×
25.08.2017
217.015.c695

Результат интеллектуальной деятельности: Способ гидравлического разрыва пласта

Вид РИД

Изобретение

№ охранного документа
0002618545
Дата охранного документа
04.05.2017
Аннотация: Изобретение относится к области нефтегазодобывающей промышленности и может быть применено для гидравлического разрыва пласта (ГРП) в добывающей скважине при наличии попутной и/или подошвенной воды. Способ включает выполнение перфорации в интервале пласта скважины, ориентированной в направлении главного максимального напряжения, спуск колонны насосно-компрессорных труб (НКТ) с пакером в скважину, посадку пакера, проведение ГРП закачиванием гидроразрывной жидкости по колонне НКТ с пакером через интервал перфорации в продуктивный пласт с образованием и последующим креплением трещины в пласте циклической чередующейся закачкой по колонне НКТ жидкости-носителя с проппантом, стравливание давления из скважины, разгерметизацию пакера и извлечение колонны НКТ с пакером из скважины. Для выполнения перфорации в скважину до интервала подошвы пласта спускают гидромеханический перфоратор на колонне НКТ, выполняют пары перфорационных отверстий по периметру скважины от подошвы к кровле пласта со смещением на угол 30° при выполнении каждой пары перфорационных отверстий. После выполнения перфорации колонну НКТ с перфоратором извлекают из скважины, в качестве гидроразрывной жидкости применяют гелированную нефть, определяют общий объем гелированной нефти, производят закачку гелированной нефти по колонне НКТ в интервал пласта с образованием трещины разрыва. Объем гелированной нефти после образования трещины используют в качестве жидкости-носителя в процессе крепления трещины. При этом перед креплением трещины объем оставшейся гелированной нефти делят на две равные части и обе равные части гелированной нефти закачивают в пять циклов чередующимися равными порциями сверхлегкого проппанта фракции 40/80 меш, покрытого водонабухающей резинополимерной композицией концентрацией 600 кг/м, с наполнителем стекловолокном в количестве от 1 до 1,8% от веса проппанта, со ступенчатым увеличением на 0,2% в каждой порции, и равными порциями проппанта с размером фракции 20/40 меш со ступенчатым увеличением концентрации в каждой порции на 200 кг/м, начиная от 200 до 800 кг/м. Причем пятой порцией закачивают RSP-проппант фракции 12/18 меш концентрацией 1000 кг/м. Технический результат заключается в повышении эффективности изоляции трещины от попутной и подошвенной воды; повышении проводимости трещины и надежности реализации способа; повышении качества крепления призабойной зоны пласта; снижении дополнительных затрат. 5 ил., 1 табл.

Изобретение относится к области нефтегазодобывающей промышленности, в частности используется для гидравлического разрыва пласта (ГРП) в добывающей скважине при наличии попутной и/или подошвенной воды.

Известен способ гидроразрыва малопроницаемого пласта (Патент RU №2402679, МПК E21B 43/26, опубл. 27.10.2010 г., бюл. №30), включающий спуск колонны труб в скважину в интервал продуктивного пласта, закачку гелированной жидкости по колонне труб в интервал продуктивного пласта с образованием трещины. В процессе закачки обеспечивают турбулентный режим течения жидкости в трещине посредством закачивания гелированной жидкости с вязкостью менее 0,01 Па⋅c со скоростью закачки не менее 8 м3/мин, производят крепление трещины разрыва закачкой гелированной жидкости с проппантом, покрытым резиновой оболочкой, причем радиус проппанта, покрытого резиновой оболочкой, определяют расчетным путем.

Недостатками данного способа являются:

- во-первых, низкая эффективность реализации способа, так как в процессе образования трещины она может развиться не в направлении главного максимального напряжения, а в направлении водоносного горизонта, особенно в скважинах с подошвенной водой, что может привести к прорыву трещины в водоносный горизонт и, как следствие, резкому обводнению продукции;

- во-вторых, низкая надежность проведения ГРП, связанная с преждевременным выпадением проппанта из гелированной жидкости (жидкости-носителя) в процессе крепления трещины. Это связано с тем, что проппант, покрытый резиновой оболочкой, невозможно продавить через перфорационные отверстия пласта диаметром 3-6 мм в трещину для ее закрепления, что приведет к резкому скачку давления в колонне труб, аварийной остановке процесса и недостижению проектных параметров трещины;

- в-третьих, низкое качество изоляции скважины от перетока по трещине попутной и/или подошвенной воды проппантом, покрытым резиновой оболочкой, не имеющей возможности набухания, что вызовет резкое обводнение скважины;

- в-четвертых, нахождение нижнего конца колонны труб в интервале пласта чревато прихватом колонны труб при резком повышении давления, например во время крепления трещины, и, как следствие, проведением аварийных работ;

- в-пятых, низкая проводимость трещины разрыва, так как в процессе разрыва пласта гель образует осадок в трещине, что способствует неполному закреплению трещины проппантом одной фракции.

Наиболее близким по технической сущности является способ гидравлического разрыва продуктивного пласта с глинистым прослоем и подошвенной водой (Патент RU №2566542, МПК E21B 43/26, опубл. 27.10.2015 г., бюл. №30), включающий спуск колонны насосно-компрессорных труб, НКТ, с пакером в скважину, посадку пакера, проведение ГРП закачиванием гидроразрывной жидкости по колонне НКТ с пакером через интервал перфорации в продуктивный пласт с образованием и последующим креплением трещины проппантом, стравливание давления из скважины. При этом до спуска в скважину колонны НКТ с пакером геофизическими методами определяют ориентацию главного максимального напряжения в продуктивном пласте, затем в верхней половине продуктивного пласта осуществляют кумулятивную перфорацию, ориентированную в направлении главного максимального напряжения, затем отсекают нижнюю половину продуктивного пласта скважины, спускают колонну НКТ с пакером в скважину так, чтобы нижний конец колонны НКТ находился на уровне кровли продуктивного пласта, производят посадку пакера, осуществляют ГРП закачкой по колонне НКТ гидроразрывной жидкости, в качестве которой используют линейный гель с расходом 0,3 м3/мин с созданием трещины в продуктивном пласте, затем производят крепление трещины в продуктивном пласте в четыре цикла чередующейся закачкой по колонне НКТ жидкости-носителя через интервал ориентированной перфорации продуктивного пласта равными порциями линейного геля с облегченным проппантом 20/40 меш и равными порциями сшитого геля с добавлением соли NaCl с концентрацией 400 кг/м3. Причем равные порции сшитого геля по объему в два раза меньше равных порций линейного геля, а количество равных порций сшитого геля на одну порцию меньше равных порций линейного геля. Концентрацию облегченного проппанта 20/40 меш в линейном геле ступенчато увеличивают на 100 кг/м3 с первой по третью порции в каждом цикле, начиная с концентрации 100 кг/м3, в последнем четвертом цикле производят закачку одной порции линейного геля, содержащего облегченный проппант 16/20 меш с концентрацией 400 кг/м3, а затем производят закачку и продавку 15% водного раствора соляной кислоты в трещину продуктивного пласта в объеме, равном половине суммы объемов линейного и сшитого гелей, закачанных в трещину в процессе крепления трещины, разгерметизацию пакера и извлечение колонны НКТ с пакером из скважины.

Недостатками данного способа являются:

- во-первых, низкая проводимость трещины, обусловленная преждевременным выпадением проппанта из жидкости-носителя в интервале перфорации, что способствует неравномерному заполнению трещины проппантом, т.е. в трещине образуются пустоты, которые затем смыкаются, что резко ухудшает проводимость трещины;

- во-вторых, низкая надежность реализации способа, связанная с выполнением геофизической партией кумулятивной перфорации, имеющей диаметр отверстий 3-6 мм, поэтому в процессе закачки проппанта со ступенчатым увеличением его концентрации увеличивается и сопротивление в интервале перфорации, что может вызвать опасность резкого скачка давления в колонне НКТ, аварийную остановку процесса и недостижение проектных параметров трещины;

- в-третьих, низкая эффективность изоляции трещины от попутной и/или подошвенной воды с помощью сшитого геля с добавлением соли NaCl с концентрацией 400 кг/м3. Это создает лишь временный эффект до момента вымывания водой соли и только в нижней части трещины, что в последующем вызывает попадание через трещину в скважину попутной и/или подошвенной воды и резкое обводнение скважины, при этом вода, прорвавшаяся в трещину, сверху свободно перетекает в скважину;

- в-четвертых, низкое качество крепления трещины в призабойной зоне пласта (ПЗП), облегченным проппантом, выносящимся из ПЗП, состоящей из слабосцементированных пород при последующем освоении скважины, и, как результат, смыкание трещины в ПЗП;

- в-пятых, дополнительные затраты, связанные с привлечением геофизической партии для определения направления главного максимального напряжения в пласте и выполнением кумулятивной перфорации.

Техническими задачами изобретения являются повышение проводимости трещины, состоящей из слабосцементированных пород с качественным креплением ПЗП, эффективности изоляции трещины от попутной и/или подошвенной воды, надежности реализации способа и снижение дополнительных затрат на его реализацию.

Поставленные технические задачи решаются способом гидравлического разрыва пласта (ГРП), включающим выполнение перфорации в интервале пласта скважины, ориентированной в направлении главного максимального напряжения, спуск колонны насосно-компрессорных труб (НКТ) с пакером в скважину, посадку пакера, проведение ГРП закачиванием гидроразрывной жидкости по колонне НКТ с пакером через интервал перфорации в продуктивный пласт с образованием и последующим креплением трещины в пласте циклической чередующейся закачкой по колонне НКТ жидкости-носителя с проппантом, стравливание давления из скважины, разгерметизацию пакера и извлечение колонны НКТ с пакером из скважины.

Новым является то, что для выполнения перфорации в скважину до интервала подошвы пласта спускают гидромеханический перфоратор на колонне НКТ, выполняют пары перфорационных отверстий по периметру скважины от подошвы к кровле пласта со смещением на угол 30° при выполнении каждой пары перфорационных отверстий, после выполнения перфорации колонну НКТ с перфоратором извлекают из скважины, в качестве гидроразрывной жидкости применяют гелированную нефть, определяют общий объем гелированной нефти, производят закачку гелированной нефти по колонне НКТ в интервал пласта с образованием трещины разрыва, объем гелированной нефти после образования трещины используют в качестве жидкости-носителя в процессе крепления трещины, при этом перед креплением трещины объем оставшейся гелированной нефти делят на две равные части, и обе равные части гелированной нефти закачивают в пять циклов чередующимися равными порциями сверхлегкого проппанта фракции 40/80 меш, покрытого водонабухающей резинополимерной композицией концентрацией 600 кг/м3 с наполнителем стекловолокном в количестве от 1 до 1,8% от веса проппанта, со ступенчатым увеличением на 0,2% в каждой порции, и равными порциями проппанта с размером фракции 20/40 меш со ступенчатым увеличением концентрации в каждой порции на 200 кг/м3, начиная от 200 до 800 кг/м3, причем пятой порцией закачивают RSP-проппант фракции 12/18 меш концентрацией 1000 кг/м3.

На фиг. 1 схематично изображен процесс перфорации интервала пласта в скважине.

На фиг. 2 схематично изображена развертка интервала перфорации пласта.

На фиг. 3 схематично изображен устьевой фланец с метками и колонна труб с риской в процессе проведения ГРП.

На фиг. 4 схематично изображен процесс ГРП.

На фиг. 5 схематично изображено направление развития трещины.

В скважину 1 (см. фиг. 1 и 2) до подошвы пласта 2 на колонне НКТ 3 спускают гидромеханический перфоратор 4, например используют гидромеханический перфоратор ПГМ-168 конструкции института «ТатНИПИнефть».

Перфорируют интервал пласта 2 выполнением шести пар отверстий (прямоугольного сечения) 5' и 5ʺ, 6' и 6ʺ, 7' и 7ʺ, 8' и 8ʺ, 9' и 9ʺ, 10' и 10ʺ снизу вверх с подъемом и поворотом колонны труб на 30° при каждом последующем проколе.

Высоту 1 подъема колонны НКТ 3 между парами отверстий 5' и 5ʺ, 6' и 6ʺ, 7' и 7ʺ, 8' и 8ʺ, 9' и 9ʺ, 10' и 10ʺ определяют как высоту пласта 2, разделенную на семь равных частей.

Например, при высоте пласта hпл=3,5 м высота 1 между парами отверстий 5' и 5ʺ, 6' и 6ʺ, 7' и 7ʺ, 8' и 8ʺ, 9' и 9ʺ, 10' и 10, а также от кровли и подошвы пласта 2 будет равна:

.

В процессе реализации способа необходимо получить шесть пар отверстий 5' и 5ʺ, 6' и 6ʺ, 7' и 7ʺ, 8' и 8ʺ, 9' и 9ʺ, 10' и 10ʺ с равным углом поворота 30° между ближайшими парами. Например, между парой отверстий 7' и 7ʺ (см. фиг. 3) угол поворота снизу относительно отверстий 6' и 6ʺ и выше относительно отверстий 8' и 8ʺ составляет 30°.

С этой целью применяют устьевой фланец (на фиг. 3 показан условно), имеющий насечки 11', 11ʺ, 11ʺ', 11ʺʺ, 11ʺʺ', 11ʺʺʺ по периметру с углом 30° (см. фиг. 2 и 3), соответствующие каждой паре отверстий 5' и 5ʺ, 6' и 6ʺ, 7' и 7ʺ, 8' и 8ʺ, 9' и 9ʺ, 10' и 10ʺ.

На поверхности колонны НКТ 3 наносят одну риску 12 (см. фиг. 1 и 3), например, длиной 10-50 мм и глубиной 2 мм.

Размещают риску 12 колонны НКТ 3 напротив отметки 11' устьевого фланца. В таком положении без вращения колонны НКТ 3 с гидромеханическим перфоратором 4 на конце приподнимают колонну НКТ 3 от подошвы пласта 2 на высоту 1=0,5 м. Выполняют пару отверстий 5' и 5ʺ в интервале пласта 2 скважины 1 с помощью гидромеханического перфоратора 4 (за счет радиального выдвижения двух резцов, размещенных относительно друг друга под углом 180°) согласно инструкции по его эксплуатации.

Затем вновь приподнимают колонну НКТ 3 с гидромеханическим перфоратором 4 вверх на высоту 1=0,5 м, при этом поворачивают колонну НКТ 3 до размещения ее риски 12 напротив метки 11ʺ на устьевом фланце, например по часовой стрелке, и производят выполнение с помощью гидромеханического перфоратора 4 пары отверстий 6' и 6ʺ в интервале пласта 2 скважины 1.

Далее аналогичным образом, поворачивая колонну НКТ 3 (см. фиг. 2 и 3) по часовой стрелке на 30° и последовательно совмещая риску 12 колонны НКТ 3 с метками 11ʺ', 11ʺʺ, 11ʺʺ', 11ʺʺʺ, выполняют еще четыре соответствующие пары отверстий 7' и 7ʺ, 8' и 8ʺ, 9' и 9ʺ, 10' и 10ʺ в интервале пласта 2 скважины 1.

Направление перфорации снизу вверх в скважине 1 выбирают с целью исключения прихвата резцов (на фиг. 1 показаны условно) гидромеханического перфоратора 4 при их выдвижении ранее выполненными парами отверстий 5' и 5ʺ, 6' и 6ʺ, 7' и 7ʺ, 8' и 8ʺ, 9' и 9ʺ, 10' и 10ʺ (см. фиг. 2) Таким образом, в интервале пласта 2 (см. фиг. 1) скважины 1 получают перфорационные отверстия 5' и 5ʺ, 6' и 6ʺ, 7' и 7ʺ, 8' и 8ʺ, 9' и 9ʺ, 10' и 10ʺ.

Выполнение пар отверстий 5' и 5ʺ, 6' и 6ʺ, 7' и 7ʺ, 8' и 8ʺ, 9' и 9ʺ, 10' и 10ʺ с поворотом на 30° позволяет создать направление образования трещины 13 (см. фиг. 4 и 5) в пласте 2 в направлении главного максимального напряжения пород (σmax) при последующем проведении ГРП в пласте 2 (см. фиг. 2 и 5).

Например, направление пары отверстий 7' и 7ʺ в интервале продуктивного пласта 2 совпадает с направлением главного максимального напряжения пород (σmax) в пласте 2, что исключает затраты, связанные с привлечением геофизической партии для определения направления главного максимального напряжения в пласте, так как применяют гидромеханический перфоратор, с помощью которого выполняют парные перфорационные отверстия под углом 30°.

Кроме того, применение гидромеханического перфоратора для перфорации в сравнении с кумулятивной перфорацией повышает надежность проведения ГРП, так как в процессе перфорации образуются пары отверстий 5' и 5ʺ, 6' и 6ʺ, 7' и 7ʺ, 8' и 8ʺ, 9' и 9ʺ, 10' и 10ʺ, при этом каждое из этих перфорационных отверстий имеет прямоугольную форму минимальным размером сторон 10 на 20 мм, что в разы больше размеров зерен закачиваемого проппанта (см. табл.). Таким образом, при реализации предлагаемого способа резко снижаются гидравлические сопротивления в интервале перфорации, поэтому полностью исключаются скачок давления в колонне НКТ, аварийная остановка процесса ГРП и недостижение проектных параметров трещины.

Далее извлекают из скважины 1 колонну НКТ 3 с гидромеханическим перфоратором 4 и приступают к проведению ГРП. В качестве гидроразрывной жидкости при образовании трещины 13 применяют гелированную нефть.

В скважину 1 спускают колонну НКТ 3 с пакером 14. В качестве пакера применяют любой известный пакер. Производят посадку пакера 14 в скважине 1, например, на 5 м выше кровли пласта 2 и осуществляют герметизацию заколонного пространства колонны НКТ 3.

Нижний конец колонны НКТ 3 размещают выше кровли пласта 2, например, на 2 м.

Расстояние, равное 2 м, позволяет исключить прихват колонны НКТ 3 в случае преждевременного получения резкого скачка давления в процесс крепления трещины 13.

На устье скважины 1 верхний конец колонны НКТ 3 обвязывают с нагнетательной линией 15, установив между ними задвижку 16. Нагнетательную линию 15 соединяют с насосными агрегатами (на фиг. 1-5 не показаны) для закачки гелированной нефти.

Определяют общий объем гелированной нефти по следующей формуле:

,

где Vг - общий объем гелированной нефти, м3;

k=11-12 - коэффициент перевода, м3/м;

Нп - высота пласта, м.

В данной формуле коэффициент перевода получен опытным путем и зависит от физико-химических свойств пласта 2 (см. фиг. 1), в котором производят ГРП.

Например, высота пласта равна 3,5 м.

Подставляя в формулу , получаем общий объем гелированной нефти:

.

Примем Vг=40,0 м3.

Гелированную нефть готовят на устье скважины путем добавления в нефть любого известного загеливающего агента, например вещества HGG-77, приготовленного на основе фосфатного эфира в малогорючем растворителе и предназначенного для создания гелированнной нефти концентрацией 5 л/м3=0,005 м33.

Таким образом, для приготовления гелированной нефти в объеме Vг=40 м3 необходимо: .

На устье скважины в емкость (на фиг. 1-5 не показана) заливают нефть в объеме 39,8 м3 и добавляют 0,2 м3=200 л загеливающего агента и перемешивают.

Тогда .

С помощью насосных агрегатов по нагнетательной линии 15 (см. фиг. 4) через открытую задвижку 16 в скважину 1 по колонне НКТ 3 через перфорационные отверстия 5' и 5ʺ, 6' и 6ʺ, 7' и 7ʺ, 8' и 8ʺ, 9' и 9ʺ, 10' и 10ʺ в интервал пласта 2 закачивают гелированную нефть до достижения разрыва пород пласта 2. Например, разрыв породы пласта 2 происходит через пару отверстий 7' и 7ʺ, направление которых параллельно направлению главного максимального напряжения σmax (см. фиг. 4 и 5) и образованию трещины 13, о чем будет свидетельствовать падение давления закачки и увеличение приемистости пласта 2.

Так, в процессе закачки гелированной нефти достигли давления 30 МПа, а вследствие образования трещины 13 произошло падение давления закачки гелированной нефти на 25%, т.е. до , при этом приемистость пласта 2 увеличилась на 30%, например от 7,0 до 9,1 м3/мин, т.е. . В процессе образования трещины 13 по колонне труб в пласт 2 была закачана гелированная нефть в объеме, например, 30 м3.

Использование гелированной нефти исключает набухание водонабухающей резинополимерной композиции, которой покрыт проппант для крепления трещины 13, так как гелированная нефть не вступает в реакцию с водонабухающей резинополимерной композицией.

Объем гелированной нефти (Vг2) после образования трещины 13, т.е. оставшийся объем используют в качестве жидкости-носителя в процессе крепления трещины 13:

.

Перед креплением трещины 13 объем оставшейся гелированной нефти (Vг2) делят на две равные части и обе равные части гелированной нефти закачивают в пять циклов чередующимися равными порциями сверхлегкого проппанта фракции 40/80 меш, покрытого водонабухающей резинополимерной композицией с наполнителем стекловолокном в количестве от 1 до 1,8% от веса проппанта, со ступенчатым увеличением на 0,2% в каждой порции, и равными порциями проппанта с размером фракции 20/40 меш, со ступенчатым увеличением концентрации в каждой порции на 200 кг/м3, начиная от 200 до 800 кг/м3, причем пятой порцией закачивают RSP-проппант фракции 12/18 меш концентрацией 1000 кг/м3.

Осуществляют крепление трещины 13 следующим образом:

Сначала оставшийся объем гелированной нефти(Vг2) делят на две равные части:

;

- объем жидкости-носителя (гелированной нефти) для закачек порций сверхлегкого проппанта фракции 40/80 меш, покрытого водонабухающей резинополимерной композицией концентрацией 600 кг/м3, с наполнителем стекловолокном в количестве от 1 до 1,8% от веса проппанта, со ступенчатым увеличением на 0,2% в каждой порции;

- объем жидкости-носителя (гелированной нефти) для закачек порций проппанта с размером фракции 20/40 меш со ступенчатым увеличением концентрации в каждой порции на 200 кг/м3, начиная с 200 до 800 кг/м3, причем пятой порцией закачивают RSP-проппант фракции 12/18 меш концентрацией 1000 кг/м3.

Крепление трещины 13 осуществляют с помощью насосных агрегатов по нагнетательной линии 15 (см. фиг. 4) через открытую задвижку 16 в скважину 1 по колонне НКТ 3 через отверстия 5' и 5ʺ, 6' и 6ʺ, 7' и 7ʺ, 8' и 8ʺ, 9' и 9ʺ, 10' и 10ʺ пласта 2 в пять циклов, не прерывая закачки между циклами.

Первый цикл крепления трещины 13 (см. фиг. 4) состоит из чередующейся закачки порции сверхлегкого проппанта 17 фракции 40/80 меш, покрытого водонабухающей резинополимерной композицией в гелированной нефти объемом с концентрацией 600 кг/м3 и наполнителем стекловолокном 18 в количестве 1,0% от веса проппанта, т.е. , а также порции гелированной нефти объемом проппанта 19 фракции 20/40 меш с концентрацией 200 кг/м3.

Второй цикл крепления трещины 13 состоит из чередующейся закачки порции сверхлегкого проппанта фракции 40/80 меш, покрытого водонабухающей резинополимерной композицией в гелированной нефти объемом с концентрацией 600 кг/м3 и наполнителем стекловолокном в количестве 1,2% от веса проппанта, т.е. , а также порции гелированной нефти объемом с проппантом 19 фракции 20/40 меш с концентрацией 400 кг/м3.

Третий цикл крепления трещины 13 состоит из чередующейся закачки порции сверхлегкого проппанта фракции 40/80 меш, покрытого водонабухающей резинополимерной композицией в гелированной нефти объемом с концентрацией 600 кг/м3 и наполнителем стекловолокном в количестве 1,4% от веса проппанта, т.е. , а также порции гелированной нефти объемом с проппантом 19 фракции 20/40 меш с концентрацией 600 кг/м3.

Четвертый цикл крепления трещины 13 состоит из чередующейся закачки порции сверхлегкого проппанта фракции 40/80 меш, покрытого водонабухающей резинополимерной композицией в гелированной нефти объемом с концентрацией 600 кг/м3 и наполнителем стекловолокном в количестве 1,6% от веса проппанта, т.е. , а также порции гелированной нефти объемом: с проппантом 19 фракции 20/40 меш с концентрацией 800 кг/м3.

Пятый цикл крепления трещины 13 состоит из чередующейся закачки порции сверхлегкого проппанта фракции 40/80 меш, покрытого водонабухающей резинополимерной композицией в гелированной нефти объемом с концентрацией 600 кг/м3 и наполнителем стекловолокном в количестве 1,8% от веса проппанта, т.е. , а также порции гелированной нефти объемом: с RSP-проппантом 20 фракции 12/18 меш с концентрацией 1000 кг/м3.

В результате крепления трещины 13 по всей ее поверхности создается водоизолирующий экран 17 (см. фиг. 4) из слоя сверхлегкого проппанта фракции 40/80 меш, покрытого водонабухающей резинополимерной композицией, закрепленного стекловолокном 18, образующим сеточную структуру между зернами сверхлегкого проппанта.

При реализации способа применяют короткие малого диаметра стекловолокна 18, например, с диаметром 10-20 микрон и длиной 10 мм, со ступенчатым увеличением их содержания в сверхлегком проппанте на 0,2% с каждой порцией от конца трещины до ее начала (интервала перфорации пласта 2), что обеспечивает максимальную стабильность поверхностного слоя водоизолирующего экрана 17 (сверхлегкого проппанта фракции 40/80 меш, покрытого водонабухающей резинополимерной композицией) в начале трещины 13, так как сжимающая нагрузка по окончании крепления трещины 13 и стравливания давления увеличивается от конца к началу трещины, т.е. в призабойной зоне пласта 2 трещина 13 испытывает максимальную сжимающую нагрузку. Кроме того, RSP-проппант фракции 12/18, закачиваемый в трещину 13 в последнем пятом цикле, спекается в призабойной зоне пласта 2, обеспечивая устойчивость крепления трещины 13, что исключает вынос проппанта в скважину и смыкание трещины в призабойной зоне пласта 2, состоящей из слабосцементированных пород при последующем освоении скважины. Все это повышает качество крепления трещины в призабойной зоне пласта 2.

Крепление трещины 13 осуществляют циклической закачкой порций сверхлегкого проппанта фракции 40/80 меш, имеющего плотность ρ1=1050 кг/м3 со стекловолокном, которые чередуют с порциями проппанта фракцией 20/40 меш и порцией RSP-проппанта фракции 12/18 меш, имеющих плотность ρ2=2600 кг/м3.

Сначала закачивается проппант меньшей плотности (ρ1), а затем проппант большей плотности (ρ2), поэтому в процессе крепления трещины 13 происходит выдавливание проппантом большей плотности проппанта меньшей плотности (сверхлегкого проппанта фракции 40/80 меш плотностью ρ=1050 кг/м3) на периферию трещины 13, при этом проппант большей плотности (проппант 19 фракцией 20/40 меш и RSP-проппант 20 фракцией 12/18 меш) размещается в центральной части трещины 13.

Таким образом, повышается проводимость трещины, так как в процессе крепления трещины 13 исключается преждевременное выпадение проппанта из жидкости-носителя в интервале перфорации, что способствует равномерному заполнению трещины проппантом, т.е. исключаются пустоты при смыкании трещины.

Сверхлегкий проппант, покрытый водонабухающей резинополимерной композицией, имеет возможность набухания только в воде (в нефти данная композиция не набухает) до 300% от первоначальной толщины 0,4 мм, что приводит к уплотнению набухающей резинополимерной композиции проппанта 17 на поверхности трещины 13, предотвращая доступ воды, исключая обводнение скважины. В результате повышается эффективность изоляции трещины от перетока по ней в скважину 1 попутной и/или подошвенной воды.

Покрытие проппанта - это модифицированное покрытие ВНР-400 (отношение массовых частей В50Э к каучуку - 400/100) резинополимерной композицией на основе бутадиен-нитрильного каучука марки БНКС-28АМН и водонабухающего полиакриламида марки В-50Э. Водонабухающей резинополимерной композицией покрывают исходную фракцию проппанта (см. табл.), при этом толщина самого слоя этой композиции составляет примерно 0,4 мм, что получено опытным путем.

По окончании крепления трещины стравливают давление из скважины 1, распакеровывают пакер 14 и извлекают его с колонной НКТ 3 из скважины 1. Процесс ГРП закончен.

Предлагаемый способ ГРП позволяет:

- повысить эффективность изоляции трещины от попутной и/или подошвенной воды;

- повысить проводимость трещины и надежность реализации способа;

- повысить качество крепления призабойной зоны пласта;

- снизить дополнительные затраты, отказавшись от привлечения геофизической партии.

Способ гидравлического разрыва пласта (ГРП), включающий выполнение перфорации в интервале пласта скважины, ориентированной в направлении главного максимального напряжения, спуск колонны насосно-компрессорных труб (НКТ) с пакером в скважину, посадку пакера, проведение ГРП закачиванием гидроразрывной жидкости по колонне НКТ с пакером через интервал перфорации в продуктивный пласт с образованием и последующим креплением трещины в пласте циклической чередующейся закачкой по колонне НКТ жидкости-носителя с проппантом, стравливание давления из скважины, разгерметизацию пакера и извлечение колонны НКТ с пакером из скважины, отличающийся тем, что для выполнения перфорации в скважину до интервала подошвы пласта спускают гидромеханический перфоратор на колонне НКТ, выполняют пары перфорационных отверстий по периметру скважины от подошвы к кровле пласта со смещением на угол 30° при выполнении каждой пары перфорационных отверстий, после выполнения перфорации колонну НКТ с перфоратором извлекают из скважины, в качестве гидроразрывной жидкости применяют гелированную нефть, определяют общий объем гелированной нефти, производят закачку гелированной нефти по колонне НКТ в интервал пласта с образованием трещины разрыва, объем гелированной нефти после образования трещины используют в качестве жидкости-носителя в процессе крепления трещины, при этом перед креплением трещины объем оставшейся гелированной нефти делят на две равные части и обе равные части гелированной нефти закачивают в пять циклов чередующимися равными порциями сверхлегкого проппанта фракции 40/80 меш, покрытого водонабухающей резинополимерной композицией концентрацией 600 кг/м с наполнителем стекловолокном в количестве от 1 до 1,8% от веса проппанта, со ступенчатым увеличением на 0,2% в каждой порции, и равными порциями проппанта с размером фракции 20/40 меш со ступенчатым увеличением концентрации в каждой порции на 200 кг/м, начиная от 200 до 800 кг/м, причем пятой порцией закачивают RSP-проппант фракции 12/18 меш концентрацией 1000 кг/м.
Способ гидравлического разрыва пласта
Способ гидравлического разрыва пласта
Способ гидравлического разрыва пласта
Способ гидравлического разрыва пласта
Способ гидравлического разрыва пласта
Способ гидравлического разрыва пласта
Источник поступления информации: Роспатент

Showing 381-390 of 584 items.
29.12.2018
№218.016.ad62

Способ заводнения продуктивных коллекторов нефтегазовой залежи на поздней стадии эксплуатации

Изобретение относится к области добычи продукции из буровых скважин, а именно к способам усиленной добычи углеводородов методом циклического вытеснения водой. Решаемая задача заключается в повышении нефтеотдачи добывающих скважин за счет одновременного использования стационарной закачки...
Тип: Изобретение
Номер охранного документа: 0002676344
Дата охранного документа: 28.12.2018
16.01.2019
№219.016.b003

Фрикционный фонарь-центратор

Изобретение относится к центрирующим устройствам для установки пакеров, якорей и т.п. в эксплуатационную колонну скважин. Фрикционный фонарь-центратор включает корпус с присоединительными резьбами, деформируемое кольцо с равномерно размещенными плашками на наружной поверхности кольца. Корпус...
Тип: Изобретение
Номер охранного документа: 0002677183
Дата охранного документа: 15.01.2019
16.01.2019
№219.016.b03b

Центратор скважинного оборудования

Изобретение относится к нефтегазодобывающей промышленности, в частности к устройствам для центрирования внутрискважинного оборудования. Технический результат – упрощение конструкции и повышение надежности. Центратор содержит корпус с верхней и нижней присоединительными резьбами и центральным...
Тип: Изобретение
Номер охранного документа: 0002677182
Дата охранного документа: 15.01.2019
16.01.2019
№219.016.b078

Башмак для установки профильного перекрывателя в скважине

Изобретение относится к нефтегазодобывающей промышленности, в частности к устройствам для установки расширяемых систем, например профильных перекрывателей при изоляции ими зон осложнений при бурении. Устройство включает корпус с резьбой для соединения с профильным перекрывателем и проходным...
Тип: Изобретение
Номер охранного документа: 0002677129
Дата охранного документа: 15.01.2019
19.01.2019
№219.016.b1bd

Устройство для повторного входа в боковой ствол скважины

Изобретение относится к области бурения, текущего и капитального ремонта нефтяных и газовых скважин. Устройство включает корпус с направляющей поверхностью сверху, спускаемый на колонне труб, и исполнительный элемент, способный перемещаться в корпусе между транспортным положением и положением...
Тип: Изобретение
Номер охранного документа: 0002677520
Дата охранного документа: 17.01.2019
19.01.2019
№219.016.b1c4

Кислотный состав для химической обработки и разглинизации прискважинной зоны пласта

Изобретение относится к области нефте- и газодобычи. Технический результат - увеличение объемов добычи углеводородов за счет увеличения эффективности и результативности операций обработки прискважинной зоны пласта и разглинизации с одновременной экономией материальных и трудовых ресурсов....
Тип: Изобретение
Номер охранного документа: 0002677525
Дата охранного документа: 17.01.2019
19.01.2019
№219.016.b1e0

Извлекаемый клин-отклонитель для повторного входа в дополнительный ствол многоствольной скважины

Изобретение относится к области бурения, текущего и капитального ремонта нефтяных и газовых скважин. Клин-отклонитель включает корпус с направляющей поверхностью сверху, спускаемый на колонне труб, и исполнительный элемент, способный перемещаться в корпусе между транспортным положением и...
Тип: Изобретение
Номер охранного документа: 0002677517
Дата охранного документа: 17.01.2019
29.01.2019
№219.016.b508

Способ снижения водопритока к скважинам

Изобретение относится к нефтяной промышленности и может найти применение при разработке залежей нефти. Технический результат - снижение обводненности и повышение объема добычи нефти. Способ включает выбор добывающей скважины, закачку малосольной воды в течение не менее пяти суток в...
Тип: Изобретение
Номер охранного документа: 0002678338
Дата охранного документа: 28.01.2019
02.02.2019
№219.016.b60c

Способ комплексной обработки промежуточного слоя, стабилизированного сульфидом железа

Изобретение относится к области промысловой подготовки нефти, в частности к обработке высокоустойчивых водонефтяных эмульсий. Изобретение касается способа комплексной обработки промежуточного слоя, стабилизированного сульфидом железа, включающего обработку промежуточного слоя, состоящую из...
Тип: Изобретение
Номер охранного документа: 0002678589
Дата охранного документа: 30.01.2019
02.02.2019
№219.016.b62b

Устройство для вырезания участка обсадной колонны в скважине

Изобретение относится к области нефтяной и горной промышленности и может быть использовано для вырезания участка обсадной колонны в скважине. Устройство содержит корпус с ограничителем в виде кольцевого выступа, центратором и пазами, шарнирно закрепленные в пазах выдвижные резцы. Радиальные...
Тип: Изобретение
Номер охранного документа: 0002678746
Дата охранного документа: 31.01.2019
Showing 381-390 of 400 items.
25.04.2020
№220.018.1941

Устройство для опрессовки превентора на скважине

Изобретение относится к нефтедобывающей промышленности, в частности к устройствам для опрессовки превентора на скважине и/или на стендовой скважине базы производственного обслуживания. Устройство для опрессовки превентора на скважине включает опорную трубу, проходящую через корпус превентора, и...
Тип: Изобретение
Номер охранного документа: 0002719878
Дата охранного документа: 23.04.2020
25.04.2020
№220.018.19ae

Превентор для скважин с наклонным устьем

Изобретение относится к оборудованию для герметизации устья нефтяных и газовых скважин при их эксплуатации и ремонте с целью обеспечения безопасности, предупреждения и ликвидации нефтегазоводопроявлений (НГВП) на скважинах с наклонным устьем. Превентор содержит верхний и нижний фланцы, жестко...
Тип: Изобретение
Номер охранного документа: 0002719884
Дата охранного документа: 23.04.2020
25.04.2020
№220.018.19c8

Стенд для опрессовки превентора на скважине

Изобретение относится к нефтедобывающей промышленности, в частности к устройствам для опрессовки превентора на скважине и/или на стендовой скважине базы производственного обслуживания. Стенд для опрессовки превентора на скважине включает опорную трубу, проходящую через корпус превентора,...
Тип: Изобретение
Номер охранного документа: 0002719879
Дата охранного документа: 23.04.2020
21.06.2020
№220.018.28fa

Способ гидравлического разрыва нефтяного, газового или газоконденсатного пласта

Изобретение относится к нефтегазодобывающей промышленности и может быть применено для увеличения продуктивности добывающих или приемистости нагнетательных скважин, а именно как способ гидравлического разрыва нефтяного, газового или газоконденсатного пласта (ГРП) с использованием легкого...
Тип: Изобретение
Номер охранного документа: 0002723817
Дата охранного документа: 17.06.2020
27.06.2020
№220.018.2b81

Плашечный превентор для скважин с наклонным устьем

Изобретение относится к оборудованию для герметизации устья наклонных скважин сверхвязкой нефти (СВН) при их эксплуатации и ремонте с целью обеспечения безопасности, предупреждения и ликвидации нефтегазоводопроявлений (НГВП), в том числе оснащенных двухрядной колонной труб. Плашечный превентор...
Тип: Изобретение
Номер охранного документа: 0002724703
Дата охранного документа: 25.06.2020
27.06.2020
№220.018.2b9f

Стенд для опрессовки превентора в скважине

Изобретение относится к нефтедобывающей промышленности и предназначено для опрессовки превентора в наклонной скважине и/или на стендовой скважине базы производственного обслуживания. Стенд для опрессовки превентора на скважине включает опорную трубу, проходящую через корпус превентора, наружную...
Тип: Изобретение
Номер охранного документа: 0002724724
Дата охранного документа: 25.06.2020
27.06.2020
№220.018.2bc4

Противовыбросовое устройство для скважин с наклонным устьем

Изобретение относится к оборудованию для герметизации устья нефтяных и газовых скважин при их эксплуатации и ремонте с целью обеспечения безопасности, предупреждения и ликвидации нефтегазоводопроявлений (НГВП) на скважинах сверхвязкой нефти (СВН) с наклонным устьем, в том числе с двухрядной...
Тип: Изобретение
Номер охранного документа: 0002724711
Дата охранного документа: 25.06.2020
27.06.2020
№220.018.2c55

Превентор со сменным кольцом и способ его установки на опорном фланце устьевой арматуры

Изобретение относится к устройствам, используемым в превенторах, предназначенных для герметизации устья нефтяных и газовых скважин с различными типами опорных фланцевых устьевых арматур, в том числе скважин сверхвязкой нефти (СВН) с наклонным устьем и двухрядной колонной труб. Техническими...
Тип: Изобретение
Номер охранного документа: 0002724695
Дата охранного документа: 25.06.2020
18.07.2020
№220.018.3494

Способ разработки многопластовой нефтяной залежи с применением гидравлического разрыва пласта

Изобретение относится к нефтедобывающей промышленности и может быть применено при разработке многопластовой нефтяной залежи с применением гидравлического разрыва пласта (ГРП). Способ включает закачку вытесняющего агента через нагнетательные скважины, отбор пластовых флюидов через добывающие...
Тип: Изобретение
Номер охранного документа: 0002726694
Дата охранного документа: 15.07.2020
21.04.2023
№223.018.50aa

Способ проведения последовательного спуска в скважину двух колонн труб с внутрискважинным оборудованием и устройство для его осуществления

Изобретение относится средствам герметизации устья нефтяных и газовых скважин при проведении спуско-подъёмных операций (СПО) в скважинах, оснащённых двухрядной колонной труб. Техническим результатом является упрощение и обеспечение последовательного выполнения СПО с двумя колоннами труб с...
Тип: Изобретение
Номер охранного документа: 0002794031
Дата охранного документа: 11.04.2023
+ добавить свой РИД