержки ионосферного сигнала, известной по местным условиям - высоте D-слоя ионосферы и по геометрии земного шара определяют расстояние до источника сигнала [5], [6].

где R - расстояние, проходимое земной волной до источника сигнала; RЗ - радиус Земли; τЗ - время задержки пространственной волны; h - эффективная высота ионосферного слоя D; с - скорость света.

Принимают за приближенное местонахождение источника сигнала точку на расстоянии R в направлении на источник сигнала из первой точки регистрации и определяют приближенные угол прихода сигнала β1 и расстояние b1 до второй точки регистрации по известному расстоянию D между точками регистрации, приближенному расстоянию R и углу прихода сигнала γ на первую точку.

Для первой и второй точек регистрации определяют ожидаемый интервал времени прихода инфразвука по расстояниям R и b1 и заданной скорости инфразвука с началом интервала времени, вычисленным при максимальной скорости инфразвука и минимальных значениях R и b1.

Прекращают обработку сигналов до наступления ожидаемых интервалов времени прихода инфразвука на точки регистрации, а с наступлением указанных интервалов времени регистрируют время прихода инфразвука для первой и второй точек регистрации и вычисляют разности Δt1 и Δt2 времени прихода ЭМИ и инфразвука для двух точек регистрации.

По измеренным разностям времени прихода ЭМИ и инфразвука Δt1 и Δt2, по углам прихода сигналов β1 и γ на точки регистрации и по известному расстоянию D между точками регистрации определяют уточненное значение скорости инфразвука (1) во время прохождения сигналов и уточненную дальность (2) до источника сигналов.

По азимуту и уточненной дальности уточняют местоположение источника сигналов.

При необходимости, более точное местоположение источника сигналов определяют итерациями путем определения по уточненному местоположению источника сигналов новых значений β1, скорости инфразвука и дальности до источника сигналов.

Таким образом, за счет использования сигналов магнитных антенн с более низким уровнем шумов, а также за счет удаления помех, приходящих во время прохождения инфразвука до точек регистрации, повышена помехоустойчивость способа.

Используемые действия способа реализуются в реальном масштабе времени для инфразвука, сейсмических колебаний и других сопутствующих ЭМИ явлений, позволяют уменьшить погрешность использования его на однопозиционном пункте наблюдения или на средстве передвижения и увеличить помехоустойчивость при наличии мешающих сигналов, приходящих во время прохождения инфразвуком расстояния от источника сигнала до пункта наблюдения.

Источники информации

1. Караваев В.В., Сазонов В.В. Статистическая теория пассивной локации. - М.: Радио и связь, 1987. стр. 150.

2. Результаты моделирования триангуляционного способа определения дальности с применением двух и трех станций. Коровин Е.С. 2012 г. ОАО «Центральное конструкторское бюро автоматики», г. Омск, радиосеминар, доклад, стр. 1-33,

3. Электромагнитная акустическая система обнаружения грозовых разрядов. К.В. Вознесенская, А.В. Соловьев, И.С. Гибанов, Д.С. Провоторов, М.В. Чепчугов, А.А. Бочаров. Вестник науки Сибири. 2012. №5 (6), http://sjs.tpu.ru/journal/article/view/510/420, УДК 534.321.8.

4. Широкополосное двухкомпонентное приемное антенное устройство (патент РФ №2474014 C1, H01Q 7/04, 2011 г., опубл. 27.01.2013).

5. Анализ методов и средств пассивной радиолокации грозовых очагов. П. Трусковский. Proceedings of International Conference RelStat'04, Part 3, Институт транспорта и связи, Ломоносова 1, Рига, LV-1019, Латвия, E-mail: truskovskis@tsi.lv http://www.tsi.lv/sites/default/files/editor/science/Research_journals/Tr_Tel/2005/V3/art10.pdf

6. Способ однопунктовой дальнометрии источников атмосфериков (Патент РФ №2138063 C1, G01S 13/95, G01S 11/00, 1998 г., опубл. 20.09.1999).

Способ определения направления и дальности до источника сигналов, заключающийся в том, что регистрируют время прихода электромагнитного излучения (ЭМИ) на однопозиционный пункт наблюдения с двумя точками регистрации инфразвука, а также время прихода инфразвука на две точки регистрации и определяют для каждой точки регистрации разность времени прихода ЭМИ и инфразвука, отличающийся тем, что дополнительно, до прихода инфразвука на две точки регистрации, регистрируют магнитные компоненты сигнала ЭМИ двумя взаимно перпендикулярными в горизонтальной плоскости магнитными антеннами, ориентированными максимумами диаграмм направленности соответственно на Север-Юг и Запад-Восток, определяют по соотношению сигналов магнитных антенн азимут и определяют приближенную дальность до источника сигналов по известной высоте отражающего слоя ионосферы и времени задержки ионосферного отраженного сигнала ЭМИ относительно сигнала ЭМИ земной волны, для чего регистрируют магнитную компоненту сигнала вертикальной третьей магнитной антенной, по полученным первичным сигналам трех ортогональных магнитных антенн определяют угол наклона магнитной составляющей сигнала относительно горизонтальной плоскости, запоминают значение азимута и угла наклона магнитной составляющей сигнала относительно горизонтальной плоскости в момент прихода первичных сигналов ЭМИ и начинают отсчет разности времени сигнала ЭМИ земной волны и ионосферного сигнала ЭМИ, для последующих сигналов ЭМИ сравнивают текущее значение азимута с запомненным, для последующих сигналов ЭМИ с азимутом прихода, близким к запомненному, сравнивают текущее значение угла наклона магнитной составляющей сигнала с запомненным и при отклонении от заданного значения разности углов наклона магнитной составляющей сигнала прекращают отсчет времени задержки ионосферного сигнала ЭМИ относительно сигнала ЭМИ земной волны, по полученному значению времени задержки ионосферного сигнала ЭМИ и азимуту определяют приближенные дальность до источника сигналов и его местоположение, определяют по приближенному местоположению для каждой точки регистрации угол прихода сигнала между направлением на источник сигнала и прямой, соединяющей точки регистрации, определяют приближенное расстояние до источника сигнала и по заданной скорости инфразвука определяют ожидаемый интервал времени прихода инфразвука для каждой точки регистрации с учетом погрешности заданной скорости инфразвука и определения приближенной дальности и прекращают анализ сигналов до наступления ожидаемых интервалов времени прихода инфразвука, а в течение ожидаемых интервалов времени после прихода инфразвука и определения разности времени прихода ЭМИ и инфразвука для каждой точки регистрации по углам прихода сигналов, известному расстоянию между точками регистрации и разностям времени прихода ЭМИ и инфразвука для каждой точки регистрации уточняют скорость инфразвука во время прохождения сигналов, по разностям времени прихода ЭМИ и инфразвука для каждой точки регистрации и уточненной скорости инфразвука во время прохождения сигналов уточняют значение дальности до источника сигналов, а по азимуту и уточненному значению дальности уточняют местоположение источника сигналов.
Способ определения направления и дальности до источника сигналов
Способ определения направления и дальности до источника сигналов
Источник поступления информации: Роспатент

Showing 181-190 of 191 items.
09.06.2019
№219.017.79c1

Датчик разности давлений

Изобретение относится к измерительной технике, а именно к тензорезистивным датчикам давления, и предназначено для измерения разности давления жидкости и газов. Техническим результатом изобретения является повышение стабильности датчика разности давлений. Датчик разности давления содержит...
Тип: Изобретение
Номер охранного документа: 0002395793
Дата охранного документа: 27.07.2010
09.06.2019
№219.017.7f6f

Генератор меченых нейтронов

Использование: для исследования или анализа материалов радиационными методами с измерением вторичной эмиссии с использованием нейтронов. Сущность: заключается в том, что генератор меченых нейтронов содержит герметичный корпус, в котором установлены источник ионов, источник газообразного...
Тип: Изобретение
Номер охранного документа: 0002467317
Дата охранного документа: 20.11.2012
09.06.2019
№219.017.7f9c

Электростатический экран

Изобретение относится к области электротехники, к источникам нейтронного и рентгеновского излучения и других подобных устройств, в частности к экранировке аппаратов и их деталей. Цилиндрический электростатический экран электрофизической аппаратуры выполнен из высокоомного материала композитов...
Тип: Изобретение
Номер охранного документа: 0002466473
Дата охранного документа: 10.11.2012
19.06.2019
№219.017.8b0b

Устройство дуговой защиты с определением местоположения и мощности электрической дуги

Использование: в области электротехники. Технический результат - расширение функциональных возможностей. Устройство содержит N фотодетекторов, подключенных к входам аналого-цифровых преобразователей (АЦП) микропроцессора, N выходов которого подключены к входам соответствующих N исполнительных...
Тип: Изобретение
Номер охранного документа: 0002446535
Дата охранного документа: 27.03.2012
29.06.2019
№219.017.9a92

Сигнализатор избыточного давления, способ формирования профиля мембраны для сигнализатора избыточного давления

Сигнализатор избыточного давления и способ формирования профиля мембраны для него относятся к измерительной технике, а именно к устройствам для измерения порогового значения давления, и предназначены для предотвращения перегрузки. В корпусе сигнализатора избыточного давления, в котором...
Тип: Изобретение
Номер охранного документа: 0002245526
Дата охранного документа: 27.01.2005
29.06.2019
№219.017.9ff7

Комплекс программно-аппаратных средств автоматизации контроля и управления

Изобретение относится к вычислительной технике. Технический результат заключается в повышении надежности, за счет уменьшения задержки переключения на резерв при отказах сетевого оборудования и исключения потери данных. Комплекс программно-аппаратных средств автоматизации контроля и управления...
Тип: Изобретение
Номер охранного документа: 0002450305
Дата охранного документа: 10.05.2012
29.06.2019
№219.017.a0e2

Комплекс резервируемых программно-аппаратных средств автоматизации контроля и управления

Изобретение относится к автоматике и вычислительной технике. Техническим результатом является повышение надежности, быстрое переключение на резервное оборудование, освобождение вычислительных ресурсов от задач управления резервированием. Он достигается тем, что в комплексе средств автоматизации...
Тип: Изобретение
Номер охранного документа: 0002431174
Дата охранного документа: 10.10.2011
29.06.2019
№219.017.a0f6

Комплекс резервируемых программно-аппаратных средств автоматизации контроля и управления

Изобретение относится к автоматике и вычислительной технике. Техническим результатом является повышение надежности системной шины, повышение скорости сбора данных технологического процесса, повышение отказоустойчивости. Он достигается тем, что в комплексе программно-аппаратных средств...
Тип: Изобретение
Номер охранного документа: 0002430400
Дата охранного документа: 27.09.2011
23.02.2020
№220.018.04da

Способ прецизионных измерений амплитуды гармонических колебаний сверхнизких и звуковых частот при сильной зашумленности сигнала

Изобретение относится к метрологии, в частности к способам измерений амплитуды. Согласно способу выбирают время измерения собственных шумов применяемого регистратора; осуществляют предварительную градуировку регистратора по цене наименьшего разряда квантования; получают среднее квадратическое...
Тип: Изобретение
Номер охранного документа: 0002714861
Дата охранного документа: 19.02.2020
14.05.2023
№223.018.5591

Сейсмометр

Изобретение относится к сейсмометрам. Сущность: сейсмометр содержит корпус (1), два упругих элемента (2) между кронштейном (3) и корпусом (1), две магнитные системы (4). Магнитные системы (4) состоят из последовательно соединенных цилиндрических магнитопроводов (5), постоянного магнита (6)...
Тип: Изобретение
Номер охранного документа: 0002738733
Дата охранного документа: 16.12.2020
Showing 161-167 of 167 items.
14.05.2023
№223.018.5511

Устройство для защиты объекта от воздействия космоса

Изобретение относится к области космической техники, а более конкретно к средствам защиты космических объектов. Устройство для защиты объекта от воздействия космоса содержит n датчиков давления, установленных внутри m корпусов аппаратуры объекта, бортовую вычислительную машину (БЦВМ) и штатную...
Тип: Изобретение
Номер охранного документа: 0002735223
Дата охранного документа: 28.10.2020
14.05.2023
№223.018.5519

Устройство для защиты объекта от воздействия космоса

Изобретение относится к области космической техники, а более конкретно к средствам защиты объектов в космосе. Устройство для защиты объекта от воздействия космоса содержит n датчиков загрязнения, бортовую вычислительную машину (БЦВМ) и штатную телеметрическую систему, подключенную к БЦВМ....
Тип: Изобретение
Номер охранного документа: 0002735162
Дата охранного документа: 28.10.2020
14.05.2023
№223.018.5580

Трехкомпонентный скважинный сейсмометр

Изобретение относится к трехкомпонентным скважинным сейсмометрам. Сущность: сейсмометр содержит в герметичном корпусе (1) генератор (2), первый, второй и третий каналы (3-5) приема сейсмических сигналов; первый, второй и третий аналоговые выходы (6-8) соответственно первого, второго и третьего...
Тип: Изобретение
Номер охранного документа: 0002738734
Дата охранного документа: 16.12.2020
14.05.2023
№223.018.5589

Сейсмометр

Изобретение относится к измерительной технике, в частности к сейсмометрии, и может быть использовано для сейсмического мониторинга. Заявлен сейсмометр, содержащий корпус, маятник, первую пружину, упругую первую опору, генератор, первый аналоговый выход, последовательно соединенные первый...
Тип: Изобретение
Номер охранного документа: 0002738732
Дата охранного документа: 16.12.2020
14.05.2023
№223.018.5591

Сейсмометр

Изобретение относится к сейсмометрам. Сущность: сейсмометр содержит корпус (1), два упругих элемента (2) между кронштейном (3) и корпусом (1), две магнитные системы (4). Магнитные системы (4) состоят из последовательно соединенных цилиндрических магнитопроводов (5), постоянного магнита (6)...
Тип: Изобретение
Номер охранного документа: 0002738733
Дата охранного документа: 16.12.2020
14.05.2023
№223.018.559e

Устройство для измерения инфразвуковых колебаний среды

Изобретение относится к измерительной технике. Устройство для измерения инфразвуковых колебаний среды содержит корпус, четыре мембраны, связанные с окружающей средой и средой внутри корпуса, четыре емкостных датчика перемещения мембраны и четыре усилителя-демодулятора, генератор, сильфон,...
Тип: Изобретение
Номер охранного документа: 0002738766
Дата охранного документа: 16.12.2020
14.05.2023
№223.018.55a7

Устройство для измерения инфразвуковых колебаний среды

Изобретение относится к измерительной технике, в частности к области измерения инфразвуковых колебаний газообразной или жидкой среды. Устройство для измерения инфразвуковых колебаний среды содержит герметичный корпус, две мембраны, первый емкостный датчик перемещения мембраны и первый...
Тип: Изобретение
Номер охранного документа: 0002738765
Дата охранного документа: 16.12.2020
+ добавить свой РИД