×
25.08.2017
217.015.cea4

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ МАССОВОГО РАСХОДА ЖИДКИХ СРЕД

Вид РИД

Изобретение

№ охранного документа
0002620774
Дата охранного документа
29.05.2017
Аннотация: Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения скорости потока и расхода диэлектрических жидкостей в трубопроводах, в частности при трубопроводной транспортировке нефтепродуктов, сжиженных газов. Способ измерения массового расхода жидких сред заключается в том, что радиоволну с частотой направляют через радиопрозрачное окно в трубопроводе под углом α к направлению движения потока, отраженную волну с частотой смешивают с частью падающей волны, выделяют сигнал их разности и вычисляют спектральную плотность этого сигнала. Дополнительно к этому частоту генератора модулируют по симметричному пилообразному закону от до спектральные плотности сигнала разностной частоты вычисляют отдельно на растущем - и падающем участке несущей частоты - вычисляют их взаимно-корреляционную функцию и модуль разности массовый расход определяют по частотному сдвигу, соответствующему максимуму взаимно-корреляционной функции, и по частоте вычисляемой из условия равенства где b - диапазон частот, определяемый из возможной полосы частот сигнала. Технический результат - повышение точности. 5 ил.

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения скорости потока и расхода диэлектрических жидкостей в трубопроводах, в частности при трубопроводной транспортировке нефтепродуктов, сжиженных газов и др.

В настоящее время известны и применяется много типов анеометров и расходомеров, основанных на разных физических принципах действия, среди которых актуальны доплеровские радиоволновые способы измерения из-за своей способности работать в сложных эксплуатационных условиях (Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. - М.: Энергоатомиздат, 1989, с.133-144). Эти способы не предполагают применение элементов внутри труб, контактирующих со средой, создающих препятствия и неоднородности в потоке, устойчивы к температурным характеристикам эксплуатации. Обычно функциональная схема доплеровского измерителя скорости потока в простейшем случае содержит генератор электромагнитных колебаний, которые поступают на передающую антенну. Излучаемые антенной волны через радиопрозрачное окно в стенке трубопровода поступают внутрь и рассеиваются на неоднородностях движущейся жидкости и поступают на приемную антенну с частотой , отличной от частоты зондирующей волны на доплеровскую частоту Неоднородностями в измеряемой жидкой среде при этом могут быть газовые и твердые включения, а также другие жидкости, обладающие электрофизическими параметрами ε, отличными от контролируемого вещества. Направления движения неоднородностей образуют различные углы с направлением этой волны, которая также распространяется не по прямой, как в идеальном случае, а в соответствии со своей диаграммой направленности. Произвольная ориентация неоднородностей, случайные значения фазы отраженных каждой неоднородностью сигналов приводят к образованию доплеровского сигнала сложной формы. Тем не менее, средняя доплеровская частота связана со средней скоростью потока V по формуле

где α - угол между направлением излучения и потоком в трубе, - длина волны в среде измерения, а ε - ее диэлектрическая проницаемость, c - скорость света в вакууме. Зная объемную плотность ρ вещества и скорость V потока, можно определить массовый расход

где P - площадь поперечного сечения потока на измерительном участке. Подставив значение V из выражения (1) в (2), получим выражение для среднего массового расхода

Как видно из формулы (3), для точного измерения среднего массового расхода необходимо оценивать изменения в диэлектрической проницаемости среды и функционально с ней связанной плотностью контролируемого потока. Изменения этих параметров приводят к погрешностям в измерении и, как следствие, к недостаточной точности.

Известно техническое решение, принятое в качестве прототипа (Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. - М.: Энергоатомиздат, 1989, с.136-137) - способ измерения расхода жидкости, заключающийся в том, что радиоволна с частотой направляется через радиопрозрачное окно в трубопроводе под углом α к направлению движения потока, отраженная волна с частотой смешивается с частью падающей волны и выделяется доплеровский сигнал их разности со средней частотой а по этой частоте в соответствии с формулой (2) определяется расход. Доплеровский сигнал в данном устройстве выделялся на выходе смесителя, на один вход которого поступал опорный сигнал от задающего генератора через направленный ответвитель, а на второй - сигнал, отраженный от потока вещества после облучения его через приемо-передающую антенну под углом α к потоку в трубе через герметичное радиопрозрачное окно. При этом для связи между генератором, антенной и смесителем использовался циркулятор. После фильтрации и записи доплеровского сигнала по максимуму его спектральной плотности определялась средняя доплеровская частота, по которой оценивался расход в соответствии с формулой (3).

Данный способ имеет существенные недостатки. Во-первых, для точного измерения массового расхода необходимо оценивать изменения в диэлектрической проницаемости среды и функционально с ней связанной плотностью контролируемого потока в соответствии с формулой (3). Во-вторых, спектральная плотность доплеровского сигнала за счет отражений от неоднородностей в потоке под разными углами имеет сложную форму, и ее максимум может не совпадать со средней доплеровской частотой, что приводит к ошибкам в определении скорости потока.

Техническим результатом изобретения является повышение точности измерения.

Технический результат достигается тем, что в способе измерения массового расхода жидких сред, радиоволну с частотой направляют через радиопрозрачное окно в трубопроводе под углом α к направлению движения потока, отраженную волну с частотой смешивают с частью падающей волны, выделяют сигнал их разности и вычисляют спектральную плотность этого сигнала. Дополнительно к этому частоту генератора модулируют по симметричному пилообразному закону от до спектральные плотности сигнала разностной частоты вычисляют отдельно на растущем - и падающем участке несущей частоты - вычисляют их взаимно-корреляционную функцию и модуль разности массовый расход определяют по частотному сдвигу, соответствующему максимуму взаимно-корреляционной функции, и по частоте вычисляемой из условия равенства , где b - диапазон частот, определяемый из возможной полосы частот сигнала.

Предлагаемый способ поясняется работой устройства, реализующего способ.

На фиг. 1 представлена структурная схема устройства.

На фиг. 2 изображены временные диаграммы сигналов на выходах генератора СВЧ и смесителя при симметричной пилообразной частотной модуляции.

На фиг. 3 представлены огибающие спектров сигналов разностной частоты в относительных величинах при нулевой скорости потока - и при скорости потока V в моменты роста и спада частоты на выходе генератора СВЧ, соответственно и

На фиг. 4 изображена взаимно-корреляционная функция между этими огибающими и в относительных величинах.

На фиг. 5 представлен спектр в относительных величинах.

Устройство содержит частотный модулятор 1, генератор СВЧ 2, направленный ответвитель 3, циркулятор 4, приемо-передающую антенну 5, смеситель 6, коммутирующий блок 7, первый блок спектральной обработки 8, второй блок спектральной обработки 9, блок вычисления взаимной корреляции 10, блок вычисления частоты 11 и вычислительный блок 12 (см. фиг. 1).

Устройство работает следующим образом. Частотный модулятор 1 пилообразным симметричным напряжением линейно модулирует частоту генератора СВЧ 2 в диапазоне где и его начальная и конечная частота (см. кривая 1 на фиг. 2). Сначала за время TM частота растет от до затем за это же время линейно уменьшается от до Соответственно в это время с помощью коммутирующего блока 7, управляемого от генератора пилообразного напряжения 1, сигнал с выхода смесителя 6 обрабатывается блоками спектральной обработки 8 и 9. Электромагнитные колебания от генератора СВЧ поступают на первый, опорный вход смесителя напрямую через дополнительный вывод направленного ответвителя 3. Другая часть электромагнитных колебаний через основной вывод направленного ответвителя и циркулятор 4 направляется антенной 5 через диэлектрическое окно 13 на измерительном участке трубопровода 14 под углом α навстречу направлению потока, затем после отражений от неоднородностей, присутствующих в потоке, принимаются этой же антенной и поступают через циркулятор на второй вход смесителя. При отсутствии движения в потоке при V=0, на выходе смесителя образуется сигнал биений согласно формуле

где - девиация частоты, TM - полупериод модуляции, D - расстояние в виде спектра гармоник конечной ширины (см. фиг. 3), одинаковый для растущего и падающего участка (см. кривая 2 на фиг. 2а). При наличии движения потока со скоростью V к сигналу биений добавляется спектр доплеровкой составляющей в соответствии с формулой (1), также в виде спектра гармоник конечной ширины. При этом на растущем участке модуляции частоты суммарного спектра растут, а на падающем - уменьшаются на частоту соответственно и (см. фиг. 2 и 3). Эти спектры вычисляются в блоках 8 и 9, после чего поступают на блок 10, где вычисляется их взаимно-корреляционная функция в относительных единицах (см. фиг. 4). Частотный сдвиг, соответствующий максимуму этой функции - , будет в точности соответствовать удвоенной доплеровской частоте, поэтому

Одновременно спектры и поступают в блок 11 вычисления частоты биений для спектра который соответствует скорости потока V=0. Эта частота фактически является осью симметрии между спектрами и (см. фиг. 2 и 3), поэтому процедура вычисления будет следующей. Сначала определяется модуль разности спектров а затем находится частота путем перебора в диапазоне спектров и до соблюдения условия

где b - диапазон частот, определяемый из возможной ширины полосы частот сигнала биений и доплеровских частот, связанных с возможными скоростями потока. Т.е. площадь суммарного спектра справа и слева от точки должны быть равны (см. фиг. 5). Далее в итоговом вычислительном блоке 12 по значению вычисляется диэлектрическая проницаемость из формулы (4)

и функционально связанная с ней плотность ρ и затем с использованием от блока 10 происходит вычисление расхода среды в соответствии с формулой (3), где в данном случае будет равна средней частоте несущей.

Таким образом, точность определения массового расхода сред увеличивается по сравнению с прототипом за счет увеличения точности в определении доплеровской частоты и частоты биений. Способ позволяет компенсировать влияние на точность измерения наличие конечного нестабильного спектра в доплеровском сигнале и в сигнале биений, возникающего по причинам наличия конечных диаграмм направленности антенн, турбулентности отражающих неоднородностей в потоке.

Способ измерения массового расхода жидких сред, заключающийся в том, что радиоволну с частотой направляют через радиопрозрачное окно в трубопроводе под углом α к направлению движения потока, отраженную волну с частотой смешивают с частью падающей волны, выделяют сигнал их разности, вычисляют спектральную плотность этого сигнала, отличающийся тем, что частоту генератора модулируют по симметричному пилообразному закону от до , спектральные плотности сигнала разностной частоты вычисляют отдельно на растущем - и падающем участке несущей частоты - , вычисляют их взаимно-корреляционную функцию и модуль разности , массовый расход определяют по частотному сдвигу, соответствующему максимуму взаимно-корреляционной функции, и по частоте , вычисляемой из условия равенства , где b - диапазон частот, определяемый из возможной полосы частот сигнала.
СПОСОБ ИЗМЕРЕНИЯ МАССОВОГО РАСХОДА ЖИДКИХ СРЕД
СПОСОБ ИЗМЕРЕНИЯ МАССОВОГО РАСХОДА ЖИДКИХ СРЕД
СПОСОБ ИЗМЕРЕНИЯ МАССОВОГО РАСХОДА ЖИДКИХ СРЕД
СПОСОБ ИЗМЕРЕНИЯ МАССОВОГО РАСХОДА ЖИДКИХ СРЕД
СПОСОБ ИЗМЕРЕНИЯ МАССОВОГО РАСХОДА ЖИДКИХ СРЕД
СПОСОБ ИЗМЕРЕНИЯ МАССОВОГО РАСХОДА ЖИДКИХ СРЕД
СПОСОБ ИЗМЕРЕНИЯ МАССОВОГО РАСХОДА ЖИДКИХ СРЕД
СПОСОБ ИЗМЕРЕНИЯ МАССОВОГО РАСХОДА ЖИДКИХ СРЕД
СПОСОБ ИЗМЕРЕНИЯ МАССОВОГО РАСХОДА ЖИДКИХ СРЕД
СПОСОБ ИЗМЕРЕНИЯ МАССОВОГО РАСХОДА ЖИДКИХ СРЕД
СПОСОБ ИЗМЕРЕНИЯ МАССОВОГО РАСХОДА ЖИДКИХ СРЕД
СПОСОБ ИЗМЕРЕНИЯ МАССОВОГО РАСХОДА ЖИДКИХ СРЕД
СПОСОБ ИЗМЕРЕНИЯ МАССОВОГО РАСХОДА ЖИДКИХ СРЕД
СПОСОБ ИЗМЕРЕНИЯ МАССОВОГО РАСХОДА ЖИДКИХ СРЕД
СПОСОБ ИЗМЕРЕНИЯ МАССОВОГО РАСХОДА ЖИДКИХ СРЕД
СПОСОБ ИЗМЕРЕНИЯ МАССОВОГО РАСХОДА ЖИДКИХ СРЕД
СПОСОБ ИЗМЕРЕНИЯ МАССОВОГО РАСХОДА ЖИДКИХ СРЕД
СПОСОБ ИЗМЕРЕНИЯ МАССОВОГО РАСХОДА ЖИДКИХ СРЕД
СПОСОБ ИЗМЕРЕНИЯ МАССОВОГО РАСХОДА ЖИДКИХ СРЕД
СПОСОБ ИЗМЕРЕНИЯ МАССОВОГО РАСХОДА ЖИДКИХ СРЕД
СПОСОБ ИЗМЕРЕНИЯ МАССОВОГО РАСХОДА ЖИДКИХ СРЕД
СПОСОБ ИЗМЕРЕНИЯ МАССОВОГО РАСХОДА ЖИДКИХ СРЕД
Источник поступления информации: Роспатент

Showing 141-150 of 276 items.
26.08.2017
№217.015.e3c4

Способ измерения физических свойств жидкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения физических свойств, например, плотности, концентрации смесей, влагосодержания и др., различных диэлектрических жидкостей, находящихся в электромагнитном поле волновода. Предложенный способ...
Тип: Изобретение
Номер охранного документа: 0002626409
Дата охранного документа: 27.07.2017
26.08.2017
№217.015.e3d6

Способ контроля сварных швов труб

Использование: для контроля сварных швов труб. Сущность изобретения заключается в том, что зондируют поверхность сварного шва трубы лучом и по принимаемому сигналу определяют предельные значения характеристик дефекта сварного шва по сравнению с нормативными параметрами, при этом трубу закрытыми...
Тип: Изобретение
Номер охранного документа: 0002626307
Дата охранного документа: 25.07.2017
26.08.2017
№217.015.e42a

Способ диагностики механизмов, агрегатов и машин на основе оценки микровариаций вращения вала

Изобретение относится к области неразрушающего контроля и может быть использовано для диагностики состояния механизмов, агрегатов и машин, составной частью которых являются элементы, совершающие вращательное движение. Способ заключается в том, что на валу контролируемого изделия устанавливают...
Тип: Изобретение
Номер охранного документа: 0002626388
Дата охранного документа: 26.07.2017
26.08.2017
№217.015.e42c

Радиоволновый способ измерения путевой скорости и угла сноса летательного аппарата

Изобретение относится к измерительной технике, в частности к способам измерения путевой скорости и угла сноса летательного аппарата в автономных навигационных системах с использованием электромагнитных волн. Достигаемый технический результат - увеличение точности измерений. Указанный результат...
Тип: Изобретение
Номер охранного документа: 0002626411
Дата охранного документа: 27.07.2017
26.08.2017
№217.015.e46b

Способ ранней и дифференциальной электромиографической диагностики основных симптомов болезни паркинсона

Изобретение относится к области медицины, в частности к неврологии. Осуществляют одновременную запись сигналов электрической активности мышц (ЭМГ) верхних и нижних конечностей при неизменном поддержании позы суставного угла. Из спектра ЭМГ выделяют частотный диапазон сигнала, создающий...
Тип: Изобретение
Номер охранного документа: 0002626557
Дата охранного документа: 28.07.2017
26.08.2017
№217.015.e523

Способ измерения физических свойств жидкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения физических свойств диэлектрических жидкостей, в том числе плотности, концентрации смесей, влагосодержания и т.д., при этом исследуемые жидкости находятся в измерительных ячейках или...
Тип: Изобретение
Номер охранного документа: 0002626458
Дата охранного документа: 28.07.2017
26.08.2017
№217.015.e7a5

Инвертирующий масштабный усилитель с компенсацией частотной погрешности

Изобретение относится к области электронных устройств для усиления непрерывных сигналов с заданным масштабным коэффициентом. Технический результат заключается в повышении точности масштабирования. Масштабный усилитель с компенсацией частотной погрешности характеризуется тем, что состоит из...
Тип: Изобретение
Номер охранного документа: 0002627123
Дата охранного документа: 03.08.2017
26.08.2017
№217.015.eb2b

Устройство для измерения дифференциального тока

Изобретение относится к области измерительной техники и может быть использовано для измерения токов утечки с объектов, подключенных к источникам электрического напряжения. Техническим результатом заявляемого технического решения является упрощение процедуры преобразования сигнала вторичной...
Тип: Изобретение
Номер охранного документа: 0002628306
Дата охранного документа: 15.08.2017
20.11.2017
№217.015.ef6c

Универсальная система дозирования жидкостей на базе мембранного насоса

Изобретение относится к области дозирования жидкостей и представляет собой пневмоэлектронную универсальную (по отношению к операциям порционного и непрерывного дозирования) систему, которая может быть использована для автоматизации целого ряда технологических процессов, включающих операции...
Тип: Изобретение
Номер охранного документа: 0002628984
Дата охранного документа: 23.08.2017
29.12.2017
№217.015.f37a

Способ определения состояния поверхности дороги

Изобретение относится к измерительной технике и может быть применено для определения состояния поверхности дорожного полотна, на котором возможно образование слоя воды, снега или льда. Техническим результатом является повышение точности и упрощение процесса определения состояния поверхности...
Тип: Изобретение
Номер охранного документа: 0002637797
Дата охранного документа: 07.12.2017
Showing 141-150 of 181 items.
26.08.2017
№217.015.e3c4

Способ измерения физических свойств жидкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения физических свойств, например, плотности, концентрации смесей, влагосодержания и др., различных диэлектрических жидкостей, находящихся в электромагнитном поле волновода. Предложенный способ...
Тип: Изобретение
Номер охранного документа: 0002626409
Дата охранного документа: 27.07.2017
26.08.2017
№217.015.e3d6

Способ контроля сварных швов труб

Использование: для контроля сварных швов труб. Сущность изобретения заключается в том, что зондируют поверхность сварного шва трубы лучом и по принимаемому сигналу определяют предельные значения характеристик дефекта сварного шва по сравнению с нормативными параметрами, при этом трубу закрытыми...
Тип: Изобретение
Номер охранного документа: 0002626307
Дата охранного документа: 25.07.2017
26.08.2017
№217.015.e42a

Способ диагностики механизмов, агрегатов и машин на основе оценки микровариаций вращения вала

Изобретение относится к области неразрушающего контроля и может быть использовано для диагностики состояния механизмов, агрегатов и машин, составной частью которых являются элементы, совершающие вращательное движение. Способ заключается в том, что на валу контролируемого изделия устанавливают...
Тип: Изобретение
Номер охранного документа: 0002626388
Дата охранного документа: 26.07.2017
26.08.2017
№217.015.e42c

Радиоволновый способ измерения путевой скорости и угла сноса летательного аппарата

Изобретение относится к измерительной технике, в частности к способам измерения путевой скорости и угла сноса летательного аппарата в автономных навигационных системах с использованием электромагнитных волн. Достигаемый технический результат - увеличение точности измерений. Указанный результат...
Тип: Изобретение
Номер охранного документа: 0002626411
Дата охранного документа: 27.07.2017
26.08.2017
№217.015.e46b

Способ ранней и дифференциальной электромиографической диагностики основных симптомов болезни паркинсона

Изобретение относится к области медицины, в частности к неврологии. Осуществляют одновременную запись сигналов электрической активности мышц (ЭМГ) верхних и нижних конечностей при неизменном поддержании позы суставного угла. Из спектра ЭМГ выделяют частотный диапазон сигнала, создающий...
Тип: Изобретение
Номер охранного документа: 0002626557
Дата охранного документа: 28.07.2017
26.08.2017
№217.015.e523

Способ измерения физических свойств жидкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения физических свойств диэлектрических жидкостей, в том числе плотности, концентрации смесей, влагосодержания и т.д., при этом исследуемые жидкости находятся в измерительных ячейках или...
Тип: Изобретение
Номер охранного документа: 0002626458
Дата охранного документа: 28.07.2017
26.08.2017
№217.015.e7a5

Инвертирующий масштабный усилитель с компенсацией частотной погрешности

Изобретение относится к области электронных устройств для усиления непрерывных сигналов с заданным масштабным коэффициентом. Технический результат заключается в повышении точности масштабирования. Масштабный усилитель с компенсацией частотной погрешности характеризуется тем, что состоит из...
Тип: Изобретение
Номер охранного документа: 0002627123
Дата охранного документа: 03.08.2017
26.08.2017
№217.015.eb2b

Устройство для измерения дифференциального тока

Изобретение относится к области измерительной техники и может быть использовано для измерения токов утечки с объектов, подключенных к источникам электрического напряжения. Техническим результатом заявляемого технического решения является упрощение процедуры преобразования сигнала вторичной...
Тип: Изобретение
Номер охранного документа: 0002628306
Дата охранного документа: 15.08.2017
20.11.2017
№217.015.ef6c

Универсальная система дозирования жидкостей на базе мембранного насоса

Изобретение относится к области дозирования жидкостей и представляет собой пневмоэлектронную универсальную (по отношению к операциям порционного и непрерывного дозирования) систему, которая может быть использована для автоматизации целого ряда технологических процессов, включающих операции...
Тип: Изобретение
Номер охранного документа: 0002628984
Дата охранного документа: 23.08.2017
29.12.2017
№217.015.f37a

Способ определения состояния поверхности дороги

Изобретение относится к измерительной технике и может быть применено для определения состояния поверхности дорожного полотна, на котором возможно образование слоя воды, снега или льда. Техническим результатом является повышение точности и упрощение процесса определения состояния поверхности...
Тип: Изобретение
Номер охранного документа: 0002637797
Дата охранного документа: 07.12.2017
+ добавить свой РИД