×
25.08.2017
217.015.ceac

Результат интеллектуальной деятельности: Способ восстановления параметров движения летательного аппарата

Вид РИД

Изобретение

Аннотация: Изобретение относится к области авиационного приборостроения и может найти применение для восстановления фактических (опытных) параметров движения при проведении летных испытаний летательного аппарата (ЛА). Технический результат – расширение функциональных возможностей. Для этого на основе телеметрической информации о работе бортовой инерциальной навигационной системы (ИНС) и бортовой аппаратуры спутниковой навигации (БАСН), а также данных о координатах точки падения ЛА и моменте встречи ЛА с земной поверхностью апостериорно определяют поправки, согласующие измеренные и расчетные данные, на основании которых восстанавливают параметры движения (поступательного и вращательного) на атмосферном участке полета ЛА. При этом обеспечивают высокоточное определение фактических (опытных) параметров (поступательного и вращательного) движения атмосферного участка траектории полета. 2 ил.

Изобретение относится к способам обработки экспериментальных данных и может быть использовано для восстановления параметров фактической (опытной) траектории на атмосферном участке полета при проведении летных испытаний летательного аппарата (ЛА).

Известен «Способ обработки информации о перемещении летательного аппарата» (Патент РФ №2436047, А.И. Клименко, А.А. Клименко, А.В. Абакумов, Е.Н. Скрипаль, Р.В. Ермаков, Л.А. Филиппов, МПК G01C 23/00 (2006.01), опубл. 10.12.2011 г., Бюл. №34), который включает операции, связанные с получением информации об основных параметрах навигации: от инерциальной навигационной системы (ИНС), состоящей из функционирующих в режиме регистрации информации по меньшей мере одного трехосевого акселерометра, по меньшей мере одного трехосевого датчика угловой скорости, по меньшей мере одного трехосевого магнитометра и от спутниковой навигационной системы (СНС). Комплексирование данных СНС осуществляют с возможностью корректировки параметров навигации и ошибок, накапливающихся при функционировании инерциальных навигационных систем. При этом маркируют выбранную траекторию перемещения ЛА точками его возможного нахождения, находящимися друг относительно друга в пространстве на расстоянии, равном заранее заданной величине. Реальные координаты положения ЛА определяют с использованием данных от ИНС и СНС в дискретные моменты времени, значения которых зависят от динамики и направления угловых скоростей ЛА. Данный способ выбран в качестве прототипа.

Известный способ предназначен для восстановления траектории ЛА в процессе полета, техническим результатом способа является повышение эффективности обработки информации путем обеспечения определения и восстановления траектории ЛА. Однако данный способ не обеспечивает высокоточного определения фактических (опытных) значений вектора скорости и параметров ориентации на атмосферном участке полета при проведении летных испытаний управляемых ЛА, что необходимо для подтверждения правильности функционирования бортовых систем навигации и управления, определения экспериментальных значений аэродинамических характеристик (АДХ) корпуса и органов управления ЛА, уточнения его тактико-технических характеристик.

Технической задачей, на решение которой направлено заявляемое изобретение, является обеспечение высокой точности определения фактических параметров поступательного и вращательного движения летательного аппарата на атмосферном участке полета.

Указанный технический результат достигается за счет того, что в заявляемом способе восстановления параметров траектории ЛА, включающем получение информации о движении ЛА от бортовой инерциальной навигационной системы на всем атмосферном участке полета ЛА и информации об основных параметрах навигации от бортовой аппаратуры спутниковой навигации (БАСН), обработку полученных данных от ИНС и БАСН и определение параметров движения ЛА, в отличие от прототипа, дополнительно получают информацию об основных параметрах навигации от БАСН на доплазменном и не менее чем в двух точках на послеплазменном участке полета ЛА, информацию от ИНС и БАСН получают телеметрически и проводят ее обработку апостериорно. В ходе обработки параметров движения ЛА с использованием информации ИНС и информации о параметрах движения навигационных спутников (НС) производят определение расчетных радиальных скоростей и дальностей ЛА относительно НС; формируют массивы данных об измеренных и расчетных значениях радиальных скоростей и дальностей ЛА относительно НС и с использованием данных о координатах точки падения и моменте встречи ЛА с земной поверхностью, определяют поправки, согласующие измеренные и расчетные данные о значениях радиальных скоростей и дальностей, восстанавливают параметры движения с учетом полученных поправок.

Обеспечение высокой точности определения фактических параметров поступательного и вращательного движения летательного аппарата на атмосферном участке полета достигается за счет использования всей совокупности признаков заявляемого способа.

На фиг. 1 показан алгоритм реализации заявляемого способа обработки; на фиг. 2 - алгоритм обработки информации в соответствии с заявляемым способом, полученной в ходе осуществлении заявляемого способа при помощи математических моделей ИНС и БАСН, а также комплексной модели движения управляемого ЛА при проведении летных испытаний летательного аппарата.

Способ восстановления параметров движения летательного аппарата реализуется следующим образом.

В процессе полета ЛА телеметрически получают информацию:

- данные о параметрах движения (поступательного и вращательного) на атмосферном участке полета летательного аппарата от бортовой ИНС, состоящей из по крайней мере одного трехосевого акселерометра (либо трех одноосевых акселерометров) и по крайней мере одного трехосевого датчика угловой скорости (либо трех одноосевых датчиков угловой скорости), функционирующих в режиме регистрации информации на всем атмосферном участке полета ЛА:

- координаты положения, составляющие вектора скорости и параметры ориентации ЛА в инерциальной геоцентрической системе координат (ИГСК);

- проекции кажущихся скоростей и приращений углов поворотов на измерительные оси трехосевого датчика угловой скорости (ДУС) (либо трех одноосевых датчиков угловой скорости) и измерительные оси трехосевого акселерометра (либо трех одноосевых акселерометров) (АКС) из состава ИНС, измеряемые в каждом цикле навигационных определений;

- информацию об основных параметрах навигации от БАСН на доплазменном и не менее чем в двух точках на послеплазменном участке траектории полета ЛА:

- измеренные значения радиальных скоростей и дальностей до видимых НС;

- моменты измерений радиальных скоростей и дальностей;

- номера навигационных спутников, относительно которых получены измерения радиальных скоростей и дальностей.

После проведения испытаний ЛА из архива Информационно-аналитического центра координатно-временного и навигационного обеспечения (ИАЦ КВНО) ЦНИИмаш получают информацию о:

- параметрах движения навигационных спутников в гринвичской геоцентрической системе координат, относительно которых получены измерения радиальных скоростей и дальностей.

Обработку полученных данных от ИНС и БАСН проводят апостериорно, при этом в ходе обработки параметров траектории ЛА производят определение расчетных радиальных скоростей и дальностей ЛА относительно НС, формируют массивы данных об измеренных и расчетных значениях радиальных скоростей и дальностей.

С использованием полученных данных, данных о координатах точки падения и данных о моменте встречи ЛА с земной поверхностью, полученных с помощью средств контроля, методом наименьших квадратов определяют поправки, согласующие измеренные и расчетные данные о значениях радиальных скоростей и дальностей (поправки к начальным условиям поступательного и вращательного движения), к показаниям акселерометра, а также поправку на рассогласование шкалы времени БАСН и системной шкалы времени навигационных спутников, восстанавливают параметры движения с учетом полученных поправок, то есть для восстановления параметров траектории определяют поправки, согласующие навигационные определения ИНС с результатами траекторных измерений БАСН, включая поправки к начальным условиям поступательного и вращательного движения, к показаниям акселерометра, а также поправку на рассогласование шкалы времени БАСН и системной шкалы времени НС.

Состав поправок ограничивают наиболее значимыми для восстановления опытной траектории и включают поправки в начальные условия для решения навигационной задачи в соответствии с алгоритмом работы ИНС, в том числе: три поправки в координаты положения; три поправки в составляющие вектора скорости; три поправки в параметры ориентации.

Поправки должны минимизировать функционал вида:

,

при условии, что A⋅X=b,

где X - вектор искомых поправок;

M - матрица коэффициентов влияния поправок на изменения величин отклонений квадратов радиальных дальностей (S2) до видимых НС и скалярных произведений радиальных дальностей и скоростей (S-W);

B - вектор, элементами которого являются взвешенные разности расчетных и измеренных значений:

- квадратов радиальных дальностей S;

- скалярных произведений радиальных дальностей S и скоростей W;

A - матрица коэффициентов влияния элементов вектора X на отклонения координат конечной точки траектории (точки падения ЛА);

b - вектор, содержащий отклонения координат фактической точки падения от точки прицеливания.

Искомое решение определяется из уравнений:

,

.

Дополнительно могут быть определены характеристики точности восстановления параметров движения ЛА, так же как ошибки определения поправок (с учетом и без учета идентифицированного вектора поправок), обусловленные совместным влиянием всех погрешностей ИНС, и восстановлены параметры движения с использованием расширенного вектора поправок (три поправки в координаты положения; три поправки в составляющие вектора скорости; три поправки в параметры ориентации; одна поправка в аддитивную погрешность акселерометра; две поправки в мультипликативные составляющие погрешности акселерометра).

Наибольшая точность восстановления параметров движения достигается на завершающем этапе послеполетной обработки телеметрической информации - при интегрировании уравнений движения с использованием измерений приращений кажущихся скоростей и углов поворота ЛА с учетом полученных поправок к начальным условиям и результатам измерений акселерометра. Учет указанных поправок позволяет повысить точность определения координат положения ЛА до единиц метров.

Заявляемый способ восстановления параметров движения летательного аппарата был проверен при помощи математической модели ИНС и БАСН, а также комплексной модели движения управляемого ЛА (см. фиг. 2). Проверка показала работоспособность заявляемого способа и достижение заданной точности восстановления траектории движения ЛА.

Таким образом, заявляемый способ обеспечивает высокоточное определение фактических (опытных) параметров поступательного и вращательного движения ЛА на атмосферном участке траектории полета, при условии наличия полной телеметрической информации о работе бортовой ИНС на всем атмосферном участке и информации от БАСН на доплазменном и не менее чем в двух точках на послеплазменном участке траектории.

Способ восстановления параметров движения летательного аппарата (ЛА), включающий получение информации от бортовой инерциальной навигационной системы (ИНС) на всем атмосферном участке полета ЛА и информации об основных параметрах навигации от бортовой аппаратуры спутниковой навигации (БАСН), обработку полученных данных от ИНС и БАСН и определение параметров движения ЛА, отличающийся тем, что информацию об основных параметрах навигации от БАСН получают на доплазменном и не менее чем в двух точках на послеплазменном участке полета ЛА, информацию от ИНС и БАСН получают телеметрически и проводят ее обработку апостериорно, в ходе обработки параметров движения ЛА с использованием информации ИНС и информации о параметрах движения навигационных спутников (НС) производят определение расчетных радиальных скоростей и дальностей ЛА относительно НС, формируют массивы данных об измеренных и расчетных значениях радиальных скоростей и дальностей ЛА относительно НС, и с использованием данных о координатах точки падения и моменте встречи ЛА с земной поверхностью определяют поправки, согласующие измеренные и расчетные данные о значениях радиальных скоростей и дальностей, восстанавливают параметры движения с учетом полученных поправок.
Способ восстановления параметров движения летательного аппарата
Способ восстановления параметров движения летательного аппарата
Источник поступления информации: Роспатент

Showing 431-440 of 797 items.
20.03.2019
№219.016.e577

Способ разрушения грунтового покрова

Изобретение относится к взрывным работам и к сбрасыванию взрывающихся предметов. Разрушение грунтового покрова производят сбрасываемым с самолета боеприпасом в виде собранных в укладку из удлиненных гибких зарядов взрывчатого вещества с различной погонной массой, который при подлете к...
Тип: Изобретение
Номер охранного документа: 0002395785
Дата охранного документа: 27.07.2010
21.03.2019
№219.016.eb3e

Излучатель лазера

Излучатель лазера содержит установленные на основание блок резонаторных зеркал, уголковый отражатель, блок лазерного вещества, регулятор расходимости излучения, содержащий как минимум одну линзу, и первый двухзеркальный отражатель, на котором установлен второй двухзеркальный отражатель. Зеркала...
Тип: Изобретение
Номер охранного документа: 0002682560
Дата охранного документа: 19.03.2019
29.03.2019
№219.016.ecfe

Способ имитации механического действия рентгеновского излучения на образцы ракетной техники

Изобретение относится к технике получения кратковременных интенсивных импульсных давлений и может быть использовано для испытаний образцов ракетной техники на прочность к механическому (термомеханическому) действию рентгеновского излучения (РИ) ядерного взрыва (ЯВ). Предварительно устанавливают...
Тип: Изобретение
Номер охранного документа: 0002682969
Дата охранного документа: 25.03.2019
29.03.2019
№219.016.ed2c

Фильтр нижних частот с гальванической развязкой

Изобретение относится к средствам измерения низкочастотных дифференциальных сигналов на фоне синфазных напряжений и электромагнитных помех большой мощности в широкой полосе частот с использованием гальванической развязки. Технический результат заключается в обеспечении высоких нормированных...
Тип: Изобретение
Номер охранного документа: 0002682924
Дата охранного документа: 22.03.2019
30.03.2019
№219.016.f99a

Складываемая аэродинамическая поверхность

Изобретение относится к летательным аппаратам, стартующим из ограниченного объема носителя при высоких аэродинамических нагрузках. Складываемая аэродинамическая поверхность содержит основание и шарнирно соединенную с ним поворотную лопасть, расположенные соосно оси складывания два цилиндра и...
Тип: Изобретение
Номер охранного документа: 0002683407
Дата охранного документа: 28.03.2019
04.04.2019
№219.016.fb1a

Способ температурно-механических испытаний

Изобретение относится к испытательному оборудованию. Способ включает нагрев воздушного потока до заданной температуры, подачу его во внутреннюю полость объекта испытаний (ОИ) с заданным уровнем избыточного давления, разогрев ОИ до заданной температуры, воздействие вибрационных нагрузок на ОИ,...
Тип: Изобретение
Номер охранного документа: 0002683881
Дата охранного документа: 02.04.2019
04.04.2019
№219.016.fb3d

Способ изготовления светопоглощающих элементов оптических систем на подложках из нержавеющей стали

Использование: для изготовления светопоглощающих элементов оптико-электронных приборов и оптических систем. Сущность изобретения заключается в том, что способ изготовления светопоглощающих элементов оптических систем на подложках из нержавеющей стали включает предварительную подготовку подложек...
Тип: Изобретение
Номер охранного документа: 0002683883
Дата охранного документа: 02.04.2019
04.04.2019
№219.016.fb58

Магнитная система

Изобретение относится к области измерения механических параметров, например ускорений, и может быть использовано для демпфирования колебаний чувствительных элементов измерительных устройств. Магнитная система содержит по крайней мере один электропроводящий элемент, установленный с возможностью...
Тип: Изобретение
Номер охранного документа: 0002683882
Дата охранного документа: 02.04.2019
05.04.2019
№219.016.fd3d

Способ сварки горловины с тонкостенной оболочкой

Способ предназначен для автоматической лазерной двусторонней сварки горловины с тонкостенной оболочкой. Горловину выполняют с внешним и внутренним буртами. Контактирующие поверхности оболочки и горловины промывают в бензине, в этиловом спирте. Устанавливают горловину в отверстие оболочки до...
Тип: Изобретение
Номер охранного документа: 0002684010
Дата охранного документа: 03.04.2019
05.04.2019
№219.016.fd52

Способ охлаждения выходного окна ускорителя электронов

Изобретение относится к способу охлаждения выпускных окон электронных ускорителей непрерывного действия и может быть применено при создании ускорителей с выводом в атмосферу пучков ускоренных электронов различной мощности. Принцип охлаждения выбирают в зависимости от режима работы ускорителя,...
Тип: Изобретение
Номер охранного документа: 0002683959
Дата охранного документа: 03.04.2019
Showing 281-284 of 284 items.
04.04.2018
№218.016.3160

Прижимной механизм

Изобретение относится к специальным контейнерам, в частности к механизмам удержания, обеспечивающим надежное и быстрое закрепление опасного груза в стесненных габаритных условиях. Техническим результатом является обеспечение быстрого и надёжного закрепления груза в стеснённых габаритных...
Тип: Изобретение
Номер охранного документа: 0002645022
Дата охранного документа: 15.02.2018
04.04.2018
№218.016.3676

Способ определения температуры нагретой поверхности летательного аппарата при сверхзвуковом обтекании набегающим потоком

Изобретение относится к способам определения температуры нагретой поверхности летательного аппарата (ЛА) и может быть использовано при исследованиях в области аэродинамики, баллистики и т.д. Способ включает видеосъемку исследуемой поверхности, преобразование цветового изображения исследуемой...
Тип: Изобретение
Номер охранного документа: 0002646426
Дата охранного документа: 05.03.2018
04.04.2018
№218.016.369e

Способ регулирования состава газовой среды

Изобретение относится к области методов и средств регулирования и контроля газовой среды и может быть использовано в системах управления технологическими процессами. Предложен способ регулирования газовой среды в контейнере, содержащем горючее или токсичное газообразное вещество, включающий...
Тип: Изобретение
Номер охранного документа: 0002646424
Дата охранного документа: 05.03.2018
04.04.2018
№218.016.3700

Способ определения показателей однородности дисперсного материала спектральным методом и способ определения масштабных границ однородности дисперсного материала спектральным методом

Изобретения относятся к области определения однородности дисперсных материалов и могут найти применение в порошковой металлургии, в самораспространяющемся высокотемпературном синтезе, в материаловедении и аналитической химии. Способ определения показателей однородности дисперсного материала...
Тип: Изобретение
Номер охранного документа: 0002646427
Дата охранного документа: 05.03.2018
+ добавить свой РИД