×
25.08.2017
217.015.c95a

Результат интеллектуальной деятельности: ДАТЧИК ДАВЛЕНИЯ НА ОСНОВЕ НАНО- И МИКРОЭЛЕКТРОМЕХАНИЧЕСКОЙ СИСТЕМЫ С БАЛОЧНЫМ УПРУГИМ ЭЛЕМЕНТОМ

Вид РИД

Изобретение

Аннотация: Изобретение относится к измерительной технике, в частности к микромеханическим датчикам, и может быть использовано для создания датчиков для измерения давлений жидких и газообразных агрессивных сред в условиях воздействия широкого диапазона стационарных и нестационарных температур. Датчик содержит корпус, установленную в нем нано- и микроэлектромеханическую систему (НиМЭМС), состоящую из мембраны, подушки с силопередающим штоком, соединенным с балкой, имеющей отверстия и прорези, на плоской поверхности которой образована гетерогенная структура из тонких пленок материалов, контактной колодки, соединительных проводников. Сформированные в гетерогенной структуре тензорезисторы, состоят из идентичных тензоэлементов, соединенных перемычками, включенными в мостовую измерительную цепь. Тензоэлементы, включенные в противоположные плечи мостовой измерительной цепи, размещены на плоской поверхности балки, а центры других тензоэлементов, включенных в противоположные плечи мостовой измерительной цепи, размещены на плоской поверхности балки. При этом диаметр отверстий, толщина балки и диаметр силопередающего штока определены также по установленным соотношениям. Технический результат заключается в повышении точности и чувствительности датчика. 2 ил., 1 табл.

Предлагаемое изобретение относится к измерительной технике и может быть использовано при изготовлении датчиков повышенной точности и чувствительности для измерения давлений жидких и газообразных агрессивных сред в условиях воздействия широкого диапазона стационарных и нестационарных температур.

Современные тонкопленочные тензорезисторные датчики давления относятся к изделиям нано- и микросистемной техники [1, 2], они содержат нано- и микроэлектромеханические системы (НиМЭМС), состоящие из упругого элемента (УЭ) простой (мембрана, стержень, балка и т.п.) или сложной формы (две мембраны, соединенные между собой штоком; мембрана, соединенная со стержнем; балка с отверстиями и прорезями и др.), гетерогенной структуры, герметизирующей контактной колодки, соединительных проводников. Гетерогенная структура состоит из нано- и микроразмерных тонкопленочных диэлектрических, тензорезистивных, контактных и других слоев, сформированных на плоской поверхности УЭ. Высота микронеровностей плоской поверхности УЭ перед нанесением слоев делается не более 50-100 нм. Толщина тензорезистивного слоя может быть 40-100 нм. Образованные в гетерогенной структуре элементы (тензорезисторы, контактные проводники и др.) объединяются в измерительную цепь.

Известны тензорезисторные датчики давления на основе нано- и микроэлектромеханической системы с балочным упругим элементом [3, 4]. Такие датчики содержат корпус, установленную в них нано- и микроэлектромеханическую систему (НиМЭМС) состоящую из мембраны с подушкой (с жестким центром) и силопередающим штоком, соединенным с балкой (имеющей отверстия и прорези). На плоской поверхности такой балки (обращенной к мембране или в другую сторону) образуют гетерогенную структуру из тонких пленок материалов, в которой формируют тензорезисторы (тензоэлементы), включенные в мостовую измерительную цепь. Их общим недостатком является недостаточно высокая точность и чувствительность вследствие неоптимального расположения тензорезисторов на поверхности балки, конструкции балки.

Наиболее близким по технической сущности к предлагаемому решению является датчик давления на основе нано- и микроэлектромеханической системы с балочным упругим элементом, содержащий корпус, установленную в нем нано- и микроэлектромеханическую систему (НиМЭМС), состоящую из мембраны с силопередающим штоком, соединенным с балкой, имеющей отверстия и прорези, на плоской поверхности которой образована гетерогенная структура из тонких пленок материалов, контактной колодки, соединительных проводников. В гетерогенной структуре НиМЭМС сформированы тензорезисторы, состоящие из идентичных тензоэлементов, соединенных тонкопленочными перемычками, включенными в мостовую измерительную цепь [5]. Практически одинаковая температура тензорезисторов на балке в каждый момент времени вызывает одинаковые изменения сопротивлений тензорезисторов, которые вследствие включения тензорезисторов в мостовую схему взаимно компенсируются, чем обеспечивается устойчивость к воздействию широкого диапазона стационарных и нестационарных температур.

Недостатком прототипа является недостаточно высокая точность и чувствительность из-за неоптимального расположения тензоэлементов (тензорезисторов) на поверхности балки, конструкции балки. При неоптимальном расположении тензоэлементов на плоской поверхности балки, в зонах с разными по абсолютной величине деформациями, происходит неодинаковое изменение сопротивлений тензоэлементов (тензорезисторов) смежных плеч мостовой измерительной цепи, что приводит к возникновению погрешности нелинейности мостовой измерительной цепи. Нелинейность мостовой измерительной цепи датчика зависит от коэффициента симметрии k и относительных изменений сопротивлений плеч мостовой измерительной цепи ε1, ε2, ε3, ε4 [6]. Для тензорезисторных датчиков, у которых относительное изменение сопротивления одного плеча обычно не превышает 0,01, при k=1 величина нелинейности составляет ~0,3÷0,6%, если рабочими являются два плеча.

Кроме того, к недостаткам известной конструкции (прототипа) следует отнести то, что при расположении тензоэлементов в зонах, не соответствующих максимальным деформациям, снижается чувствительность, так как относительные изменения сопротивлений тензоэлементов пропорциональны относительным деформациям в зонах их размещения.

Таким образом, прототипу свойственна невысокая точность из-за возникновения погрешности нелинейности мостовой измерительной цепи и относительно низкой чувствительности.

Задачей предлагаемого изобретения является повышение точности датчика давления за счет уменьшения нелинейности и повышения чувствительности.

Техническим результатом изобретения является повышение точности датчика давления за счет уменьшения нелинейности и повышения чувствительности путем оптимального расположения тензоэлементов (тензорезисторов) на плоской поверхности балки НиМЭМС и оптимизации конструкции балки.

Это достигается тем, что в датчике давления на основе нано- и микроэлектромеханической системы с балочным упругим элементом, содержащим корпус, установленную в нем нано- и микроэлектромеханическую систему (НиМЭМС), состоящую из мембраны, подушки с силопередающим штоком, соединенным с балкой, имеющей отверстия и прорези, на плоской поверхности которой образована гетерогенная структура из тонких пленок материалов, обращенная к мембране, контактной колодки, соединительных проводников, в которой сформированные в гетерогенной структуре тензорезисторы состоят из идентичных тензоэлементов, соединенных перемычками, включенными в мостовую измерительную цепь, в соответствии с предлагаемым изобретением, тензоэлементы, включенные в противоположные плечи мостовой измерительной цепи, размещены на плоской поверхности балки, на расстоянии от ее середины, которое определено по соотношению , а центры других тензоэлементов, включенных в противоположные плечи мостовой измерительной цепи, размещены на плоской поверхности балки на расстоянии от ее середины, которое определено по соотношению , где - длина балки, причем расстояние от середины балки до первых отверстий определено по соотношению , а расстояние от середины балки до вторых отверстий определено по соотношению , толщина балки определена по соотношению , диаметр первых отверстий определен по соотношению d1=0,83h, диаметр вторых отверстий определен по соотношению d2=0,78h, прорезь шириной выполнена на расстоянии и определена по соотношению , прорезь шириной выполнена на расстоянии и определена по соотношению , а диаметр силопередающего штока определен по соотношению .

На фиг. 1 показана конструкция датчика давления на основе нано- и микроэлектромеханической системы с балочным упругим элементом. Датчик содержит корпус 1 со штуцером 2, установленную в нем НиМЭМС 3, состоящую из мембраны 4, подушки с силопередающим штоком 5, основания 6 (из упругого материала), в котором вырезана балка 7. В балке 7 имеются отверстия 8, 9 и сделаны прорези в балке по центру отверстий со стороны, противоположной мембране 4 (снизу). В основание 6 вставлена контактная колодка с выводными проводниками 10.

На фиг. 2 показаны: балка 7 (фиг. 2а) с отдельными описанными элементами, график зависимости относительной деформации по длине балки 7 (фиг. 2б), вид сверху на балку 7 (фиг. 2в) в разрезе А-А датчика (см. фиг. 1).

На плоской поверхности 11 (фиг. 2в) балки 7 (фиг. 2а) образована гетерогенная структура из тонких пленок материалов, в которой сформированы пары 12 идентичных тензоэлементов, которые соединены контактными проводниками 13 с выводными проводниками 10, установленными в частях 14 и 15 контактной колодки. Пары 12 идентичных тензоэлементов 16-19, а также 20-23 объединены в мостовую измерительную цепь. Идентичные тензоэлементы 16-19 и 20-23 выполнены, например, в форме двух трапеций, соединенных между собой малыми основаниями по линии их центра. Центры одних тензоэлементов (тензорезисторов) 16, 17 и 20, 21 (включенных в противоположные плечи мостовой измерительной цепи) размещены на плоской поверхности 11 балки 7 на расстоянии от ее середины, которое определено по соотношенюи (см. фиг. 2в), а центры других тензоэлементов (тензорезисторов) 18, 19 и 22, 23 (включенных в противоположные плечи мостовой измерительной цепи) размещены на плоской поверхности 11 балки 7 на расстоянии от ее середины, которое определено по соотношению , где - длина балки 7. Расстояние от середины балки до первых отверстий 8 (фиг. 1) соответствует соотношению , а расстояние от середины балки до вторых отверстий 9 соответствует соотношению , толщина балки соответствует соотношению , диаметр первых отверстий 8 соответствует соотношению d1=0,83h, диаметр вторых отверстий 9 соответствует соотношению d2=0,78h, прорезь шириной выполнена на расстоянии и определена по соотношению , прорезь шириной выполнена на расстоянии и определена по соотношению , а диаметр штока определен по соотношению .

Гетерогенная структура, сформированная на плоской поверхности балки 7, может состоять из четырех нано- и микроразмерных слоев (в качестве материала балки может быть сталь 36НХТЮ). Высота микронеровностей плоской поверхности балки 6 должна быть не более 50-100 нм (при высоте микронеровностей балки более 100 нм становится принципиально невозможным получение устойчивых тонкопленочных структур, а следовательно, и новых качественных показателей, характерных для датчика).

Первый слой - подслой диэлектрика. Подслой диэлектрика обеспечивает адгезию диэлектрической пленки с материалом балки и служит демпфером между балкой и диэлектриком для снятия температурных напряжений, возникающих в процессе напыления. Толщина подслоя равна 150-300 нм. Материалом подслоя диэлектрика может быть хром, Cr.

Второй - диэлектрический слой. Обеспечивает электрическую изоляцию между тензосхемой и балкой в широком диапазоне температур. В качестве диэлектрического слоя может быть тонкопленочная структура SiO-SiO2.

Третий - резистивный слой. Его толщина составляет 40-100 нм. Материалом резистивного слоя может быть Х20Н75Ю.

Четвертый слой - контактная группа (площадки, перемычки, проводники). Толщина контактных площадок и проводников для исключения отслоения от диэлектрика, особенно при воздействии широкого диапазона температур, должна быть не более 100 нм. В качестве контактной группы может быть структура V-Au.

Датчик давления работает следующим образом. Измеряемое давление приводит к перемещению мембраны 4 (фиг. 1), с ее помощью давление преобразуется в силу, которая передается подушкой с силопередающим штоком 5 балке 7. Балка 7 изгибается, деформация балки воспринимается сформированными и расположенными на ней тензоэлементами (тензорезисторами) 16-19, а также 20-23 (включенными в одну или две мостовые измерительные цепи), см. фиг. 2в. При действии давления на мембрану 4 (фиг. 1) на плоской поверхности 11 балки 7 возникают деформации, распределение которых показано на фиг. 2б (показана зависимость относительной деформации е от текущей координаты х в относительных единицах).

Как видно из фиг. 2б, на плоской поверхности балки возникают относительные деформации разного знака, симметрично относительно центра балки. Имеются максимумы и минимумы относительных деформаций. Распределение относительных деформаций по длине балки было получено численным моделированием с применением метода конечных элементов.

При определенных соотношениях параметров балки, отверстий и прорезей, указанных выше, обеспечивается равенство по абсолютной величине положительных и отрицательных деформаций в максимумах и минимумах функции, описывающей распределение относительных деформаций по длине балки. Распределение относительных деформаций по длине балки от ее центра хорошо описывается функцией:

где x - текущая координата, изменяющаяся от 0,5 до 1;

- коэффициенты, приведенные в таблице 1.

С помощью формулы (1) представляется возможным определять: относительные деформации по длине балки; максимумы и минимумы деформаций; текущие координаты xi (в относительных единицах) мест для расположения i-x тензоэлементов, где относительные деформации равны по абсолютной величине и противоположны по знаку.

Равные по абсолютной величине, положительные деформации воспринимаются тензоэлементами (тензорезисторами) 18, 19 и 22, 23 (фиг. 2в), а отрицательные - тензоэлементами (тензорезисторами) 16, 17 и 20, 21. Так как тензорезисторы 16, 17 и 18, 19, а также 20, 21 и 22, 23 включены соответственно в противоположные плечи мостовых измерительных цепей, то относительные изменения сопротивлений тензорезисторов складываются, что приводит к увеличению чувствительности. Выходной сигнал мостовых измерительных цепей пропорционален давлению и его величина максимальна, так как все тензоэлементы (тензорезисторы) расположены в оптимальных местах (максимумах и минимумах относительных деформаций, причем равных по абсолютной величине.

Благодаря тому, что тензоэлементы (тензорезисторов) 16-23 (фиг. 2в) выполнены, к примеру, в форме двух трапеций, соединенных между собой малыми основаниями по линии их центра, относительное изменение сопротивлений таких тензоэлементов (тензорезисторов) при воздействии деформаций в большей мере определяется их центральной частью. Именно центральной частью тензоэлементы (тензорезисторы) 18, 19 и 22, 23 размещены в точках максимума положительных деформаций, а центры других тензоэлементов (тензорезисторов) 16, 17 и 20, 21 размещены в точках максимума отрицательных деформаций (см. фиг.2 а, б, в). В связи с этим также повышается чувствительность.

Чувствительность НиМЭМС с балочным упругим элементом повышается еще за счет того, что по центру отверстий 8 и 9 в балке 7 (фиг. 1) сделаны сквозные прорези со стороны, противоположной плоской поверхности балки. Такие прорези позволяют не только выровнять по абсолютной величине максимумы деформаций противоположного знака на плоской поверхности балки, но и существенно увеличить их значение.

Повышение чувствительности также приводит к повышению точности.

Таким образом, благодаря отличительным признакам изобретения повышается точность за счет улучшения линейности выходной характеристики и повышения чувствительности, тем самым повышается достоверность получаемой информации о величине давления.

Предлагаемый датчик давления на основе нано- и микроэлектромеханической системы с балочным упругим элементом выгодно отличается от известных ранее и может найти широкое применение для измерения давлений в условиях воздействия широкого диапазона стационарных и нестационарных температур.

Источники информации

1. Белозубов Е.М., Белозубова Н.Е. Тонкопленочные тензорезисторные датчики давления - изделия нано- и микросистемной техники // Нано- и микросистемная техника - 2007. - № 12. - С. 49-51.

2. Белозубов Е.М., Васильев В.А., Громков Н.В. Проблемы и основные направления исследований тонкопленочных нано- и микроэлектромеханических систем датчиков давления // Датчики и системы - М., 2009. - №8. - С. 54-58.

3. Проектирование датчиков для измерения механических величин / Под ред. Е.П. Осадчего. – М., 1979. - 480 с.

4. Белозубов Е.М. Патент РФ №2166741, G01L 9/04. Датчик давления. Опубл. 27.02.2003, Бюл. №6.

5. Белозубов Е.М. Патент РФ №2082125, G01L 9/04. Датчик давления. Опубл. 27.11.2001, Бюл. №33.

6. Васильев В.А., Тихонов А.И. Анализ и синтез измерительных цепей преобразователей информации на основе твердотельных структур // Метрология. - М., 2003. - №1. - С. 3-20.

Датчик давления на основе нано- и микроэлектромеханической системы с балочным упругим элементом, содержащий корпус, установленную в нем нано- и микроэлектромеханическую систему (НиМЭМС), состоящую из мембраны, подушки с силопередающим штоком, соединенным с балкой, имеющей отверстия и прорези, на плоской поверхности которой образована гетерогенная структура из тонких пленок материалов, обращенная к мембране, контактной колодки, соединительных проводников, в которой сформированные в гетерогенной структуре тензорезисторы состоят из идентичных тензоэлементов, соединенных перемычками, включенными в мостовую измерительную цепь, отличающийся тем, что тензоэлементы, включенные в противоположные плечи мостовой измерительной цепи, размещены на плоской поверхности балки, на расстоянии от ее середины, которое определено по соотношению , а центры других тензоэлементов, включенных в противоположные плечи мостовой измерительной цепи, размещены на плоской поверхности балки на расстоянии от ее середины, которое определено по соотношению , где - длина балки, причем расстояние от середины балки до первых отверстий определено по соотношению , а расстояние от середины балки до вторых отверстий определено по соотношению , толщина балки определена по соотношению , диаметр первых отверстий определен по соотношению , диаметр вторых отверстий определен по соотношению , прорезь шириной выполнена на расстоянии и определена по соотношению , прорезь шириной выполнена на расстоянии и определена по соотношению , а диаметр силопередающего штока определен по соотношению .
ДАТЧИК ДАВЛЕНИЯ НА ОСНОВЕ НАНО- И МИКРОЭЛЕКТРОМЕХАНИЧЕСКОЙ СИСТЕМЫ С БАЛОЧНЫМ УПРУГИМ ЭЛЕМЕНТОМ
ДАТЧИК ДАВЛЕНИЯ НА ОСНОВЕ НАНО- И МИКРОЭЛЕКТРОМЕХАНИЧЕСКОЙ СИСТЕМЫ С БАЛОЧНЫМ УПРУГИМ ЭЛЕМЕНТОМ
ДАТЧИК ДАВЛЕНИЯ НА ОСНОВЕ НАНО- И МИКРОЭЛЕКТРОМЕХАНИЧЕСКОЙ СИСТЕМЫ С БАЛОЧНЫМ УПРУГИМ ЭЛЕМЕНТОМ
ДАТЧИК ДАВЛЕНИЯ НА ОСНОВЕ НАНО- И МИКРОЭЛЕКТРОМЕХАНИЧЕСКОЙ СИСТЕМЫ С БАЛОЧНЫМ УПРУГИМ ЭЛЕМЕНТОМ
ДАТЧИК ДАВЛЕНИЯ НА ОСНОВЕ НАНО- И МИКРОЭЛЕКТРОМЕХАНИЧЕСКОЙ СИСТЕМЫ С БАЛОЧНЫМ УПРУГИМ ЭЛЕМЕНТОМ
ДАТЧИК ДАВЛЕНИЯ НА ОСНОВЕ НАНО- И МИКРОЭЛЕКТРОМЕХАНИЧЕСКОЙ СИСТЕМЫ С БАЛОЧНЫМ УПРУГИМ ЭЛЕМЕНТОМ
ДАТЧИК ДАВЛЕНИЯ НА ОСНОВЕ НАНО- И МИКРОЭЛЕКТРОМЕХАНИЧЕСКОЙ СИСТЕМЫ С БАЛОЧНЫМ УПРУГИМ ЭЛЕМЕНТОМ
ДАТЧИК ДАВЛЕНИЯ НА ОСНОВЕ НАНО- И МИКРОЭЛЕКТРОМЕХАНИЧЕСКОЙ СИСТЕМЫ С БАЛОЧНЫМ УПРУГИМ ЭЛЕМЕНТОМ
ДАТЧИК ДАВЛЕНИЯ НА ОСНОВЕ НАНО- И МИКРОЭЛЕКТРОМЕХАНИЧЕСКОЙ СИСТЕМЫ С БАЛОЧНЫМ УПРУГИМ ЭЛЕМЕНТОМ
ДАТЧИК ДАВЛЕНИЯ НА ОСНОВЕ НАНО- И МИКРОЭЛЕКТРОМЕХАНИЧЕСКОЙ СИСТЕМЫ С БАЛОЧНЫМ УПРУГИМ ЭЛЕМЕНТОМ
ДАТЧИК ДАВЛЕНИЯ НА ОСНОВЕ НАНО- И МИКРОЭЛЕКТРОМЕХАНИЧЕСКОЙ СИСТЕМЫ С БАЛОЧНЫМ УПРУГИМ ЭЛЕМЕНТОМ
ДАТЧИК ДАВЛЕНИЯ НА ОСНОВЕ НАНО- И МИКРОЭЛЕКТРОМЕХАНИЧЕСКОЙ СИСТЕМЫ С БАЛОЧНЫМ УПРУГИМ ЭЛЕМЕНТОМ
ДАТЧИК ДАВЛЕНИЯ НА ОСНОВЕ НАНО- И МИКРОЭЛЕКТРОМЕХАНИЧЕСКОЙ СИСТЕМЫ С БАЛОЧНЫМ УПРУГИМ ЭЛЕМЕНТОМ
ДАТЧИК ДАВЛЕНИЯ НА ОСНОВЕ НАНО- И МИКРОЭЛЕКТРОМЕХАНИЧЕСКОЙ СИСТЕМЫ С БАЛОЧНЫМ УПРУГИМ ЭЛЕМЕНТОМ
ДАТЧИК ДАВЛЕНИЯ НА ОСНОВЕ НАНО- И МИКРОЭЛЕКТРОМЕХАНИЧЕСКОЙ СИСТЕМЫ С БАЛОЧНЫМ УПРУГИМ ЭЛЕМЕНТОМ
ДАТЧИК ДАВЛЕНИЯ НА ОСНОВЕ НАНО- И МИКРОЭЛЕКТРОМЕХАНИЧЕСКОЙ СИСТЕМЫ С БАЛОЧНЫМ УПРУГИМ ЭЛЕМЕНТОМ
ДАТЧИК ДАВЛЕНИЯ НА ОСНОВЕ НАНО- И МИКРОЭЛЕКТРОМЕХАНИЧЕСКОЙ СИСТЕМЫ С БАЛОЧНЫМ УПРУГИМ ЭЛЕМЕНТОМ
ДАТЧИК ДАВЛЕНИЯ НА ОСНОВЕ НАНО- И МИКРОЭЛЕКТРОМЕХАНИЧЕСКОЙ СИСТЕМЫ С БАЛОЧНЫМ УПРУГИМ ЭЛЕМЕНТОМ
ДАТЧИК ДАВЛЕНИЯ НА ОСНОВЕ НАНО- И МИКРОЭЛЕКТРОМЕХАНИЧЕСКОЙ СИСТЕМЫ С БАЛОЧНЫМ УПРУГИМ ЭЛЕМЕНТОМ
ДАТЧИК ДАВЛЕНИЯ НА ОСНОВЕ НАНО- И МИКРОЭЛЕКТРОМЕХАНИЧЕСКОЙ СИСТЕМЫ С БАЛОЧНЫМ УПРУГИМ ЭЛЕМЕНТОМ
Источник поступления информации: Роспатент

Showing 21-30 of 92 items.
27.09.2014
№216.012.f723

Газодинамическое устройство для огнестрельного оружия

Газодинамическое устройство для огнестрельного оружия содержит корпус, в котором в передней части смонтирована подпружиненная герметизирующая трубка и дополнительные рабочие элементы - шторки, оси которых имеют возможность вращения в отверстиях, выполненных в корпусе. В задней части корпуса...
Тип: Изобретение
Номер охранного документа: 0002529104
Дата охранного документа: 27.09.2014
10.11.2014
№216.013.0406

Способ изготовления газового сенсора с наноструктурой и газовый сенсор на его основе

Изобретение относится к изготовлению газовых сенсоров, предназначенных для детектирования различных газов. Предложен способ изготовления газового сенсора, в котором образуют гетероструктуру из различных материалов, в ней формируют газочувствительный слой, после чего ее закрепляют в корпусе...
Тип: Изобретение
Номер охранного документа: 0002532428
Дата охранного документа: 10.11.2014
20.11.2014
№216.013.0797

Устройство для электрохимического исследования коррозии металлов

Устройство для электрохимического исследования коррозии металлов относится к области исследования коррозионного поведения материалов в различных средах с помощью построения коррозионных диаграмм, что позволяет оценить характер воздействия отдельных факторов на скорость коррозии, а также выявить...
Тип: Изобретение
Номер охранного документа: 0002533344
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.0854

Способ контролируемого роста квантовых точек из коллоидного золота

Изобретение относится к области прецизионной наноэлектроники. Способ контролируемого роста квантовых точек (КТ) из коллоидного золота в системе совмещенного АСМ/СТМ заключается в выращивании КТ при отрицательном приложенном напряжении между иглой кантилевера совмещенного АСМ/СТМ и проводящей...
Тип: Изобретение
Номер охранного документа: 0002533533
Дата охранного документа: 20.11.2014
20.12.2014
№216.013.1158

Смеситель-электрокоалесцентор

Изобретение относится к смесителям-электрокоалесценторам и может использоваться для получения водонефтяных эмульсий на установках электрообессоливания нефти. Смеситель-электрокоалесцентор представляет собой вертикальный заземленный корпус, выполненный в виде трубы Вентури, соосно которому...
Тип: Изобретение
Номер охранного документа: 0002535863
Дата охранного документа: 20.12.2014
20.12.2014
№216.013.1238

Сейсмический локатор наземных объектов

Заявленное изобретение относится к области технических средств охраны и может быть использовано для определения азимута на обнаруженный объект и расстояния до него по сейсмическому сигналу при охране протяженных участков местности, территорий и подступов к различным объектам. Устройство...
Тип: Изобретение
Номер охранного документа: 0002536087
Дата охранного документа: 20.12.2014
20.01.2015
№216.013.2018

Способ изготовления наноструктурированного чувствительного элемента датчика вакуума и датчик вакуума

Изобретение относится к измерительной технике и может использоваться при изготовлении датчиков вакуума для измерения давления разреженного газа в вакуумных установках различного назначения. Предложен способ изготовления наноструктурированного чувствительного элемента датчика вакуума,...
Тип: Изобретение
Номер охранного документа: 0002539657
Дата охранного документа: 20.01.2015
20.02.2015
№216.013.2811

Высокоточный датчик давления на основе нано- и микроэлектромеханической системы

Изобретение относится к измерительной технике и может быть использовано для измерения давления жидких и газообразных средств. Датчик содержит корпус, установленную в нем нано- и микроэлектромеханическую систему (НиМЭМС), состоящую из упругого элемента - мембраны с жестким центром, с...
Тип: Изобретение
Номер охранного документа: 0002541714
Дата охранного документа: 20.02.2015
20.03.2015
№216.013.344d

Способ изготовления тонкопленочной нано- и микроэлектромеханической системы датчика механических величин

Изобретение относится к измерительной технике и может быть использовано в технологии изготовления малогабаритных тонкопленочных датчиков механических величин, работоспособных в широком диапазоне температур. Изобретение позволяет расширить температурный диапазон работы датчика на основе...
Тип: Изобретение
Номер охранного документа: 0002544864
Дата охранного документа: 20.03.2015
10.04.2015
№216.013.3b16

Способ маскирования аналоговых речевых сигналов

Изобретение относится к средствам маскирования аналоговый речевых сигналов и может быть использован в системах связи силовых ведомств. Технический результат заключается в сокращении времени выполнения преобразования. Аналоговый речевой сигнал дискретизируется со стандартной частотой 8000 Гц....
Тип: Изобретение
Номер охранного документа: 0002546614
Дата охранного документа: 10.04.2015
Showing 21-30 of 107 items.
27.12.2013
№216.012.91a7

Способ определения концентрации и среднего размера наночастиц в золе

Заявляемый способ может найти применение при создании и производстве наноструктурированных пленок из пленкообразующих золей для газочувствительных сенсоров. Способ заключается в том, что изготавливают эталонные образцы с заданной начальной концентрацией наночастиц. Записывают инфракрасные...
Тип: Изобретение
Номер охранного документа: 0002502980
Дата охранного документа: 27.12.2013
10.02.2014
№216.012.9ff7

Способ изготовления датчика вакуума с наноструктурой повышенной чувствительности и датчик вакуума на его основе

Изобретение относится к измерительной технике. Способ изготовления датчика вакуума с наноструктурой повышенной чувствительности заключается в том, что образуют гетероструктуру из различных материалов, в которой формируют тонкопленочный полупроводниковый резистор, после чего ее закрепляют в...
Тип: Изобретение
Номер охранного документа: 0002506659
Дата охранного документа: 10.02.2014
20.02.2014
№216.012.a32f

Датчик абсолютного давления повышенной точности на основе полупроводникового чувствительного элемента с жестким центром

Изобретение относится к измерительной технике и может быть использовано для измерения давления в жидких и газообразных агрессивных средах. Датчик абсолютного давления содержит корпус со штуцером, герметизирующую контактную колодку, металлическую мембрану, несжимаемую жидкость, полупроводниковый...
Тип: Изобретение
Номер охранного документа: 0002507490
Дата охранного документа: 20.02.2014
10.03.2014
№216.012.aa89

Устройство обнаружения движущихся наземных транспортных средств по акустическим сигналам

Устройство содержит микрофон (1), предварительный усилитель (2), аналого-цифровой преобразователь (3), формирователь временного окна (4), блок (7) спектрального представления сигнала, фильтр верхних частот (5), блок (6) оценки изменения уровня сигнала внутри временного окна, блок (8)...
Тип: Изобретение
Номер охранного документа: 0002509372
Дата охранного документа: 10.03.2014
10.04.2014
№216.012.afb3

Вакуумный конденсатор переменной емкости

Изобретение относится к области электронной техники и может быть использовано при модернизации выпускаемых и разработке новых типов вакуумных конденсаторов. Вакуумный конденсатор переменной емкости содержит вакуумированный корпус, состоящий из цилиндрической диэлектрической оболочки,...
Тип: Изобретение
Номер охранного документа: 0002510694
Дата охранного документа: 10.04.2014
10.05.2014
№216.012.c0b2

Способ измерения давления и интеллектуальный датчик давления на его основе

Предлагаемое изобретение относится к измерительной технике и может быть использовано при измерении давления жидких и газообразных сред. Заявленная группа изобретений включает способ измерения давления с использованием тензорезисторного датчика давления на основе нано- и микроэлектромеханической...
Тип: Изобретение
Номер охранного документа: 0002515079
Дата охранного документа: 10.05.2014
20.05.2014
№216.012.c5b8

Датчик давления на основе нано- и микроэлектромеханической системы для прецизионных измерений

Изобретение относится к измерительной технике и может быть использовано для прецизионных измерений давления жидких и газообразных сред. Сущность: датчик содержит корпус, установленную в нем нано- и микроэлектромеханическую систему (НиМЭМС), состоящую из упругого элемента в виде мембраны с...
Тип: Изобретение
Номер охранного документа: 0002516375
Дата охранного документа: 20.05.2014
20.05.2014
№216.012.c80e

Способ определения литогенности желчи

Изобретение относится к медицине и может быть использовано для определения оптимальных сроков дренирования желчных протоков у больных с патологией билиарного тракта различной этиологии. Описан способ определения литогенности желчи, заключающийся в определении ее физико-химических свойств, при...
Тип: Изобретение
Номер охранного документа: 0002516973
Дата охранного документа: 20.05.2014
27.06.2014
№216.012.d74c

Способ получения пористых отливок

Изобретение относится к литейному производству. Водорастворимый наполнитель нагревают в печи и засыпают в нагретую металлическую форму. После заливки металла в форму осуществляется пропитка наполнителя расплавом под действием центробежных сил. Частота вращения формы определяется по формуле ,...
Тип: Изобретение
Номер охранного документа: 0002520894
Дата охранного документа: 27.06.2014
27.06.2014
№216.012.d77d

Датчик давления на основе нано- и микроэлектромеханической системы балочного типа

Изобретение относится к измерительной технике и может быть использовано для измерения давлений жидких и газообразных агрессивных сред в условиях воздействия широкого диапазона стационарных и нестационарных температур. Устройство содержит корпус, установленную в нем нано- и...
Тип: Изобретение
Номер охранного документа: 0002520943
Дата охранного документа: 27.06.2014
+ добавить свой РИД