×
25.08.2017
217.015.ce73

Результат интеллектуальной деятельности: ДИЛАТОМЕТР

Вид РИД

Изобретение

Аннотация: Изобретение относится к области исследования материалов с помощью теплофизических измерений, а именно к устройствам для измерения температурного коэффициента линейного расширения (ТКЛР). Дилатометр содержит камеру нагрева со съемной трубкой, в которой горизонтально установлены исследуемый образец и толкатели, плотно контактирующие с противоположными торцами образца, измерительные зеркала, закрепленные на концах толкателей и расположенные вне камеры нагрева, лазер и оптическую систему измерения удлинения образца. Толкатели и образец установлены каждый на двух симметричных опорах, расположенных от их центра на расстоянии 0,277 длины каждого из них. Для создания постоянного по величине и симметричного поджима толкателей к исследуемому образцу используется система поджима. В оптической системе для измерения удлинения образца использован четырехходовой интерферометр, включающий поляризованный светоделитель, делящий луч лазера на рабочий и опорный лучи, четвертьволновую и поляризационную пластины, два поворотных зеркала, два ретроотражателя, четыре обводных зеркала для рабочего луча и фотоприемник. Электрические сигналы от фотоприемника и термопары, регистрирующей температуру нагрева образца, передаются на ПЭВМ, где ведется их синхронная запись. Предварительно производится калибровка дилатометра с образцом из эталонного материала с известными характеристиками изменения ТКЛР в требуемом диапазоне температур. Для этого определяют удлинение толкателей путем вычитания расчетного удлинения эталонного образца из измеренного общего удлинения системы «эталонный образец - толкатели». Заменяют эталонный образец на исследуемый. При нагреве последнего по той же программе, что и для эталонного образца, определяют его удлинение путем вычитания из общего измеренного удлинения системы «исследуемый образец - толкатели» ранее полученного удлинения толкателей. По полученным данным определяют величину среднего интегрального ТКЛР. Технический результат - повышение точности измерения удлинения образца при определении ТКЛР исследуемого материала. 4 з.п. ф-лы, 4 ил.

Изобретение относится к области исследования материалов с помощью теплофизических измерений, а именно к устройствам для измерения температурного коэффициента линейного расширения (ТКЛР).

Известны различные конструкции дилатометров с толкателями, в которых исследуемый образец установлен вертикально (Аматуни А.Н. Методы и приборы для определения температурных коэффициентов линейного расширения материалов. - М.: Издательство стандартов, 1972. - 140 с.).

Однако вертикальное расположение исследуемого образца имеет ряд недостатков, которые ведут к существенным погрешностям измерения ТКЛР. Во-первых, это неравномерность прогрева образца и толкателя из-за конвекционных потоков. Во-вторых, дополнительные деформации толкателя, возникающие от воздействия силы, обусловленной массой расположенного на нем образца, или, наоборот, дополнительное деформирование образца при расположении его снизу от воздействия массы толкателя. Кроме того, вертикальное расположение образца ведет к его неустойчивости, в связи с чем повышаются требования к точности и качеству его изготовления.

Известен дилатометр, выбранный в качестве прототипа (а.с. СССР №320762, G01N 25/16, опубл. 04.11.1971, Бюл. №34), содержащий камеру нагрева, установленный в ней горизонтально на призме исследуемый образец, с противоположными торцами которого плотно контактируют толкатели, лазер и оптическую систему измерения удлинения образца. К толкателям прижаты подпружиненные рычаги с закрепленными на них зеркалами, которые расположены вне камеры нагрева.

Недостатком известного решения является низкая точность измерительной системы, которая возникает в связи с определением удлинения образца из суммы двух отдельно-регистрируемых перемещений лучей лазера, отраженных от закрепленных на поворачивающихся рычагах зеркал. Кроме того, погрешности измерения возникают из-за плотного контакта образца по всей длине призмы и в связи с существенными изменениями адгезионных и фрикционных свойств материалов в условиях больших температур. Дополнительные погрешности создаются также непостоянством и неравенством величин нагрузок на толкателях, связанных с деформированием отдельно-воздействующих на них упругих элементов - пружин и сильфонов.

Задачей изобретения является повышение точности измерения удлинения образца при определении температурного коэффициента линейного расширения исследуемого материала.

Технический результат при решении поставленной задачи заключается в объединении измеряемых величин линейных перемещений толкателей в единую регистрируемую величину с помощью оптической системы измерения удлинения образца на основе интерферометра, в обеспечении малой площади контакта образца и толкателей с опорами при наименьшей величине их прогиба, а также в создании постоянного по величине поджима толкателей к образцу. Это достигается тем, что в дилатометре, содержащем камеру нагрева, установленный в ней горизонтально исследуемый образец, плотно контактирующие с противоположными торцами образца толкатели, измерительные зеркала, расположенные вне камеры нагрева, лазер и оптическую систему измерения удлинения образца, в съемной трубке с окном толкатели и исследуемый образец установлены каждый на двух симметричных опорах, расположенных от их центра на расстоянии 0,277 длины каждого из них. Для создания постоянного по величине и симметричного поджима толкателей к исследуемому образцу используется система поджима, в которой толкатели через рычаги и нить с помощью группы блоков связаны с грузом. Вместо рычагов связь нити с каждым из толкателей может быть осуществлена через дополнительные блоки, а взамен груза может быть использована пружина. Измерительные зеркала закреплены непосредственно на концах толкателей. В оптической системе для измерения удлинения образца использован четырехходовой интерферометр, включающий поляризованный светоделитель, делящий луч лазера на рабочий и опорный лучи, четвертьволновую и поляризационную пластины, два поворотных зеркала, два ретроотражателя, четыре обводных зеркала для рабочего луча и фотоприемник. При этом фотоприемник и термопара, установленная возле исследуемого образца, для увязки по времени записываемой информации электрически связаны с ПЭВМ.

На фиг. 1 изображена оптико-механическая схема дилатометра; на фиг. 2 - схема установки образца и толкателей на опоры; на фиг. 3 - схема хода рабочего и опорного лучей интерферометра в системе измерения удлинения образца; на фиг. 4 - пример альтернативного варианта системы поджима толкателей с пружиной и без рычагов.

Дилатометр содержит камеру нагрева 1 со съемной трубкой 2, в которой горизонтально установлены исследуемый образец 3 и толкатели 4, плотно контактирующие с противоположными торцами образца 3, измерительные зеркала 5, расположенные вне камеры нагрева 1, лазер 6 и оптическую систему измерения удлинения образца 3. В съемной трубке 2 имеется окно для установки исследуемого образца 3. Толкатели 4 и образец 3 установлены каждый на двух симметричных опорах 7, расположенных от их центра на расстоянии 0,277 длины каждого из них. Для создания постоянного по величине и симметричного поджима толкателей 4 к исследуемому образцу 3 используется система поджима, в которой толкатели 4 через рычаги 8 и нить 9 с помощью группы блоков 10 связаны с грузом 11. Вместо рычагов 8 связь нити 9 с каждым из толкателей 3 может быть осуществлена через дополнительные блоки, а взамен груза 11 может быть использована пружина 12. Непосредственно на концах толкателей 4 закреплены измерительные зеркала 5. В оптической системе для измерения удлинения образца 3 использован четырехходовой интерферометр 13, включающий поляризованный светоделитель 14, делящий луч лазера 6 на рабочий и опорный лучи, четвертьволновую 15 и поляризационную 16 пластины, два поворотных зеркала 17, два ретроотражателя 18, четыре обводных зеркала 19 для рабочего луча и фотоприемник 20. При этом фотоприемник 20 и термопара 21, установленная возле исследуемого образца 3, для увязки по времени записываемой информации электрически связаны с ПЭВМ 22.

Дилатометр работает следующим образом.

Толкатели 4 с закрепленными на них измерительными зеркалами 5 установлены в съемной трубке 2, выполненной из огнеупорного материала, каждый на двух симметричных опорах 7, расположенных от их центра на расстоянии 0,277 длины каждого из них. Исследуемый образец 3 устанавливают между толкателями 4 в съемную трубку 2 через выполненное в ней окно также на две симметричные опоры 7, расположенные от его центра на расстоянии 0,277 длины. Такое расположение опор обеспечивает наименьший прогиб образца и толкателей при минимальном трении о них. После установки образца 3 съемную трубку 2 помещают в камеру нагрева 1. Для обеспечения плотного контакта и создания постоянного, но небольшого по величине, симметричного поджима толкателей 4 к противоположным торцам образца 3 используется система поджима, в которой толкатели 4 через рычаги 8 и нить 9 с помощью группы блоков 10 связаны с грузом 11. Вместо рычагов 8 связь нити 9 с каждым из толкателей 3 может быть осуществлена через дополнительные блоки, а взамен груза 11 может быть использована пружина 12. В процессе измерения удлинение образца 3, связанное с изменением температуры, постоянно регистрируется с помощью четырехходового интерферометра 13. Поляризованный под углом 45 градусов луч лазера 6 делится в поляризованном светоделителе 14 на рабочий и опорный лучи. Рабочий луч, образуемый путем прохождения через наклонную поверхность поляризованного светоделителя 14, получает горизонтальную поляризацию, а отразившийся от наклонной поверхности опорный луч - вертикальную поляризацию. Установленная по ходу рабочего луча четвертьволновая пластина 15 меняет поляризацию рабочего луча на круговую с направлением по часовой стрелке. С помощью левого поворотного зеркала 17 и двух левых обводных зеркал 19 рабочий луч направляется на левое измерительное зеркало 5. После отражения от левого измерительного зеркала 5 рабочий луч обретает противоположное направление круговой поляризации и возвращается тем же путем на четвертьволновую пластину 15, пройдя которую приобретает вертикальную поляризацию. Далее рабочий луч отражается от наклонной поверхности поляризованного светоделителя 14 без изменения плоскости поляризации и направляется в правый ретроотражатель 18. После прохождения правого ретроотражателя 18 и отразившись от наклонной поверхности поляризованного светоделителя 14, рабочий луч снова проходит через четвертьволновую пластину 15 со сменой вертикальной поляризации на круговую с направлением против часовой стрелки. С помощью правого поворотного зеркала 17 и двух правых обводных зеркал 19 рабочий луч направляется на правое измерительное зеркало 5, отразившись от которого, меняет направление круговой поляризации на противоположное и возвращается тем же путем на четвертьволновую пластину 15. Пройдя сквозь последнюю, рабочий луч приобретает горизонтальную поляризацию, проходит через наклонную поверхность поляризованного светоделителя 14 и совмещается с опорным лучом, который направляется туда же левым ретроотражателем 18. Далее совмещенные опорный и рабочий лучи проходят через поляризационную пластину 16, на которой их плоскости поляризации совмещаются, в результате чего происходит их интерференция. Счет интерференционных линий, перемещение которых обусловлено изменением длины исследуемого образца 3 при его нагревании и охлаждении в камере нагрева 1, осуществляется с помощью фотоприемника 20. Электрические сигналы от фотоприемника 20 и термопары 21, регистрирующей температуру нагрева образца 3, передаются на ПЭВМ 22, где ведется их синхронная запись.

Для измерения удлинения исследуемого образца 3 предварительно производится калибровка дилатометра, которая заключается в следующем. Сначала измерения проводят с образцом из эталонного материала с известными характеристиками изменения ТКЛР в требуемом диапазоне температур (например, с использованием в качестве эталонного образца стандартной меры ТКЛР по ГОСТ 8.018-2007). Размеры эталонного и исследуемого образцов одинаковые, но могут иметь большие допуски на изготовление. Нагревают эталонный образец по определенной программе. В процессе нагрева одновременно производят измерение температуры образца и непрерывную регистрацию с помощью интерферометра общего удлинения системы «эталонный образец - толкатели». В каждый интересующий момент непрерывной регистрации определяют удлинение толкателей 4 путем вычитания расчетного удлинения эталонного образца из общего измеренного удлинения системы «эталонный образец - толкатели». По достижению наибольшей заданной температуры нагрев прекращают, а регистрацию измеряемых параметров продолжают в процессе охлаждения. Заменяют эталонный образец на исследуемый образец, нагревают и охлаждают исследуемый образец по той же программе, что и для эталонного образца, при этом непрерывно регистрируют общее удлинение системы «исследуемый образец - толкатели». В каждый интересующий момент регистрации определяют удлинение исследуемого образца 3 путем вычитания из общего измеренного удлинения системы «исследуемый образец - толкатели» удлинения толкателей 4, полученные ранее при той же температуре нагрева эталонного образца.

Общее удлинение системы «образец - толкатели», измеряемое с помощью интерферометра, определяется по формуле

ΔLизм=(λ/2)⋅m,

где λ - длина волны излучения лазера;

m - число переместившихся интерференционных линий, зафиксированное фотоприемником.

По удлинению исследуемого образца 3 и величине температуры его нагрева в каждый интересующий момент определяют величину среднего интегрального ТКЛР исследуемого материала по формуле

αср=ΔL/(Lст⋅ΔT),

где Lст - длина исследуемого образца при стандартной температуре Тст=20°С;

ΔT=Tiст - изменение температуры Ti образца относительно стандартной температуры Тст;

ΔL=Li-Lст - удлинение исследуемого образца при изменении его температуры на величину ΔT.

Благодаря объединению измеряемых величин перемещений толкателей в единую регистрируемую величину с помощью оптической системы измерения удлинения образца на основе четырехходового интерферометра снижаются погрешности измерения. Установка образца и толкателей на двух опорах уменьшает площадь поверхности их контакта с опорами, что существенно снижает влияние адгезионных и фрикционных взаимодействий материалов этих деталей в условиях больших температур. Расположение опор исследуемого образца и толкателей от их центра на расстоянии 0,277 длины каждого из них обеспечивает наименьшую величину возможного прогиба исследуемого образца и толкателей, что тоже снижает величину погрешностей измерения. Создание постоянного по величине и симметричного поджима толкателей к исследуемому образцу также способствует уменьшению погрешностей. Кроме того, горизонтальное расположение испытуемого образца снижает требования к точности его изготовления и установки в дилатометре, что, в совокупности с небольшими размерами образца, существенно снижает затраты на его изготовление.

Таким образом, описанный дилатометр позволяет повысить точность измерения удлинения образца при определении температурного коэффициента линейного расширения исследуемого материала.


ДИЛАТОМЕТР
ДИЛАТОМЕТР
ДИЛАТОМЕТР
Источник поступления информации: Роспатент

Showing 51-60 of 189 items.
25.08.2017
№217.015.c21e

Устройство для измерения линейной деформации объектов

Изобретение относится к области измерения деформации твердых тел, в частности в условиях повышенных температур. Технический результат заключается в минимизации габаритов устройства и повышении точности измерения деформации твердых тел малых размеров. Устройство содержит нагрузочное устройство,...
Тип: Изобретение
Номер охранного документа: 0002617888
Дата охранного документа: 28.04.2017
25.08.2017
№217.015.c261

Способ измерения непрямолинейности длинномерных деталей

Изобретение относится к измерительной технике, а именно к способам измерения геометрических параметров длинномерных деталей. Способ заключается в том, что длинномерную деталь устанавливают горизонтально на двух опорах с концов детали или консольно, обеспечивают ее неподвижность в процессе...
Тип: Изобретение
Номер охранного документа: 0002617892
Дата охранного документа: 28.04.2017
25.08.2017
№217.015.c557

Способ получения воды из воздуха

Изобретение относится к области автономного получения пресной воды питьевого качества из влаги окружающего морского атмосферного воздуха и может быть также использовано для бытовых и хозяйственных нужд. Способ включает в себя использование генераторов (11) пневматической энергии. Охлаждение...
Тип: Изобретение
Номер охранного документа: 0002618315
Дата охранного документа: 03.05.2017
25.08.2017
№217.015.c96f

Безбалансирный привод скважинного штангового насоса

Изобретение относится к оборудованию для добычи нефти и может быть использовано для создания возвратно-поступательного движения скважинного штангового насоса. Безбалансирный привод скважинного штангового насоса содержит опорную раму, установленную на опорных плитах, электродвигатель, систему...
Тип: Изобретение
Номер охранного документа: 0002619411
Дата охранного документа: 15.05.2017
25.08.2017
№217.015.ca42

Планетарная коробка передач 26r10

Изобретение относится к машиностроению. Планетарная коробка передач содержит корпус с установленными в нем двумя простыми трехзвенными планетарными механизмами. В опорах корпуса установлены валы солнечных шестерен планетарных механизмов, на этих валах с зубчатыми венцами на торцах свободно...
Тип: Изобретение
Номер охранного документа: 0002620174
Дата охранного документа: 23.05.2017
25.08.2017
№217.015.caee

Дегазатор воды для удаления углекислоты

Изобретение относится к устройствам для дегазации воды и может быть использовано в технологиях очистки природных вод. Дегазатор воды для удаления углекислоты содержит прямоугольный или круглый в плане корпус 1, подводящий 2 трубопровод воды, отводящий 3 трубопровод дегазированной воды,...
Тип: Изобретение
Номер охранного документа: 0002620119
Дата охранного документа: 23.05.2017
25.08.2017
№217.015.cb49

Авианосец

Изобретение относится к области кораблестроения, в частности к авианесущим кораблям и аэродромам морского базирования. Предложен авианосец, который состоит из одинаковых двухпалубных кораблей-модулей, каждая палуба имеет поворотные звенья, оборудованные грузоподъемными механизмами и...
Тип: Изобретение
Номер охранного документа: 0002620039
Дата охранного документа: 22.05.2017
25.08.2017
№217.015.cc77

Соосная коробка передач 12r4 со сдвоенным сцеплением

Изобретение относится к соосной коробке передач со сдвоенным сцеплением. На входе в коробку передач (КП) расположено сдвоенное сцепление. Правая часть ведомых дисков сцепления установлена на ведущем трубчатом валу. Внутри трубчатого вала расположен первичный вал КП, на котором установлена левая...
Тип: Изобретение
Номер охранного документа: 0002620515
Дата охранного документа: 26.05.2017
25.08.2017
№217.015.ce80

Способ предотвращения притока подошвенных вод в нефтяную добывающую скважину

Изобретение относится к нефтяной промышленности и может найти применение при изоляции подошвенных вод в нефтяной добывающей скважине. Технический результат при использовании изобретения - повышение эффективности водоизоляционных работ за счет создания протяженного надежного водоизоляционного...
Тип: Изобретение
Номер охранного документа: 0002620684
Дата охранного документа: 29.05.2017
25.08.2017
№217.015.d044

Планетарная коробка передач 5r2

Изобретение относится к машиностроению. Планетарная коробка передач, содержашая корпус, простой трехзвенный планетарный механизм, состоящий из солнечной шестерни, эпициклического колеса и водила с сателлитами, которые зацеплены с солнечной шестерней и эпициклическим колесом, водило и корпус...
Тип: Изобретение
Номер охранного документа: 0002621214
Дата охранного документа: 01.06.2017
Showing 51-60 of 87 items.
25.08.2017
№217.015.c21e

Устройство для измерения линейной деформации объектов

Изобретение относится к области измерения деформации твердых тел, в частности в условиях повышенных температур. Технический результат заключается в минимизации габаритов устройства и повышении точности измерения деформации твердых тел малых размеров. Устройство содержит нагрузочное устройство,...
Тип: Изобретение
Номер охранного документа: 0002617888
Дата охранного документа: 28.04.2017
25.08.2017
№217.015.c261

Способ измерения непрямолинейности длинномерных деталей

Изобретение относится к измерительной технике, а именно к способам измерения геометрических параметров длинномерных деталей. Способ заключается в том, что длинномерную деталь устанавливают горизонтально на двух опорах с концов детали или консольно, обеспечивают ее неподвижность в процессе...
Тип: Изобретение
Номер охранного документа: 0002617892
Дата охранного документа: 28.04.2017
25.08.2017
№217.015.c557

Способ получения воды из воздуха

Изобретение относится к области автономного получения пресной воды питьевого качества из влаги окружающего морского атмосферного воздуха и может быть также использовано для бытовых и хозяйственных нужд. Способ включает в себя использование генераторов (11) пневматической энергии. Охлаждение...
Тип: Изобретение
Номер охранного документа: 0002618315
Дата охранного документа: 03.05.2017
25.08.2017
№217.015.c96f

Безбалансирный привод скважинного штангового насоса

Изобретение относится к оборудованию для добычи нефти и может быть использовано для создания возвратно-поступательного движения скважинного штангового насоса. Безбалансирный привод скважинного штангового насоса содержит опорную раму, установленную на опорных плитах, электродвигатель, систему...
Тип: Изобретение
Номер охранного документа: 0002619411
Дата охранного документа: 15.05.2017
25.08.2017
№217.015.ca42

Планетарная коробка передач 26r10

Изобретение относится к машиностроению. Планетарная коробка передач содержит корпус с установленными в нем двумя простыми трехзвенными планетарными механизмами. В опорах корпуса установлены валы солнечных шестерен планетарных механизмов, на этих валах с зубчатыми венцами на торцах свободно...
Тип: Изобретение
Номер охранного документа: 0002620174
Дата охранного документа: 23.05.2017
25.08.2017
№217.015.caee

Дегазатор воды для удаления углекислоты

Изобретение относится к устройствам для дегазации воды и может быть использовано в технологиях очистки природных вод. Дегазатор воды для удаления углекислоты содержит прямоугольный или круглый в плане корпус 1, подводящий 2 трубопровод воды, отводящий 3 трубопровод дегазированной воды,...
Тип: Изобретение
Номер охранного документа: 0002620119
Дата охранного документа: 23.05.2017
25.08.2017
№217.015.cb49

Авианосец

Изобретение относится к области кораблестроения, в частности к авианесущим кораблям и аэродромам морского базирования. Предложен авианосец, который состоит из одинаковых двухпалубных кораблей-модулей, каждая палуба имеет поворотные звенья, оборудованные грузоподъемными механизмами и...
Тип: Изобретение
Номер охранного документа: 0002620039
Дата охранного документа: 22.05.2017
25.08.2017
№217.015.cc77

Соосная коробка передач 12r4 со сдвоенным сцеплением

Изобретение относится к соосной коробке передач со сдвоенным сцеплением. На входе в коробку передач (КП) расположено сдвоенное сцепление. Правая часть ведомых дисков сцепления установлена на ведущем трубчатом валу. Внутри трубчатого вала расположен первичный вал КП, на котором установлена левая...
Тип: Изобретение
Номер охранного документа: 0002620515
Дата охранного документа: 26.05.2017
25.08.2017
№217.015.ce80

Способ предотвращения притока подошвенных вод в нефтяную добывающую скважину

Изобретение относится к нефтяной промышленности и может найти применение при изоляции подошвенных вод в нефтяной добывающей скважине. Технический результат при использовании изобретения - повышение эффективности водоизоляционных работ за счет создания протяженного надежного водоизоляционного...
Тип: Изобретение
Номер охранного документа: 0002620684
Дата охранного документа: 29.05.2017
25.08.2017
№217.015.d044

Планетарная коробка передач 5r2

Изобретение относится к машиностроению. Планетарная коробка передач, содержашая корпус, простой трехзвенный планетарный механизм, состоящий из солнечной шестерни, эпициклического колеса и водила с сателлитами, которые зацеплены с солнечной шестерней и эпициклическим колесом, водило и корпус...
Тип: Изобретение
Номер охранного документа: 0002621214
Дата охранного документа: 01.06.2017
+ добавить свой РИД