×
25.08.2017
217.015.cc41

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ МАГНЕТИТА

Вид РИД

Изобретение

Аннотация: Изобретение может быть использовано для создания терморегулирующих покрытий. Способ получения магнетита включает осаждение гидроксида железа (II) из сульфата железа FeSO и окисление его нитрат-ионами до магнетита FeO при термостатировании. Термостатирование проводят 0,083-24 часа. Осаждение проводят при температуре 10-22°С, а окисление - при 37-40°С. Изобретение позволяет получить наночастицы магнетита FeO со средним размером от 42 до 81 нм и узким распределением по размерам. 1 табл., 4 пр.

Изобретение относится к области неорганической химии, а именно к способу получения магнетита, и может быть использовано для создания терморегулирующих покрытий.

В настоящее время известны различные жидкофазные методы получения наночастиц оксидов железа, обладающие такими преимуществами, как простота исполнения и относительно небольшие энергозатраты при получении. Среди них можно выделить следующие методы: соосаждения, сонохимический, микроэмульсионный, осаждения с последующим термостатированием. Однако в методах соосаждения, сонохимическом и микроэмульсионном, существует ограничение по размерам получаемых наночастиц - не более 40 нм. В связи с этим оптимальным методом получения наночастиц Fe3O4 средним размером до 100 нм является метод осаждения с последующим термостатированием.

Известен способ получения закиси-окиси железа путем осаждения соли двухвалентного железа с последующим окислением Fe(OH)2 сульфатом меди (RU 2390497, C01G 49/08, Способ получения магнетита, опуб. 27.05.2010). Данный способ позволяет снизить энергозатраты и продолжительность синтеза. Недостатком известного способа является загрязнение конечного продукта ионами меди.

Наиболее близким по технической сущности и достигаемому результату является способ получения магнетита, включающий осаждение Fe(OH)2 и его последующее окисление NaNO3 (К. Nishio, М. Ikeda, N. Gokon. Preparation of size-controlled (30-100 nm) magnetite nanoparticles for biomedical applications // Journal of Magnetism and Magnetic Materials. 310. 2007. P. 2408-2410). Данный способ позволяет с увеличением температуры термостатирования от 4 до 37°С получать наночастицы размером от 102 до 31 нм соответственно. Недостатком известного способа является большая ширина распределения получаемых наночастиц по размерам.

Задачей предлагаемого изобретения является получение наночастиц Fe3O4 со средним размером от 42 до 81 нм, узким распределением их по размерам (стандартное отклонение размера - не более 19,1% от среднего размера).

Поставленная задача решается способом получения магнетита, включающим осаждение гидроксида железа (II) из соли железа (II) и окисление его нитрат-ионами до магнетита Fe3O4 при термостатировании. При этом термостатирование проводят 0,083-24 часа, при этом осаждение проводят при температуре 10-22°С, а окисление при 37-40°С. Способ получения магнетита позволяет получать наночастицы магнетита Fe3O4 со средним размером от 42 до 81 нм со стандартным отклонением размера от 12,4 до 19,1%.

Возможные суммарные реакции, включающие промежуточные стадии окисления Fe(OH)2 до Fe3O4 под действием NO3-, могут быть записаны следующим образом (1-4):

Общая методика получения наночастиц Fe3O4 выглядит следующим образом.

В качестве прекурсора железа использован FeSO4, осадителя - NaOH, а в качестве окислителя - NaNO3. Были приготовлены водные растворы FeSO4 (0.1М) и NaOH (0.02М) (избыточная концентрация [ОН-]=0.009 моль/л). Через полученные растворы предварительно пропускали азот для удаления, растворенного в воде кислорода. К раствору NaOH был добавлен раствор FeSO4, при непрерывном барботировании азотом в течение 5-10 минут (рН ~12,5). Далее проводили окисление осадка Fe(OH)2 при термостатировании. Термостатирование проводят 0,083-24 часа, при этом осаждение проводят при температуре 10-22°С, а окисление при 37-40°С. Полученный нанопорошок Fe3O4 был отделен при помощи постоянного магнита, несколько раз промыт дистиллированной водой, после чего был высушен при комнатной температуре.

Рассматриваемое изобретение иллюстрируется нижеприведенными примерами.

Пример 1.

Были приготовлены водные растворы FeSO4 (0.1М) и NaOH (0.02М) (избыточная концентрация [ОН-]=0.009 моль/л). Через полученные растворы предварительно пропускали азот для удаления, растворенного в воде кислорода. К раствору NaOH был добавлен раствор FeSO4, при непрерывном барботировании азотом в течение 5-10 минут (рН ~12.5). Далее проводили окисление осадка Fe(OH)2 при термостатировании. Полученный нанопорошок Fe3O4 был отделен при помощи постоянного магнита, несколько раз промыт дистиллированной водой, после чего был высушен при комнатной температуре. При температуре осаждения 10°С и температуре окисления 40°С при продолжительности термостатирования 5 минут (0.083 часа) получены наночастицы Fe3O4 размером 42±8 нм. Рентгеноструктурные исследования нанопорошка, полученного данным методом, показали, что образец представляет собой однофазный Fe3O4 со структурным типом шпинели (образец №1).

Пример 2.

При температуре осаждения 10°С и температуре окисления 40°С при продолжительности термостатирования 30 минут (0,5 часа) получены наночастицы Fe3O4 размером 55±9 нм. Рентгеноструктурные исследования нанопорошка, полученного данным методом, показали, что образец представляет собой однофазный Fe3O4 со структурным типом шпинели (образец №2).

Пример 3.

При температуре осаждения 22°С и температуре окисления 37°С при продолжительности термостатирования 24 часа получены наночастицы Fe3O4 размером 70±10 нм. Рентгеноструктурные исследования нанопорошка, полученного данным методом, показали, что образец представляет собой однофазный Fe3O4 со структурным типом шпинели (образец №3).

Пример 4.

При температуре осаждения 10°С и температуре окисления 40°С при продолжительности термостатирования 24 часа получены наночастицы Fe3O4 размером 81±10 нм. Рентгеноструктурные исследования нанопорошка, полученного данным методом, показали, что образец представляет собой однофазный Fe3O4 со структурным типом шпинели (образец №4).

В таблице 1 представлены расчеты средних размеров наночастиц магнетита и стандартное отклонение размера от среднего.

Способ получения магнетита, включающий осаждение гидроксида железа (II) из FeSO и окисление его нитрат-ионами до магнетита FeO при термостатировании, отличающийся тем, что термостатирование проводят 0,083-24 часа, при этом осаждение проводят при температуре 10-22°С, а окисление при 37-40°С.
Источник поступления информации: Роспатент

Showing 1-6 of 6 items.
27.07.2014
№216.012.e4e2

Терморегулирующее покрытие

Изобретение относится к области космического материаловедения, а именно к покрытиям пассивной терморегуляции класса «истинный поглотитель». Терморегулирующее покрытие (ТРП) в конструкциях космических аппаратов применяется на поверхности оптических приборов, систем наблюдения, радиаторов...
Тип: Изобретение
Номер охранного документа: 0002524384
Дата охранного документа: 27.07.2014
20.06.2015
№216.013.57c5

Состав жидкокристаллического ионного электролита

Изобретение относится к области электротехнической промышленности, в частности к разработке электролитов для химических источников тока. Состав электролита включает по крайней мере одну соль электролита и растворитель, где в качестве соли электролита содержится литиевая соль...
Тип: Изобретение
Номер охранного документа: 0002553999
Дата охранного документа: 20.06.2015
25.08.2017
№217.015.cb5b

Композиция на основе лецитина

Изобретение относится к фармацевтической и косметической отраслям промышленности и представляет собой композицию на основе лецитина для трансдермальной доставки биологически активных веществ, состоящую из лецитина в составе фосфолипидного концентрата, вазелинового масла и воды, отличающуюся...
Тип: Изобретение
Номер охранного документа: 0002620250
Дата охранного документа: 23.05.2017
26.08.2017
№217.015.d58a

Жидкокристаллическая композиция для трансдермальной доставки биологически активных веществ

Изобретение относится к фармацевтической промышленности, а именно к жидкокристаллической композиции для трансдермальной доставки биологически активных веществ. Композиция содержит фосфолипидный концентрат в количестве 48,9-77,3 мас.%, по крайней мере одно жирное растительное масло, выбранное из...
Тип: Изобретение
Номер охранного документа: 0002623210
Дата охранного документа: 22.06.2017
20.01.2018
№218.016.16cc

Способ изготовления фильтрующего материала

Изобретение относится к способам изготовления фильтрующих мембранных материалов. Способ изготовления включает формирование на пористой подложке из нержавеющей стали, имеющей толщину 150-250 мкм и средний размер пор 2-10 мкм, селективного слоя из титана толщиной 1-10 мкм. Формирование...
Тип: Изобретение
Номер охранного документа: 0002635617
Дата охранного документа: 14.11.2017
16.05.2019
№219.017.52a6

Средство для профилактики тромбозов и нарушений кровообращения

Изобретение относится к химико-фармацевтической промышленности, а именно к созданию средства, которое может применяться наружно для профилактики тромбозов и нарушений кровообращения. Средство представляет собой наноструктурированный гель, содержащий в своем составе n-3 полиненасыщенные жирные...
Тип: Изобретение
Номер охранного документа: 0002366409
Дата охранного документа: 10.09.2009
Showing 1-9 of 9 items.
27.07.2014
№216.012.e4e2

Терморегулирующее покрытие

Изобретение относится к области космического материаловедения, а именно к покрытиям пассивной терморегуляции класса «истинный поглотитель». Терморегулирующее покрытие (ТРП) в конструкциях космических аппаратов применяется на поверхности оптических приборов, систем наблюдения, радиаторов...
Тип: Изобретение
Номер охранного документа: 0002524384
Дата охранного документа: 27.07.2014
20.06.2015
№216.013.57c5

Состав жидкокристаллического ионного электролита

Изобретение относится к области электротехнической промышленности, в частности к разработке электролитов для химических источников тока. Состав электролита включает по крайней мере одну соль электролита и растворитель, где в качестве соли электролита содержится литиевая соль...
Тип: Изобретение
Номер охранного документа: 0002553999
Дата охранного документа: 20.06.2015
25.08.2017
№217.015.cb5b

Композиция на основе лецитина

Изобретение относится к фармацевтической и косметической отраслям промышленности и представляет собой композицию на основе лецитина для трансдермальной доставки биологически активных веществ, состоящую из лецитина в составе фосфолипидного концентрата, вазелинового масла и воды, отличающуюся...
Тип: Изобретение
Номер охранного документа: 0002620250
Дата охранного документа: 23.05.2017
26.08.2017
№217.015.d58a

Жидкокристаллическая композиция для трансдермальной доставки биологически активных веществ

Изобретение относится к фармацевтической промышленности, а именно к жидкокристаллической композиции для трансдермальной доставки биологически активных веществ. Композиция содержит фосфолипидный концентрат в количестве 48,9-77,3 мас.%, по крайней мере одно жирное растительное масло, выбранное из...
Тип: Изобретение
Номер охранного документа: 0002623210
Дата охранного документа: 22.06.2017
20.01.2018
№218.016.16cc

Способ изготовления фильтрующего материала

Изобретение относится к способам изготовления фильтрующих мембранных материалов. Способ изготовления включает формирование на пористой подложке из нержавеющей стали, имеющей толщину 150-250 мкм и средний размер пор 2-10 мкм, селективного слоя из титана толщиной 1-10 мкм. Формирование...
Тип: Изобретение
Номер охранного документа: 0002635617
Дата охранного документа: 14.11.2017
16.02.2019
№219.016.bb2b

Способ получения макропористого полимерного композиционного материала с магнитными наночастицами для устранения разливов нефтепродуктов с поверхности воды

Изобретение относится к области химии полимеров, а именно к получению макропористых полимерных материалов, которые могут быть использованы при устранении разливов нефтепродуктов с водной поверхности. Макропористый полимерный композиционный материал с магнитными наночастицами получают...
Тип: Изобретение
Номер охранного документа: 0002680044
Дата охранного документа: 14.02.2019
03.04.2019
№219.016.fae9

Эмалевая композиция для изготовления терморегулирующего покрытия

Изобретение относится к области космического материаловедения, а именно к составам для изготовления покрытий пассивной терморегуляции класса «истинный поглотитель» («ИП»). Эмалевая композиция для изготовления терморегулирующего покрытия содержит в качестве связующего амидосодержащую акриловую...
Тип: Изобретение
Номер охранного документа: 0002683752
Дата охранного документа: 01.04.2019
16.05.2019
№219.017.52a6

Средство для профилактики тромбозов и нарушений кровообращения

Изобретение относится к химико-фармацевтической промышленности, а именно к созданию средства, которое может применяться наружно для профилактики тромбозов и нарушений кровообращения. Средство представляет собой наноструктурированный гель, содержащий в своем составе n-3 полиненасыщенные жирные...
Тип: Изобретение
Номер охранного документа: 0002366409
Дата охранного документа: 10.09.2009
02.03.2020
№220.018.080f

Способ получения оболочек диоксида кремния на поверхности неорганических наночастиц

Изобретение относится к области создания композиционных наноматериалов. Предложен способ получения материала, содержащего оболочки диоксида кремния на поверхности неорганических наночастиц. Способ включает химическое осаждение диоксида кремния из раствора метасиликата натрия, содержащего...
Тип: Изобретение
Номер охранного документа: 0002715531
Дата охранного документа: 28.02.2020
+ добавить свой РИД