×
25.08.2017
217.015.c809

Способ определения дальности до отражающей поверхности

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области радиолокационной техники и может быть применено при построении высотомеров малых высот летательных аппаратов, использующих в качестве зондирующих сигналов сверхкороткие импульсы. Достигаемый технический результат - повышение быстродействия, разрешающей способности и экономичности способа определения дальности до отражающей поверхности с использованием сверхкоротких импульсов. Сущность способа заключается в излучении в направлении отражающей поверхности радиоволн в виде сверхкоротких импульсов и последующем приеме отраженных радиоволн в виде импульсов, небольшую часть излучаемых сверхкоротких импульсов и отраженные импульсы квантуют по амплитуде, укорачивают по длительности, далее используют широкополосную дисперсионную задержку квантованных по амплитуде и укороченных по длительности излучаемых и отраженных импульсов, с помощью которой преобразуют каждый из них в линейно-частотно-модулированные сигналы равной длительности, и по сигналу биений разностной частоты этих линейно-частотно-модулированных сигналов определяют дальность до отражающей поверхности, при этом длительность линейно-частотно-модулированных сигналов превышает максимальную задержку отраженного сигнала. 1 з.п. ф-лы, 3 ил.
Реферат Свернуть Развернуть

Изобретение относится к области радиолокационной техники и может быть применено при построении высотомеров малых высот летательных аппаратов, использующих в качестве зондирующих сигналов сверхкороткие импульсы.

Известен способ определения дальности до отражающей поверхности с использованием сверхкоротких импульсов, построенный на основе MIR-технологии, выбранный за аналог [1].

Способ определения дальности с использованием MIR-технологии осуществляется следующим способом.

В направлении отражающей поверхности излучают и принимают отраженные от нее последовательности сверхкоротких импульсов (соответственно поз. 1 и поз. 2 на фиг. 1). После излучения каждого импульса формируется узкое временное окно (поз. 3 на фиг. 1), временная задержка которого от импульса к импульсу изменяется по линейному закону. При совпадении по времени отраженного импульса (поз. 2 на фиг. 1) с временным окном (поз. 4 на фиг. 1) он регистрируется, и по временному положению этого окна определяется дальность до отражающей поверхности. Таким образом, измерение дальности до отражающей поверхности осуществляется за большое количество излучаемых сверхкоротких импульсов стробоскопическим методом.

Недостатками способа [1] являются:

- низкое быстродействие, обусловленное применением стробоскопического метода определения задержки отраженного сигнала относительно зондирующего сверхкороткого импульса;

- высокие энергозатраты на получение одного отсчета дальности до отражающей поверхности.

Известен способ определения дальности до отражающей поверхности с использованием сверхкоротких импульсов на основе ТМ-технологии [2], частично устраняющий недостатки аналога [1], выбранный за прототип.

Способ определения дальности с использованием ТМ-технологии осуществляется следующим способом.

В направлении отражающей поверхности излучают и принимают отраженные от нее последовательности сверхкоротких импульсов (соответственно поз. 1 и поз. 2 на фиг. 2). Отраженные импульсы обрабатывают многоканальным корреляционным способом с использованием опорных импульсов, сдвинутых по задержке в каждом канале относительно излучаемого импульса (поз. 5-поз. 8 на фиг. 2). При совпадении по времени отраженного импульса (поз. 2 на фиг. 2) с опорным импульсом (поз. 7 на фиг. 2) он регистрируется в N-м канале, номер которого определяет дальность до отражающей поверхности. Таким образом, измерение дальности до отражающей поверхности может осуществляться за один излучаемый импульс. Разрешающая способность способа [2] определяется количеством дальномерных каналов и при больших диапазонах дальностей до отражающей поверхности не может быть высокой.

Недостатками способа [2] являются:

- низкая разрешающая способность при больших диапазонах дальностей, обусловленная сложностью формирования большого количества дальномерных каналов;

- низкая экономичность, обусловленная применением многоканальной корреляционной обработки.

Техническим результатом предлагаемого изобретения являются повышение быстродействия, разрешающей способности и экономичности способа определения дальности до отражающей поверхности с использованием сверхкоротких импульсов.

Технический результат достигается тем, что в способе определения дальности до отражающей поверхности, заключающемся в излучении в направлении отражающей поверхности радиоволн в виде сверхкоротких импульсов и последующем приеме отраженных радиоволн в виде импульсов, небольшую часть излучаемых сверхкоротких импульсов и отраженные импульсы квантуют по амплитуде, укорачивают по длительности, далее используют широкополосную дисперсионную задержку квантованных по амплитуде и укороченных по длительности излучаемых и отраженных импульсов, с помощью которой преобразуют каждый из них в линейно-частотно-модулированные сигналы равной длительности, и по сигналу биений разностной частоты этих линейно-частотно-модулированных сигналов определяют дальность до отражающей поверхности, при этом длительность линейно-частотно-модулированных сигналов превышает максимальную задержку отраженного сигнала.

Технический результат достигается тем, что для обеспечения скрытности период следования излучаемых сверхкоротких импульсов изменяют по случайному закону, при этом максимальная задержка отраженного сигнала не превышает минимального периода следования излучаемых сверхкоротких импульсов.

Способ определения дальности до отражающей поверхности поясняют следующие чертежи.

Фиг. 1 поясняет способ определения дальности до отражающей поверхности на основе MIR-технологии [1], выбранный за аналог. На ней показаны эпюры напряжения следующих сигналов: 1 - излучаемый сверхкороткий импульс; 2 - отраженный импульс; 3 - строб-импульс; 4 - строб-импульс, накрывающий отраженный импульс.

Фиг. 2 поясняет способ определения дальности до отражающей поверхности на основе ТМ-технологии [2], выбранный за прототип. На ней показаны эпюры напряжения следующих сигналов: 1 - излучаемый сверхкороткий импульс; 2 - отраженный импульс; 5 - опорный импульс в 1-м канале дальности; 6 - опорный импульс в 2-м канале дальности; 7 - опорный импульс в N-м канале дальности, в котором находится отраженный сигнал; 8 - опорный импульс в N+1-м канале дальности.

Фиг. 3 поясняет предлагаемый способ определения дальности до отражающей поверхности. На ней показаны эпюры напряжения следующих сигналов: 1 - излучаемый сверхкороткий импульс; 9 - квантованный укороченный излучаемый импульс; 10 - линейно-частотно-модулированный сигнал (ЛЧМ-сигнал), соответствующий излучаемому импульсу; 2 - отраженный импульс; 11 - квантованный укороченный отраженный импульс; 12 - ЛЧМ-сигнал, соответствующий отраженному импульсу; 13 - сигнал биений разностной частоты.

Предлагаемый способ определения дальности до отражающей поверхности осуществляется следующим способом.

В направлении отражающей поверхности излучают сверхкороткий импульс (поз. 1 на фиг. 3). Небольшая часть излучаемого импульса квантуется по амплитуде и укорачивается по длительности (поз. 9 на фиг. 3). Полученный короткий квантованный импульс с широким спектром преобразуется в линейно-частотно-модулированный сигнал (ЛЧМ-сигнал) (поз. 10 на фиг. 3) при помощи широкополосной дисперсионной задержки, описываемой аналитической зависимостью вида [3]

где

- зависимость времени задержки от частоты;

b и μ - постоянные величины;

;

;

, - нижняя и верхняя границы изменения частоты в ЛЧМ-сигнале.

Отраженный импульс (поз. 2 на фиг. 3) квантуется по амплитуде и укорачивается по длительности (поз. 11 на фиг. 3). Полученный короткий импульс широкополосной дисперсионной задержкой вида (1) преобразуется в ЛЧМ-сигнал (поз. 12 на фиг. 3). При этом для ЛЧМ-сигналов, соответствующих излученному и отраженному импульсам, границы диапазона изменения частоты , , полная девиация и их длительности τ совпадают.

ЛЧМ-сигналы, соответствующие излученному и отраженному импульсам, преобразуются в сигнал биений разностной частоты (поз. 13 на фиг. 3).

Далее по разностной частоте , равной

где - текущая частота ЛЧМ-сигнала, соответствующая излучаемому импульсу, - текущая частота ЛЧМ-сигнала, соответствующая отраженному импульсу,

дальность до отражающей поверхности R определяется с помощью соотношения [4]

где c - скорость света, τ - длительность ЛЧМ-сигнала, ΔF - полная девиация.

Для обеспечения скрытности период повторения излучаемых сверхкоротких импульсов изменяют по случайному закону (рандомизируют), при этом максимальная задержка отраженного сигнала не превышает минимального периода следования излучаемых сверхкоротких импульсов.

В результате предлагаемый способ позволяет определять дальность до отражающей поверхности по одному сверхкороткому импульсу излучения с применением одноканальной обработки отраженного сигнала, при этом процесс преобразования излучаемых и отраженных радиоволн, предварительно квантованных по амплитуде и укороченных по длительности, в информативный сигнал в виде сигнала биений разностной частоты проводить без энергозатрат. Излучение и прием импульсов с преобразованием их при обработке в ЛЧМ-сигналы с последующим определением по разностной частоте этих ЛЧМ-сигналов дальности до отражающей поверхности позволяют, по сравнению с прототипом:

- повысить разрешающую способность при широком диапазоне дальностей за счет определения дальности по разностной частоте ЛЧМ-сигналов, соответствующих излучаемому и отраженному сигналам;

- снизить энергетические затраты на получение одного отсчета дальности за счет применения одноканального способа обработки отраженного сигнала.

Таким образом, способ определения дальности обладает существенными преимуществами перед прототипом и аналогом.

Литература

1. Радзиевский В.Г., Трифонов П.А. Обработка сверхширокополосных сигналов и помех. - М.: Радиотехника, 2009, С. 14-18.

2. Щербак Н. Сверхширокополосная радиолокация // Электроника: Наука, Технология, Бизнес, 3/2002, С. 44.

3. Радиоприемные устройства / Под ред. А.П. Жуковского. - М.: Высш. шк., 1989, С. 247.

4. Справочник по радиолокации / Под ред. М. Сколника, том 3, С. 26.


Способ определения дальности до отражающей поверхности
Способ определения дальности до отражающей поверхности
Способ определения дальности до отражающей поверхности
Источник поступления информации: Роспатент

Showing 1-10 of 582 items.
20.01.2013
№216.012.1cd2

Гальванопластический способ изготовления сложно-рельефных элементов антенно-фидерных устройств

Изобретение относится к гальванопластике и может быть использовано для изготовления элементов антенно-фидерных устройств повышенной сложности. Гальванопластический способ включает использование форм из алюминия или его сплавов и гальваническое нанесение на формы никеля с последующим их...
Тип: Изобретение
Номер охранного документа: 0002472872
Дата охранного документа: 20.01.2013
20.01.2013
№216.012.1d92

Пневматическая установка для испытаний

Изобретение относится к области испытательной техники, а именно к установкам для испытаний на ударные воздействия конструкций различного назначения. Пневматическая установка для испытаний содержит ресивер со сжатым газом, полость которого отделена от внешнего пространства диафрагмой, средство...
Тип: Изобретение
Номер охранного документа: 0002473064
Дата охранного документа: 20.01.2013
20.01.2013
№216.012.1d9b

Шланговый гамма-дефектоскоп

Использование: для радиографического контроля промышленных изделий. Сущность: заключается в том, что шланговый гамма-дефектоскоп для радиографического контроля промышленных изделий содержит оснащенную ампулопроводом радиационную головку с корпусом, систему блокировок с замком и блоком защиты из...
Тип: Изобретение
Номер охранного документа: 0002473073
Дата охранного документа: 20.01.2013
20.01.2013
№216.012.1de3

Способ переработки жидких радиоактивных отходов от применения дезактивирующих растворов

Изобретение относится к радиохимической технологии, конкретно к очистке жидких радиоактивных отходов. Способ переработки жидких радиоактивных отходов от применения дезактивирующих растворов включает сорбцию радионуклидов, обработку реагентами при комнатной температуре, осаждение осадка при...
Тип: Изобретение
Номер охранного документа: 0002473145
Дата охранного документа: 20.01.2013
27.01.2013
№216.012.20c9

Ультразвуковой способ контроля плотности в процессе эксплуатации деталей из высоконаполненных композитных материалов на основе октогена

Использование: для ультразвукового контроля плотности в процессе эксплуатации деталей из высоконаполненных композитных материалов на основе октогена. Сущность: заключается в том, что возбуждают ультразвуковые волны в заданной зоне исследуемой детали с известной начальной плотностью ρ, измеряют...
Тип: Изобретение
Номер охранного документа: 0002473894
Дата охранного документа: 27.01.2013
27.01.2013
№216.012.2137

Способ изготовления многоуровневых тонкопленочных микросхем

Изобретение относится к области изготовления микросхем и может быть использовано для изготовления многоуровневых тонкопленочных гибридных интегральных схем и анизотропных магниторезистивных преобразователей. Технический результат - упрощение технологии изготовления микросхем и повышение их...
Тип: Изобретение
Номер охранного документа: 0002474004
Дата охранного документа: 27.01.2013
27.01.2013
№216.012.218e

Способ герметизации трубчатых электронагревателей

Изобретение относится к электротехнике и может быть использовано при изготовлении трубчатых электронагревателей. Технический результат изобретения заключается в увеличении надежности герметизации и срока службы ТЭН, а также снижении трудоемкости и ускорении процесса герметизации. В способе...
Тип: Изобретение
Номер охранного документа: 0002474091
Дата охранного документа: 27.01.2013
10.02.2013
№216.012.2360

Способ получения керамических блочно-ячеистых фильтров-сорбентов для улавливания газообразных радиоактивных и вредных веществ

Настоящее изобретение относится к области химической технологии высокопористых керамических материалов и предназначено для использования непосредственно для фильтрации и адсорбции газообразных радиоактивных и вредных веществ в условиях высоких температур (свыше 1000°С) и химически агрессивных...
Тип: Изобретение
Номер охранного документа: 0002474558
Дата охранного документа: 10.02.2013
10.02.2013
№216.012.245f

Широкополосный спектрометр мягкого рентгеновского излучения

Использование: для определения пространственно-спектральных характеристик рентгеновского излучения. Сущность: заключается в том, что широкополосный спектрометр мягкого рентгеновского излучения включает герметичный корпус, в котором расположены каналы регистрации, каждый из которых включает в...
Тип: Изобретение
Номер охранного документа: 0002474813
Дата охранного документа: 10.02.2013
20.02.2013
№216.012.288d

Способ герметизации волноводных свч-устройств

Изобретение относится к радиотехнике и может быть использовано для герметизации антенных, волноводных, невзаимных и прочих СВЧ-систем. В способе герметизации волноводных СВЧ-устройств весь внутренний объем устройств после монтажа внутренних элементов заполняют гранулами пенополистирола,...
Тип: Изобретение
Номер охранного документа: 0002475901
Дата охранного документа: 20.02.2013
Showing 1-10 of 425 items.
20.01.2013
№216.012.1cd2

Гальванопластический способ изготовления сложно-рельефных элементов антенно-фидерных устройств

Изобретение относится к гальванопластике и может быть использовано для изготовления элементов антенно-фидерных устройств повышенной сложности. Гальванопластический способ включает использование форм из алюминия или его сплавов и гальваническое нанесение на формы никеля с последующим их...
Тип: Изобретение
Номер охранного документа: 0002472872
Дата охранного документа: 20.01.2013
20.01.2013
№216.012.1d92

Пневматическая установка для испытаний

Изобретение относится к области испытательной техники, а именно к установкам для испытаний на ударные воздействия конструкций различного назначения. Пневматическая установка для испытаний содержит ресивер со сжатым газом, полость которого отделена от внешнего пространства диафрагмой, средство...
Тип: Изобретение
Номер охранного документа: 0002473064
Дата охранного документа: 20.01.2013
20.01.2013
№216.012.1d9b

Шланговый гамма-дефектоскоп

Использование: для радиографического контроля промышленных изделий. Сущность: заключается в том, что шланговый гамма-дефектоскоп для радиографического контроля промышленных изделий содержит оснащенную ампулопроводом радиационную головку с корпусом, систему блокировок с замком и блоком защиты из...
Тип: Изобретение
Номер охранного документа: 0002473073
Дата охранного документа: 20.01.2013
20.01.2013
№216.012.1de3

Способ переработки жидких радиоактивных отходов от применения дезактивирующих растворов

Изобретение относится к радиохимической технологии, конкретно к очистке жидких радиоактивных отходов. Способ переработки жидких радиоактивных отходов от применения дезактивирующих растворов включает сорбцию радионуклидов, обработку реагентами при комнатной температуре, осаждение осадка при...
Тип: Изобретение
Номер охранного документа: 0002473145
Дата охранного документа: 20.01.2013
27.01.2013
№216.012.20c9

Ультразвуковой способ контроля плотности в процессе эксплуатации деталей из высоконаполненных композитных материалов на основе октогена

Использование: для ультразвукового контроля плотности в процессе эксплуатации деталей из высоконаполненных композитных материалов на основе октогена. Сущность: заключается в том, что возбуждают ультразвуковые волны в заданной зоне исследуемой детали с известной начальной плотностью ρ, измеряют...
Тип: Изобретение
Номер охранного документа: 0002473894
Дата охранного документа: 27.01.2013
27.01.2013
№216.012.2137

Способ изготовления многоуровневых тонкопленочных микросхем

Изобретение относится к области изготовления микросхем и может быть использовано для изготовления многоуровневых тонкопленочных гибридных интегральных схем и анизотропных магниторезистивных преобразователей. Технический результат - упрощение технологии изготовления микросхем и повышение их...
Тип: Изобретение
Номер охранного документа: 0002474004
Дата охранного документа: 27.01.2013
27.01.2013
№216.012.218e

Способ герметизации трубчатых электронагревателей

Изобретение относится к электротехнике и может быть использовано при изготовлении трубчатых электронагревателей. Технический результат изобретения заключается в увеличении надежности герметизации и срока службы ТЭН, а также снижении трудоемкости и ускорении процесса герметизации. В способе...
Тип: Изобретение
Номер охранного документа: 0002474091
Дата охранного документа: 27.01.2013
10.02.2013
№216.012.2360

Способ получения керамических блочно-ячеистых фильтров-сорбентов для улавливания газообразных радиоактивных и вредных веществ

Настоящее изобретение относится к области химической технологии высокопористых керамических материалов и предназначено для использования непосредственно для фильтрации и адсорбции газообразных радиоактивных и вредных веществ в условиях высоких температур (свыше 1000°С) и химически агрессивных...
Тип: Изобретение
Номер охранного документа: 0002474558
Дата охранного документа: 10.02.2013
10.02.2013
№216.012.245f

Широкополосный спектрометр мягкого рентгеновского излучения

Использование: для определения пространственно-спектральных характеристик рентгеновского излучения. Сущность: заключается в том, что широкополосный спектрометр мягкого рентгеновского излучения включает герметичный корпус, в котором расположены каналы регистрации, каждый из которых включает в...
Тип: Изобретение
Номер охранного документа: 0002474813
Дата охранного документа: 10.02.2013
20.02.2013
№216.012.288d

Способ герметизации волноводных свч-устройств

Изобретение относится к радиотехнике и может быть использовано для герметизации антенных, волноводных, невзаимных и прочих СВЧ-систем. В способе герметизации волноводных СВЧ-устройств весь внутренний объем устройств после монтажа внутренних элементов заполняют гранулами пенополистирола,...
Тип: Изобретение
Номер охранного документа: 0002475901
Дата охранного документа: 20.02.2013
+ добавить свой РИД