×
25.08.2017
217.015.cdc6

Результат интеллектуальной деятельности: СПОСОБ УДАЛЕНИЯ ДИОКСИДА УГЛЕРОДА ИЗ ПОТОКА ГАЗА

Вид РИД

Изобретение

Правообладатели

№ охранного документа
0002619691
Дата охранного документа
17.05.2017
Аннотация: Описаны способ и установка для удаления диоксида углерода из технологического газа (G) с помощью твердого адсорбента и адсорбции с изменением температуры, в котором диоксид углерода удаляют из технологического газа или в первом слое (В1), или во втором слое (В2) адсорбента, в то время как другой слой регенерируется с использованием тепла, доставляемого входящим горячим технологическим газом; эти слои находятся в сосудах (V1, V2) с трубами или пластинами (T1, Т2) для теплообмена, так что удаление СО происходит при контакте технологического газа со слоем во внетрубной зоне, а регенерация слоя происходит при прохождении горячего технологического газа в трубах. 2 н. и 11 з.п. ф-лы, 3 ил.

Область техники, к которой относится изобретение

Настоящее изобретение касается способа удаления диоксида углерода из технологического газа, например дымовых газов реформинг-установок или выбросов из дымовых труб электростанций, работающих на ископаемом топливе. Изобретение относится к способу на основе адсорбции диоксида углерода с изменением температуры на твердом адсорбенте.

Уровень техники

В интересах охраны окружающей среды и (или) для использования диоксида углерода в качестве исходного материала для другого производственного процесса желательно удалять диоксид углерода из дымовых газов процесса сжигания или другого окислительного процесса. В области синтеза аммиака и метанола реформинг метана или других легких углеводородов, таких как природный газ, сжиженный нефтяной газ (СНГ, англ. LPG), нафта и т.д., является обычным источником свежего газа для синтеза аммиака или метанола, поэтому существует необходимость в удалении по меньшей мере части диоксида углерода, содержащегося в дымовых газах реформинг-процесса.

Так называемые "мокрые" способы включают мокрую очистку технологического газа с использованием избирательного по СО2 раствора. Однако эти способы допускают недостатки, связанные с деструкцией промывного раствора, например, вследствие окисления или реакции с оксидами азота и серы, что приводит к образованию солей или вредных соединений. Промывной раствор требуется заменять, что связано с расходами, и (или) требуется техническое обслуживание для удаления солей или вредных соединений.

В других известных способах используют твердый адсорбент и работают по принципу адсорбции с изменением давления (англ. PSA) или адсорбции с изменением температуры (англ. TSA). Поглощение и последующее выделение СО2 регулируют путем изменения давления в системе PSA и путем изменения температуры в системе TSA. Точнее, количество СО2, которое может аккумулировать адсорбент, зависит от давления или температуры. Из этого следует, что поглощенный СО2 может быть удален на более поздней стадии при соответствующем изменении давления или температуры. Удаление адсорбата (например, СО2) из твердого адсорбента называют регенерацией адсорбента. В системе TSA адсорбция обычно происходит при более низкой температуре, а регенерация - при более высокой температуре. Это означает, что для регенерации материал адсорбента в системе TSA требует наличия источника тепла, а после регенерации, как правило, должен быть охлажден.

В ЕР-А-1249264 раскрыт способ улавливания диоксида углерода из отходящего газа, включающий следующие стадии: пропускание потока отходящего газа в полупроницаемый материал, такой как молекулярные сита для TSA или активированный уголь, таким образом, чтобы обеспечить адсорбцию по меньшей мере релевантной части диоксида углерода, содержащегося в отходящем газе, и получить пропущенный поток газа с низким содержанием диоксида углерода, а также стадию десорбции диоксида углерода из вышеуказанного полупроницаемого материала, получая таким образом поток газа, содержащий диоксид углерода в высокой концентрации.

Целью настоящего изобретения является усовершенствование известного способа удаления СО2 с помощью адсорбции TSA. В частности, способ TSA для осуществления адсорбции и регенерации (десорбции) соответственно требует чередования стадий нагревания и охлаждения твердого адсорбента. Это можно обеспечить с помощью прямого теплообмена или непрямого теплообмена.

Прямой теплообмен означает непосредственный контакт твердого адсорбента с теплоносителем или охлаждающей средой. Преимущество прямого нагревания состоит в том, что теплоноситель является носителем десорбированного диоксида углерода и тот же самый теплоноситель разбавляет диоксид углерода. Поэтому требуется дополнительная система для удаления СО2 из теплоносителя, особенно если желательно получить чистый или в основном чистый СО2.

Непрямой теплообмен означает, что твердый адсорбент и теплоноситель или охлаждающая среда не контактируют и остаются разделенными теплообменными поверхностями, например теплоноситель или охлаждающая среда проходит в пучке труб, погруженном в слой адсорбента. В этом способе не происходит разбавления СО2, однако недостаток этого способа заключается в том, что на стадии нагревания он не обеспечивает носитель для удаления СО2 из слоя. В некоторых случаях, для того чтобы удалить десорбированный диоксид углерода, через слой пропускают дополнительный продувочный поток, но это становится причиной тех же недостатков, что и в способе с прямым нагреванием.

Раскрытие изобретения

В настоящем изобретении предлагается способ удаления диоксида углерода из технологического газа, причем с использованием твердого адсорбента и адсорбции с изменением температуры, с помощью по меньшей мере двух слоев или группы слоев твердого адсорбента. В этом способе чередуются два режима работы. В первом режиме первый слой (-и) регенерируется путем непрямого теплообмена с входящим технологическим газом, а затем СО2 поглощается в (ранее регенерированном) втором слое (-ях). После насыщения второго слоя (-ев) диоксидом углерода способ переключается на второй режим, теперь обеспечивая регенерацию второго слоя (-ев) путем непрямого теплообмена с входящим горячим технологическим газом, а затем поглощение СО2 в первых слоях. На стадии адсорбции слой, адсорбирующий СО2, можно непрерывно охлаждать с целью отвода теплоты адсорбции, увеличивая количество адсорбируемого СО2.

При более подробном рассмотрении настоящее изобретение раскрывает способ, в котором:

- удаление диоксида углерода из вышеуказанного технологического газа происходит поочередно по меньшей мере в одном первом слое вышеуказанного твердого адсорбента и по меньшей мере в одном втором слое вышеуказанного твердого адсорбента, причем во время адсорбции диоксида углерода, содержащегося во входящем технологическом газе, во втором слое первый слой регенерируется и наоборот, так что адсорбент первого слоя и второго слоя поочередно насыщается диоксидом углерода;

- входящий технологический газ охлаждается путем непрямого теплообмена с насыщенным СО2 материалом адсорбента либо первого слоя, либо второго слоя, таким образом нагревая и регенерируя вышеуказанный адсорбент, насыщенный СО2, и

- затем диоксид углерода удаляется из технологического газа во время контактирования вышеуказанного технологического газа с материалом адсорбента другого слоя.

В особенно предпочтительном варианте осуществления изобретения слой (-и) насыщенного СО2 адсорбента на стадии регенерации остается в закрытой среде. Поэтому нагревание адсорбента, насыщенного СО2, осуществляется в замкнутом пространстве (изоволюметрические условия), это означает, что во время постепенного выделения диоксида углерода давление в вышеуказанном замкнутом пространстве повышается. Этот предпочтительный вариант осуществления изобретения имеет значительное преимущество, состоящее в том, что диоксид углерода или газ, содержащий диоксид углерода, получают под давлением, и такое давление облегчает удаление диоксида углерода, исключая потребность в носителе или компрессоре.

Более предпочтительно, если нагревание адсорбента продолжается, пока выделяемый адсорбентом СО2 выходит из вышеуказанной закрытой среды, чтобы во время снижения давления поддерживать в этой закрытой среде в основном постоянную температуру.

В соответствии с предпочтительными вариантами осуществления изобретения слои адсорбента размещены во внетрубной зоне соответствующих сосудов. После закрытия соответствующих соединений с внешней средой (например, клапанов) внетрубная зона сосуда может образовать вышеуказанную закрытую среду. Более предпочтительно, если каждый сосуд имеет теплообменные элементы, например трубы или пластины, погруженные в слой. Вышеуказанные теплообменные элементы определяют путь прохождения (газа), отделенный от находящегося снаружи слоя адсорбента. Непрямой теплообмен между технологическим газом и адсорбентом, насыщенным СО2, осуществляется путем подачи газа в теплообменные элементы, например в трубы или полые пластины.

Во время осуществления регенерации слоя все соединения внетрубной зоны закрыты, таким образом, внетрубная зона образует замкнутое пространство и выделяемый диоксид углерода накапливается под давлением. После завершения регенерации может быть открыта выпускная линия и диоксид углерода под давлением выходит из внетрубной зоны вышеуказанного слоя, в то время как по трубам или пластинам продолжает проходить горячий технологический газ в целях поддержания температуры адсорбента во время снижения давления. Соответственно, во время удаления выделяемого СО2 из внетрубной зоны сосуда нагревание адсорбента продолжается с целью поддержания во внетрубной зоне постоянной температуры во время снижения давления вследствие выхода СО2 из сосуда.

По усмотрению, после вышеуказанного непрямого теплообмена с насыщенным СО2 адсорбентом и до контакта с ранее регенерированным адсорбентом для удаления СО2 технологический газ подвергают второму процессу охлаждения. Такое второе и дополнительное охлаждение может осуществляться с помощью охлаждающей воды или воздуха и обычно служит для охлаждения технологического газа до температуры окружающей среды или до температуры немного выше температуры окружающей среды, которая подходит для удаления СО2. Вышеуказанная температура предпочтительно ниже 50°С и более предпочтительно составляет 20-40°С. Кроме того, во время такого второго охлаждения можно удалить водяной конденсат.

После регенерации слой имеет высокую температуру, например 200°С, и предпочтительно охлаждается, прежде чем может принимать технологический газ, содержащий СО2. Такое охлаждение регенерированного слоя можно осуществлять путем подачи охлаждающей среды в вышеупомянутые теплообменные элементы. Еще более предпочтительно, если вышеуказанная охлаждающая среда представляет собой поток декарбонизированного газа, полученного ранее путем удаления СО2 в другом слое. Во время адсорбции СО2 возможно непрямое охлаждение адсорбирующего слоя для отвода теплоты адсорбции.

Следует понимать, что любые ссылки на слой или сосуд могут в равной степени относиться к группе или ряду слоев или сосудов, например, расположенных параллельно. Термин "насыщенный СО2 адсорбент" используется для обозначения адсорбента после поглощения им некоторого количества СО2 или адсорбента, насыщенного СО2. Термин "декарбонизированный газ" означает технологический газ после поглощения СО2, и в котором содержание СО2 ниже, чем во входящем газе; в некоторых вариантах осуществления изобретения и в зависимости от степени удаления диоксида углерода вышеуказанный декарбонизированный газ представляет собой газ, в основном не содержащий СО2.

Входящий технологический газ обычно представляет собой горячий газ и может поступать из процесса сжигания или окисления, в том числе дымовые газы реформинг-установки, отходящий печной дымовой газ, дымовые газы электростанции и т.д. Обычно температура потока газа, получаемого для осуществления способа удаления СО2, предлагаемого в настоящем изобретении, составляет по меньшей мере 80°С и предпочтительно находится в диапазоне 100-300°С, более предпочтительно - 150-250°С. Отходящий газ или дымовые газы с более высокой температурой обычно охлаждают на предыдущих стадиях, таких как рекуперация теплоты, фильтрование, удаление загрязняющих веществ и т.д.

В настоящем описании термин "технологический газ" может относиться к газообразным продуктам сгорания, которые обрабатывают с целью удаления диоксида углерода. Вышеуказанный технологический газ может представлять собой, например, дымовые газы из дымовой трубы основной печи реформинга на установке для получения аммиака или метанола.

Объектом изобретения является также установка для осуществления этого способа. Вышеупомянутая установка предпочтительно включает по меньшей мере первый сосуд для удаления диоксида углерода, содержащий первый слой твердого материала адсорбента и первые теплообменные элементы, погруженные в вышеуказанный первый слой; по меньшей мере второй сосуд для удаления диоксида углерода, содержащий второй слой твердого материала адсорбента и вторые теплообменные элементы, погруженные в вышеуказанный второй слой. Теплообменные элементы определяют внутренний путь прохождения среды для теплообмена, и каждый вышеуказанный сосуд имеет внетрубную зону и зону теплообмена, так что среда, проходящая во внетрубной зоне, находится в прямом контакте с материалом адсорбента, а среда в зоне теплообмена отделена от материала адсорбента. Установка включает также средства для избирательного направления входящего потока технологического газа, содержащего диоксид углерода, или

- по первому пути, когда входящий технологический газ сначала проходит в зону теплообмена первого сосуда для регенерации материала адсорбента в первом сосуде, а потом - во внетрубную зону второго сосуда для удаления СО2,

- или по второму пути, когда входящий технологический газ сначала проходит в зону теплообмена второго сосуда для регенерации материала адсорбента во втором сосуде, а потом - во внетрубную зону первого сосуда для удаления СО2.

Основные преимущества настоящего изобретения заключаются в том, что этот способ может работать непрерывно, так как регенерация первого слоя или первой группы слоев может происходить одновременно с поглощением СО2 из технологического газа во втором слое или группе слоев. Другим преимуществом является эффективное использование теплоты: входящий горячий технологический газ является источником теплоты для регенерации насыщенных слоев, наряду с тем, что в некоторых вариантах осуществления изобретения холодный декарбонизированный газ, выходящий из процесса адсорбции, может использоваться для охлаждения слоя после регенерации и, таким образом, рекуперировать часть теплоты слоя. Еще одно преимущество, как указывалось ранее, состоит в том, что выделенный СО2 получают под определенным давлением и для выпуска не нужен носитель, такой как водяной пар или продувочный газ. Более того, СО2 не разбавлен и выпускается с высокой степенью чистоты, что является значительным преимуществом, когда СО2 направляют для дальнейшего использования.

Преимущества настоящего изобретения будут понятны из следующего описания предпочтительных и не ограничивающих вариантов осуществления изобретения.

Краткое описание чертежей

Фиг. 1 - блок-схема секции удаления СО2 в соответствии с предпочтительным вариантом осуществления изобретения.

Фиг. 2 и 3 раскрывают режимы работы установки, изображенной на фиг. 1.

Подробное описание предпочтительных вариантов осуществления изобретения

Как видно из фиг. 1, основными позициями секции удаления СО2 являются первый сосуд V1, второй сосуд V2, холодильник С и сепаратор S. В сосудах V1 и V2 имеются слои В1 и В2 материала адсорбента, пригодного для удаления СО2 из газовой фазы с использованием способа TSA. В каждом из сосудов V1 и V2 имеются также пучки T1, Т2 труб для теплообмена, погруженные в слой адсорбента.

Таким образом, сосуды V1 и V2 имеют трубную зону (внутри труб) и внетрубную зону (внутри сосуда и за пределами труб). Во внетрубной зоне имеется слой адсорбента, а трубная зона определяет путь прохождения теплоносителя или охлаждающей среды. Внетрубная зона и трубная зона в сосудах не сообщаются между собой.

Трубопроводы 11, 12 сообщаются с трубной зоной сосуда V1 (т.е. с внутренней частью труб Т1), тогда как трубопроводы 13, 14 сообщаются с внетрубной зоной. Аналогично трубопроводы 21, 22 сообщаются с трубной зоной сосуда V2, а именно с внутренней частью труб Т2, а трубопроводы 23, 24 сообщаются с внетрубной зоной сосуда V2.

Горячий технологический газ, содержащий СО2, обозначен буквой G. Входящий газ G может быть направлен или в трубную зону первого сосуда V1 по трубопроводу 11, или в трубную зону второго сосуда V2 по трубопроводу 21. Технологический газ, проходящий внутри труб Т1 или Т2, обеспечивает теплоту для регенерации соответствующего слоя В1 или В2 адсорбента. Регенерация происходит по принципу TSA, так как количество СО2, адсорбированного в слое, зависит от температуры. Одновременно технологический газ охлаждается, например, с обычной температуры на входе 150-20СГС до средней температуры 60-80°С.

Температура технологического газа, выходящего из труб сосуда V1 (или V2), продолжает снижаться в холодильнике С, и конденсат W, в основном содержащий воду, можно отделить в сепараторе S. Технологический газ, выходящий из верхней части сепаратора S, примерно с температурой окружающей среды, поступает во внетрубную зону другого сосуда V2 (или, соответственно, V1), где контактирует со слоем адсорбента для удаления СО2.

Другими словами, СО2 удаляется из технологического газа в одном слое, в то время как другой слой регенерируется с помощью теплоты, доставляемой этим же технологическим газом. Таким образом, секция удаления СО2 имеет два режима работы. Входящий газ G может быть направлен в трубопровод 11 или трубопровод 21, что означает - в трубную зону сосуда V1 или V2. Соответственно, после прохождения в один или другой пучок труб технологический газ может достигать входного трубопровода 15 холодильника С по трубопроводу 12 или по трубопроводу 22. Технологический газ, выходящий по трубопроводу 17 из верхней части сепаратора S, может быть направлен в трубопровод 13 или 23, а значит - во внетрубную зону VI или V2. Ряд клапанов (не показан) обеспечивает возможность выбора направления потока.

Эти связанные между собой два режима работы становятся понятны из фиг. 2 и 3, где жирные линии показывают путь прохождения газа G во время обработки.

На фиг. 2 слой В1 адсорбента в сосуде V1 уже насыщен диоксидом углерода, а слой В2 адсорбента в сосуде V2 готов к поглощению СО2, например регенерирован на предыдущей стадии. Поэтому входящий технологический газ G направляют по трубопроводу 11 в пучок Т1 труб, чтобы регенерировать слой В1. Непрямой теплообмен имеет двойное преимущество: нагревание слоя для регенерации и охлаждение технологического газа G до более низкой температуры для контакта со слоем В2.

Пока горячий технологический газ проходит по трубам Т1, слой В1 выделяет диоксид углерода. На этой стадии все соединения с внетрубной зоной сосуда V1, например трубопроводы 13 и 14, закрыты. Таким образом, СО2 выделяется в закрытое пространство, и давление внутри сосуда V1 повышается. После завершения регенерации слоя В1 во внетрубной зоне V1 имеется насыщенный СО2 газ под определенным давлением, например 1,5 бар, при начальном давлении 1 бар. Вышеуказанный газ, насыщенный СО2, может содержать выделенный диоксид углерода и некоторое количество остаточного газа из предыдущей стадии поглощения СО2. Вышеуказанное давление является движущей силой для извлечения из сосуда; трубопровод 14 может быть открыт для свободного выпуска вышеуказанного газа, насыщенного СО2, для дальнейшего использования; технологический газ продолжает движение в трубной зоне до полного снятия давления во внетрубной зоне в целях поддержания температуры во внетрубной зоне, в противном случае в процессе температура снижалась бы вместе с давлением, что привело бы к повторной адсорбции в адсорбенте по меньшей мере части СО2.

Технологический газ G, все еще насыщенный СО2, выходит из труб сосуда V1 по трубопроводу 12 и проходит через холодильник С для дополнительного охлаждения, предпочтительно до температуры окружающей среды или близкой к ней (например, 30-40°С). Линия 18 обозначает охлаждающую среду, например воздух или воду, которая не вступает в контакт с технологическим газом. После прохождения через сепаратор S (трубопровод 16) холодный технологический газ поступает теперь по трубопроводу 23 во внетрубную зону сосуда V2. Здесь технологический газ контактирует со слоем В2, СО2 адсорбируется, и по трубопроводу 24 получают декарбонизированный газ.

Вышеуказанный декарбонизированный газ в трубопроводе 24 может быть использован для охлаждения ранее регенерированного слоя В1. Фактически после регенерации этот слой имеет высокую температуру (например, 200°С); использование декарбонизированного газа в качестве охлаждающей среды выгодно, так как исключается потребность во внешних охлаждающих средствах, таких как воздух или вода. Температура декарбонизированного газа, естественно, также повышается; в ряде случаев наличие декарбонизированного газа с определенной температурой может являться дополнительным преимуществом, например, если вышеуказанный газ направляется для дальнейшего использования.

После регенерации первого слоя В1 и (или) насыщения второго слоя В2 секция удаления СО2 переключается на режим, показанный на фиг. 3. В этом режиме входящий газ G направляется по трубопроводу 21 в трубы Т2, т.е. в трубную зону сосуда V2, и выходит из вышеуказанных труб по трубопроводу 22. Затем охлажденный газ проходит через холодильник С и сепаратор S и по трубопроводу 13 поступает во внетрубную зону сосуда V1 для контакта со слоем В1 и удаления СО2. Теперь декарбонизированный газ выходит по трубопроводу 14, в то время как СО2 можно получать по трубопроводу 24.

Следует понимать, что на этих чертежах изображены один сосуд V1 и один сосуд V2, но возможны эквивалентные варианты осуществления изобретения с многочисленными сосудами, установленными параллельно. Более того, пучки Т1 и Т2 труб можно заменить смонтированными в сосудах теплообменными пластинами или другими теплообменными элементами, определяющими путь прохождения теплоносителя или охлаждающей среды, изолированный от внетрубной зоны.


СПОСОБ УДАЛЕНИЯ ДИОКСИДА УГЛЕРОДА ИЗ ПОТОКА ГАЗА
СПОСОБ УДАЛЕНИЯ ДИОКСИДА УГЛЕРОДА ИЗ ПОТОКА ГАЗА
СПОСОБ УДАЛЕНИЯ ДИОКСИДА УГЛЕРОДА ИЗ ПОТОКА ГАЗА
Источник поступления информации: Роспатент

Showing 31-40 of 80 items.
29.05.2018
№218.016.5443

Применение нержавеющей стали, выплавленной дуплекс-процессом, при отпарке аммиаком на установках для синтеза мочевины

Изобретение относится к созданию или модернизации установок для синтеза мочевины способом с отпаркой аммиаком и самоотпаркой. Установка для синтеза мочевины способом с отпаркой аммиаком или термической отпаркой, включающая контур высокого давления для синтеза, который включает реактор для...
Тип: Изобретение
Номер охранного документа: 0002654018
Дата охранного документа: 15.05.2018
12.07.2018
№218.016.6f72

Кожухотрубное устройство для рекуперации тепла из горячего технологического потока

В изобретении описано кожухотрубное устройство (1), выполненное с возможностью использования в качестве котла-утилизатора и содержащее резервуар с теплообменной секцией (2) и разделительной секцией (3), в котором: теплообменная секция (2) заключает в себе пакет U-образных труб (4), питаемых...
Тип: Изобретение
Номер охранного документа: 0002661121
Дата охранного документа: 11.07.2018
17.08.2018
№218.016.7c3e

Комбинированный реактор для синтеза меламина при высоком давлении

Изобретение относится к синтезу меламина из мочевины. В заявке описаны реактор и соответствующий способ для синтеза меламина из мочевины при высоком давлении. Реактор для синтеза меламина из мочевины с использованием некаталитического процесса при высоком давлении имеет вертикальный корпус...
Тип: Изобретение
Номер охранного документа: 0002664069
Дата охранного документа: 14.08.2018
17.08.2018
№218.016.7c87

Трубчатый теплообменный узел для использования внутри теплообменников или реакторов

Изобретение относится к теплообменному узлу (1) с пучком труб для использования внутри теплообменников или реакторов, включающему по меньшей мере один пучок (2) труб; несколько гасителей (3) вибраций, связанных с этим пучком труб и образующих сквозные окна с заданным расположением, через каждое...
Тип: Изобретение
Номер охранного документа: 0002663964
Дата охранного документа: 13.08.2018
28.08.2018
№218.016.7fbd

Способ модернизации входной части установки для синтеза аммиака

Изобретение относится к модернизации установки для синтеза аммиака. Способ модернизации входной части установки для синтеза аммиака, причем указанная входная часть подает получаемый газ для синтеза аммиака и включает секцию конверсии, включающую установку для вторичной конверсии с воздушным...
Тип: Изобретение
Номер охранного документа: 0002664941
Дата охранного документа: 23.08.2018
14.09.2018
№218.016.87b6

Способ получения синтез-газа для производства аммиака с использованием высокотемпературной конверсии и низкой величины отношения количества водяного пара к количеству углерода

Настоящее изобретение относится к риформингу углеводородов с целью подготовки синтез-газа для производства аммиака. Способ получения синтез-газа для производства аммиака из содержащего углеводороды сырья во входной части установки включает стадии: конверсии указанного сырья с водяным паром с...
Тип: Изобретение
Номер охранного документа: 0002666897
Дата охранного документа: 13.09.2018
23.09.2018
№218.016.8a12

Способ и установка для синтеза мочевины и меламина

Изобретение относится к способу комбинированного синтеза мочевины и меламина. Способ включает: осуществление синтеза мочевины из аммиака и диоксида углерода с использованием способа с отпаркой, причем указанный способ с отпаркой включает по меньшей мере стадии взаимодействия аммиака и диоксида...
Тип: Изобретение
Номер охранного документа: 0002667502
Дата охранного документа: 21.09.2018
30.11.2018
№218.016.a22a

Способ очистки синтез-газа, содержащего водород и примеси

Изобретение относится к способу очистки потока (100) синтез-газа, содержащего водород. Способ содержит водород для получения свежего синтез-газа для синтеза аммиака, причем указанный поток состоит из водорода, а также оксида углерода, диоксида углерода, воды и примесей в незначительных...
Тип: Изобретение
Номер охранного документа: 0002673522
Дата охранного документа: 27.11.2018
26.12.2018
№218.016.ab40

Способ окончательной обработки мочевины с использованием промывки кислотой

Изобретение относится к способу окончательной обработки мочевины. Способ включает: (а) удаление воды из водного раствора мочевины путем выпаривания и конденсации в первой секции выпаривания и конденсации до получения расплава мочевины; (б) окончательную обработку по меньшей мере первой части...
Тип: Изобретение
Номер охранного документа: 0002675828
Дата охранного документа: 25.12.2018
26.12.2018
№218.016.aba0

Установка для синтеза мочевины

Изобретение относится к установке для синтеза мочевины. Установка содержит секцию синтеза, включающую по меньшей мере один реактор, компрессор для подачи СО в указанную секцию синтеза, газовую турбину для приведения в действие указанного СО-компрессора и парогенератор-утилизатор тепла....
Тип: Изобретение
Номер охранного документа: 0002675841
Дата охранного документа: 25.12.2018
Showing 31-40 of 52 items.
12.07.2018
№218.016.6f72

Кожухотрубное устройство для рекуперации тепла из горячего технологического потока

В изобретении описано кожухотрубное устройство (1), выполненное с возможностью использования в качестве котла-утилизатора и содержащее резервуар с теплообменной секцией (2) и разделительной секцией (3), в котором: теплообменная секция (2) заключает в себе пакет U-образных труб (4), питаемых...
Тип: Изобретение
Номер охранного документа: 0002661121
Дата охранного документа: 11.07.2018
28.08.2018
№218.016.7fbd

Способ модернизации входной части установки для синтеза аммиака

Изобретение относится к модернизации установки для синтеза аммиака. Способ модернизации входной части установки для синтеза аммиака, причем указанная входная часть подает получаемый газ для синтеза аммиака и включает секцию конверсии, включающую установку для вторичной конверсии с воздушным...
Тип: Изобретение
Номер охранного документа: 0002664941
Дата охранного документа: 23.08.2018
14.09.2018
№218.016.87b6

Способ получения синтез-газа для производства аммиака с использованием высокотемпературной конверсии и низкой величины отношения количества водяного пара к количеству углерода

Настоящее изобретение относится к риформингу углеводородов с целью подготовки синтез-газа для производства аммиака. Способ получения синтез-газа для производства аммиака из содержащего углеводороды сырья во входной части установки включает стадии: конверсии указанного сырья с водяным паром с...
Тип: Изобретение
Номер охранного документа: 0002666897
Дата охранного документа: 13.09.2018
30.11.2018
№218.016.a22a

Способ очистки синтез-газа, содержащего водород и примеси

Изобретение относится к способу очистки потока (100) синтез-газа, содержащего водород. Способ содержит водород для получения свежего синтез-газа для синтеза аммиака, причем указанный поток состоит из водорода, а также оксида углерода, диоксида углерода, воды и примесей в незначительных...
Тип: Изобретение
Номер охранного документа: 0002673522
Дата охранного документа: 27.11.2018
16.02.2019
№219.016.bb0d

Способ получения синтез-газа для производства аммиака

Изобретение может быть использовано в химической промышленности. Получение синтез-газа для производства аммиака из содержащего углеводороды сырья 20 включает стадии первичной конверсии 21 с водяным паром, вторичной конверсии 23 с потоком оксиданта и очистку потока, выходящего со стадии...
Тип: Изобретение
Номер охранного документа: 0002680047
Дата охранного документа: 14.02.2019
01.03.2019
№219.016.caad

Способ массообмена между жидкой и газовой фазами, колонна с наполнителем для его осуществления и способ модернизации колонны для массообмена

Изобретение относится к способу массообмена между жидкой и газовой фазами в колонне с наполнителем. Способ массообмена между жидкой и газовой фазами в колонне с наполнителем, которая имеет наружный корпус, внутри которой размещены несколько расположенных одна над другой, содержащих наполнитель...
Тип: Изобретение
Номер охранного документа: 02229333
Дата охранного документа: 27.05.2004
11.03.2019
№219.016.d873

Способ риформинга для получения синтез-газа и установка для его осуществления

Изобретение относится к способу получения синтез-газа. Способ включает стадию предварительного риформинга, на которой технологическая смесь (18), содержащая смесь углеводородов (14) и водяной пар (16), подвергается реакции предварительной каталитической конверсии с получением продукта (22)...
Тип: Изобретение
Номер охранного документа: 0002394755
Дата охранного документа: 20.07.2010
20.03.2019
№219.016.e580

Способ проведения химической реакции в псевдоизотермических условиях и теплообменник для его осуществления

Изобретение относится к способу непрерывного проведения определенной химической реакции в так называемых псевдоизотермических условиях, то есть в условиях, в которых путем регулирования температуру реакции поддерживают на уровне предварительно заданной оптимальной температуры с небольшими от...
Тип: Изобретение
Номер охранного документа: 0002310502
Дата охранного документа: 20.11.2007
10.04.2019
№219.016.ffb7

Способ получения текучего теплоносителя, используемого в качестве косвенного источника тепла при проведении эндотермических реакций, и способ проведения реакций риформинга углеводородов

Изобретение относится к области химической промышленности, в частности к способам проведения реформинга углеводородов, и касается способа получения текучего теплоносителя, используемого в качестве косвенного источника тепла для проведения эндотермических реакций, продукты которых полностью...
Тип: Изобретение
Номер охранного документа: 0002283272
Дата охранного документа: 10.09.2006
10.04.2019
№219.017.0240

Способ разделения отходящего газа или дыма, образующегося при окислении топлива, и выделения из него диоксида углерода

Изобретение может быть использовано в химической промышленности и охране окружающей среды. Поток отходящего газа охлаждают, сжимают компрессором и затем пропускают через полупроницаемый для газа материал, например молекулярное сито или активированный уголь. Адсорбцию и десорбцию диоксида...
Тип: Изобретение
Номер охранного документа: 0002349371
Дата охранного документа: 20.03.2009
+ добавить свой РИД