Вид РИД
Изобретение
Изобретение относится к способу получения термопластичной резины (ТПР) с повышенной стойкостью к углеводородным маслам, которая может быть использована для изготовления различных эластичных резинотехнических изделий методами экструзии, литья под давлением и выдувного формования, таких как: шланги, уплотнения, прокладки, эластичные изделия автомобилей, гофрированные эластичные изделия, и других эластичных изделий, работающих в условиях контакта с нефтепродуктами.
Известен способ получения термопластичной резины путем совместного смешения полипропилена (ПП), синтетического каучука (СК), наполнителя, минерального масла, органического пероксида, антиоксидантов (Пат. 2269549, РФ, МПК C08L 9/02).
Данная ТПР имеет очень низкую стойкость к маслам, набухание в масле марки СЖР-3 при 100°С составляет 60-120%.
Известен способ получения маслостойкой термопластичной резины путем совместного смешения полипропилена, бутадиен-нитрильного каучука (БНК), олефинового каучука, вулканизующего агента и модификатора, представляющего собой привитой сополимер полипропилена и бутадиен-нитрильного каучука с концевыми амино-группами (Пат. 4409365 США, МПК C08L 9/02).
Данная ТПР имеет низкий показатель текучести расплава (ПТР) (0,02-0,2 г/10 мин при температуре 230°С и грузе 2,16 кг) и высокое маслопоглощение (21-48%).
Наиболее близким по сущности и техническому уровню является способ получения маслостойкой термопластичной резины путем совместного смешения полипропилена, бутадиен-нитрильного каучука, олефинового каучука, минерального масла, вулканизующего агента алкилфенолоформальдегидной смолы и активатора вулканизации - хлористого олова или хлористого алюминия и модификатора, представляющего собой полиизоцианат (ПИЦ), содержащий не менее двух изоцианатных групп, полипропилен с содержанием 1-6% привитого малеинового ангидрида (MA) или малеиновой кислоты и пластификатор, характеризующийся параметром растворимости не менее 18 (кДж/м3)1/2 (Пат. 2366671 РФ, МПК C08L 9/02).
Данная ТПР имеет низкий ПТР (0,2-0,6 г/10 мин при температуре 230°С и грузе 2,16 кг).
Задачей изобретения является получение термопластичной резины на основе полипропилена и нитрильного каучука, сочетающей в себе повышенный показатель текучести расплава при низком маслопоглощении (повышенную маслостойкость).
Техническая задача решается тем, что способ получения маслостойкой термопластичной резины путем смешения полипропилена, бутадиен-нитрильного каучука, олефинового каучука, минерального масла, модификатора, вулканизующего агента для каучуков - алкилфенолоформальдегидной смолы и активатора вулканизации - хлористого олова или хлористого алюминия, отличается тем, что содержит в качестве модификатора органический пероксид и олигоэфиракрилат, содержащий не менее двух винильных групп, или производное триазина, содержащее не менее двух аллильных групп, кроме того, смешение ведут в две стадии, на первой стадии смешивают полипропилен, бутадиен-нитрильный каучук и модификатор, на второй стадии смешивают продукт первой стадии, олефиновый каучук, минеральное масло, активатор вулканизации, вулканизующий агент для каучуков, при следующем соотношении компонентов (%):
|
что позволяет получить ТПР с низким маслопоглощением (не более 22%) и высоким ПТР (не менее 1,6 г/10 мин) при нагрузке 2,16 кг.
В таблице 1 приведены составы и в таблице 3 характеристики предлагаемой ТПР.
ИСПОЛЬЗУЕМЫЕ ВЕЩЕСТВА
В качестве полипропилена используется полипропилен или сополимер пропилена и этилена с содержанием этиленовых звеньев 2-8%, например, полипропилен по ТУ 2211-3136-05766801-2006 (Пластические массы. Свойства и применение. Справочник // Кацнельсон М.Ю., Гурген А.Б. Л.: Химия, 1978, 382 с.).
В качестве бутадиен-нитрильного каучука может быть использован статистический сополимер бутадиена и нитрила акриловой кислоты с содержанием связанного нитрила акриловой кислоты от 18 до 42 масс. % и др. (Большой справочник резинщика под ред. С.В. Резниченко и др. М.: Техинформ, 2012. - 744 с.). Промышленными примерами таких каучуков могут служить марки БНКС-18 АМН, БНКС-28 АМН, БНКС-40 АМН, производства ОАО «Красноярский завод синтетического каучука».
В качестве олефинового каучука, получаемого путем сополимеризации олефинов и диена, могут быть использованы: сополимер этилена с пропиленом и дициклопентадиеном, сополимер этилена с пропиленом и этилиденнорборненом (Большой справочник резинщика / С.В. Резниченко и др. М.: Техинформ, 2012. - 744 с.), например, марки СКЭПТ (ТУ 2294-022-05766801-2002), Vistalon производства фирмы ExxonMobil, Keltan производства фирмы Lanxess.
В качестве органического пероксида могут быть использованы 2,5-диметил-2,5-ди(трет-бутилперокси)гексин-3; ди-трет-бутилпероксид, 2,5-диметил-2,5-ди(трет-бутилперокси) гексан; трет-бутилкумилпероксид, ди(трет-бутилпероксиизопропил) бензол; 3,3,5,7,7-пентаметил-1,2,4-триоксепан; дикумилпероксид и др. (Цвайхель X. и др. Добавки к полимерам. Справочник. СПб.: Профессия, 2010, - с. 702-707). Примерами промышленных марок данных пероксидов могут служить Trigonox 145, Trigonox В, Trigonox 101, Trigonox Τ, Perkadox 14, Trigonox 311, Perkadox ВС и др. производства фирмы Akzo Nobel.
В качестве олигоэфиракрилата, содержащего не менее двух винильных групп, могут быть использованы диметакрилат диэтиленгликоля, триакрилат триметилолпропана, тетраакрилат пентаэритрита, диметакрилат триэтиленгликоля (ТГМ-3 по ТУ 6-02-109-91) и др.
В качестве производного триазина, содержащего не менее двух аллильных групп, могут быть использованы триаллил цианурат (ТАЦ), триаллил-изоцианурат (ТАИЦ), триметаллил изоцианурат и др. Примерами промышленно производимых марок таких веществ являются TAC, TAIC, TAICROS производства фирмы Evonik.
В качестве минерального масла может быть использовано парафиновое, нафтеновое или ароматическое углеводородное масло минерального происхождения, применяемое как мягчитель или пластификатор в резинах. Например, могут быть использованы минеральные масла марок ПМ (ТУ 38.401172-90), Стабилойл-18 (ТУ 38.101367-78), Primol 352 производства фирмы ExxonMobil и др. (Большой справочник резинщика под ред. С.В. Резниченко и др. М.: Техинформ, 2012. - 744 с.).
В качестве вулканизующих агентов используются любые алкилфенолоформальдегидные смолы (АФФС) с активаторами вулканизации. Например, n-трет-бутилфенолоформальдегидная смола, n-трет-октилфенолоформальдегидная смола (Большой справочник резинщика / C.B. Резниченко и др. М.: Техинформ, 2012. - 744 с.; Г.А. Блох. Органические ускорители вулканизации каучуков. Л.: Химия, 1972). В качестве активаторов вулканизации используется хлористое олово или хлористый алюминий (Шварц А.Г., Динзбург Б.Н. Совмещение каучуков с пластиками и синтетическими смолами. М.: Химия, 1972. - 158 с.).
Кроме того, в композицию могут быть включены общеизвестные добавки, обычно применяемые для таких полимерных материалов, такие как наполнители, антиоксиданты, смазки, улучшающие перерабатываемость в изделия, антиазонаты (Цвайхель X. Добавки к полимерам. Справочник. СПб.: Профессия, 2010, - 1144 с.).
Данное изобретение иллюстрирует следующие примеры конкретного исполнения. Состав и свойства термопластичных резиновых смесей приведены в таблицах 1-3.
Пример 1. ТПР получают в две стадии. На первой стадии в смесителе "Брабендер" при температуре 180°С в течение 3 минут ведут смешение 26% полипропилена марки Бален 01030, 63% бутадиен-нитрильного каучука марки БНКС-40 АМН, затем добавляют 2% олигоэфиракрилата марки ТГМ-3, 0,5% органического пероксида марки Trigonox 101 и ведут смешение 5 минут, затем добавляют антиоксиданты и ведут смешение еще 1 минуту, получившуюся смесь выгружают из смесителя. На второй стадии при 180°С смешивают полученную на первом этапе смесь и следующие компоненты: 91,7% продукта первой стадии, 5% этиленпропиленового каучука марки Keltan 5508, 2,5% масла марки Primol 352, смешение ведут в течение 2 минут, затем добавляют 0,1% двухводного двухлористого олова, 0,7% бутилфенолформальдегидной смолы и продолжают смешение 5 минут для осуществления процесса вулканизации каучуков. Получается термопластичная резина (ТПР), которую подвергают испытаниям. Свойства ТПР приведены в таблице 3.
Пример 2-6. Выполняют в том же порядке и при тех же режимах, что и пример 1. Примеры отличаются только составами. Свойства полученных ТПР приведены в таблице 3.
Пример 1К (контрольный). ТПР получают совместным смешением всех компонентов. В смесителе "Брабендер" при температуре 180°С в течение 3 мин ведут смешение 26% полипропилена марки "Бален 01030", 63% бутадиен-нитрильного каучука марки БНКС-40 АМН, 5% олефинового каучука марки Keltan 5508, 2,5% масла марки Primol 352. Затем в смеситель добавляют 2% олигоэфиракрилата марки ТГМ-3, 0,1% двухводного двухлористого олова, 0,7% органического пероксида Trigonox 101, 0,7% бутилфенолоформальдегидной смолы и ведут смешение 5 минут для осуществления процесса вулканизации эластомера, после вводятся антиоксиданты и ведется смешение еще 1 минуту. Получается термопластичная резина, которую подвергают испытаниям. Свойства материала приведены в таблице 3.
Пример 2К (контрольный). Выполняется в том же порядке и при тех же режимах, что и пример 1К, он отличается только составом.
Пример 1П (по прототипу). В смесителе "Брабендер" при температуре 180°С в течение 7 мин ведут смешение 21% ПП марки "Бален 01030", 35,5% бутадиен-нитрильного каучука марки БНКС-40, 7% ПП, содержащего 1,2% привитого малеинового ангидрида, марки Polybond 3200, 3,5% олефинового каучука марки СКЭПТ, 0,85% толуилендиизоцианата, 24,5% минерального масла марки "ПМ" и 4,94% пластификатора - трикрезил фосфата. Затем в смеситель добавляют 2,48% бутилфенолоформальдегидной смолы и 0,23% двухводного двухлористого олова и продолжают смешение 4 мин для осуществления процесса вулканизации эластомера. Получается термопластичная резина (ТПР), которую подвергают испытаниям.
Примеры 2П и 3П (по прототипу). Выполняют в том же порядке и при тех же режимах, что и пример 1П. Примеры отличаются только составами. Свойства получаемых ТПР приведены в таблице 3.
Методика испытания образцов.
Показатель текучести расплава (ПТР) определяли по ГОСТ 11645-73 при грузе 2,16 кг и температуре 230°С. Деформационно-прочностные свойства материалов (условную прочность при растяжении - σp, относительное удлинение при разрыве - εp) определяли по ГОСТ 270-75. Маслостойкость (маслопоглощение - α) определяли по ГОСТ 9.030-74 по набуханию при 100°С в течение 72 час в масле СЖР-3. Твердость по Шору А определяли по ГОСТ 263-75 за время 5 с.
Из приведенных примеров видно, что предлагаемый способ позволяет получить материалы, имеющие более высокий показатель текучести расплава (ПТР=1,6-2,8 г/10 мин, примеры 1-6), чем термопластичные резины, полученные по прототипу (ПТР=0,2-0,6 г/10 мин, примеры 1П-3П). Такое повышение ПТР у материалов по предлагаемому способу расширяет возможности по переработке термопластичных резин в изделия.
Материалы с низким ПТР, таким как у материалов по прототипу (менее 0,7 г/10 мин при 230°С и 2,16 кг), не могут быть переработаны в изделия литьем под давлением (Калиничев Э.Л. Свойства и переработка термопластов: Справочное пособие. - Л.: Химия, 1983 - 288 с.). Предлагаемый способ позволяет получить термопластичные резины с высоким ПТР равным 1,6-2,8 г/10 мин, что позволяет их легко перерабатывать в качественные изделия высокопроизводительным и точным методом литья под давлением. (1. Калиничев Э.Л. Свойства и переработка термопластов: Справочное пособие. - Л.: Химия, 1983. - 288 с. 2. Бортников В.Г. Основы технологии переработки пластических масс. М.: Химия, 1983, 304 с.).
Предлагаемый способ позволяет получить термопластичные резины с более высокой маслостойкостью, чем у материалов по прототипу.
Для термопластичных резин важным показателем является твердость. От твердости зависит область применения ТПР. Изменение твердости всегда влечет за собой и изменение прочих свойств (Холден Д. Термоэластопласты. - СПб.: Профессия, 2011 - 720 с.), в том числе и маслостойкости. Поэтому сравнивать любые показатели термопластичных резин можно только при сопоставимых значениях твердости. Как видно из таблиц 2 и 3, при равной твердости предлагаемый способ позволяет получить материал, имеющий меньшее маслопоглощение, чем материал, полученный по прототипу.
Кроме того, ТПР, получаемая по предлагаемому способу (табл. 1 и 3), не уступает по деформационно-прочностным характеристикам - прочности (σp) и относительному удлинению (εp), термопластичной резине, полученной по прототипу (табл. 2, 3).
Для доказательства того, что не только изменение компонентного состава (введение пероксида и олигоэфиракрилата или производного триазина) приводит к улучшению свойств композиций, были сделаны контрольные опыты 1К и 2К, состав которых полностью идентичен образцам 1 и 2, но получены они были по известному способу (совместным смешением всех компонентов). Видно (табл. 1, 3), что контрольные образцы имеют более низкую прочность, относительное удлинение, ПТР и большее маслопоглощение, чем образцы, полученные по предлагаемому двухстадийному способу.
Таким образом, предлагаемый способ позволяет получить термопластичную резину с более высокой текучестью расплава, чем известный способ, при сохранении высоких деформационно-прочностных свойств и маслостойкости.