×
25.08.2017
217.015.c2ad

Результат интеллектуальной деятельности: Твердотельный источник электромагнитного излучения

Вид РИД

Изобретение

Аннотация: Заявляемое устройство предназначено для генерации когерентного и некогерентного электромагнитного излучения. Твердотельный источник электромагнитного излучения содержит рабочий слой, выполненный в виде пленки из проводящего ферромагнитного материала. Рабочий слой твердотельного источника расположен на подложке из диэлектрика или полупроводника, прозрачного для излучения рабочего диапазона длин волн. На поверхности рабочего слоя расположена, контактируя с ним, массивная пластина из электропроводящего материала со сквозными отверстиями. В каждое из отверстий вставлен цилиндрический ферромагнитный стержень с заостренным концом так, что острый конец каждого из стержней контактирует с рабочим слоем. Расстояние между осями соседних цилиндрических стержней D должно удовлетворять условию , где n=1, 2, 3, 4… целое число, λ - длина волны излучения, D - диаметр цилиндрического участка стержня. Твердотельный источник электромагнитного излучения содержит источник электропитания, один полюс которого соединен с цилиндрическими стержням, а другой с массивной пластиной с отверстиями. Технический результат заключается в обеспечении возможности увеличения мощности электромагнитного излучения, а также повышения долговечности и надежности работы. 2 ил.

Заявляемое устройство относится к классу квантовых генераторов с токовой накачкой. Оно предназначено для генерации когерентного и некогерентного электромагнитного излучения в диапазоне терагерцовых субмиллиметровых и инфракрасных частот.

Известен источник когерентного излучения (лазер) [Osipov V.V., Brutkovski A.M. Heterolaserand light emittingsource of polarized radiation, United Stats Patent, 6993056, Januari 31, 2006], где введен ферромагнитный материал для инжекции спин-поляризованных электронов в слой полупроводника. Механизм излучения возникает за счет электрон-дырочной рекомбинации. Из-за спиновой поляризации электронов излучение поляризовано. Диапазон излучения оптический или ИК.

Известно устройство [Гуляев Ю.В., Зильберман П.Е., Эпштейн Э.М., Панас А.И., Крикунов А.И. Твердотельный источник электромагнитного излучения. Патент РФ №2344528, январь 20, 2009 г.] для генерации терагерцевого излучения за счет переходов носителей заряда между спиновыми энергетическими подзонами в ферромагнитных проводящих материалах. Оно выполнено в виде многослойной структуры, содержащей три слоя из одного ферромагнитного проводящего материала. Первый слой, являющийся инжектором спин-поляризованных электронов, второй слой - рабочий, где возникает излучение благодаря излучательным переходам носителей зарядов между спиновыми энергетическими подзонами, третий слой для приема отработавших электронов из второго слоя. Недостаток такого устройства заключается в том, что из-за малости размеров его рабочего слоя (десятки нанометров) через него можно пропускать малые токи (единицы микроампер) даже при достижимой рабочей плотности тока 107-109 А/см2, что ограничивает мощность генерации.

Из числа известных технических решений наиболее близким по технической сущности к предлагаемому изобретению является твердотельный источник электромагнитного излучения [Ю.В. Гуляев, П.Е. Зильберман, А.И. Панас, Э.М. Эпштейн, С.Г Чигарев. Твердотельный источник электромагнитного излучения. Патент №2464683. Зарегистрировано в Государственном реестре изобретений Российской Федерации 20 октября 2009 г.], содержащий источник питания, рабочий слой, выполненный в виде пленки из проводящего ферромагнитного материала, расположенной на подложке из диэлектрика или полупроводника, прозрачного для излучения рабочего диапазона длин волн, цилиндрический стержень с заостренным концом из проводящего ферромагнитного материала, соединенный с одним из полюсов источника питания, пластину из проводящего материала со сквозным отверстием, причем контактирующую с рабочим слоем и соединенную с другим полюсом источника питания, диаметр отверстия превышает диаметр стержня, а сам стержень входит в это отверстие так, что его заостренный конец находится в контакте с рабочим слоем. Предельно допустимый ток в таком устройстве 200-300 мА ограничивает мощность излучения. Кроме того, использование одного стержня снижает надежность работы устройства и сокращает его срок службы.

Техническая задача, решаемая предлагаемым изобретением, состоит в повышении мощности электромагнитного излучения твердотельного источника и увеличении надежности его работы в рабочем диапазоне длин волн, в частности в терагерцовом диапазоне.

Указанная задача решается тем, что твердотельный источник электромагнитного излучения, содержащий источник питания, рабочий слой, выполненный в виде пленки из проводящего ферромагнитного материала, расположенной на подложке из диэлектрика или полупроводника, прозрачного для излучения рабочего диапазона длин волн, цилиндрический стержень с заостренным концом из проводящего ферромагнитного материала, соединенный с одним из полюсов источника питания, пластину из проводящего материала со сквозным отверстием, контактирующую с рабочим слоем и соединенную с другим полюсом источника питания, диаметр отверстия превышает диаметр стержня, а сам стержень входит в это отверстие так, что его заостренный конец находится в контакте с рабочим слоем, в отличие от известного дополнительно содержит несколько цилиндрических стержней, выполненных аналогично указанному выше и соединенных с тем же полюсом источника питания, а пластина дополнительно содержит несколько отверстий, аналогичных указанному выше отверстию, причем число отверстий равно числу цилиндрических стержней, каждый из которых входит в соответствующее отверстие так, что его заостренный конец находится в контакте с рабочим слоем, при этом расстояние D между осями соседних стержней выбрано из условия

где n=1, 2, 3, 4… целое число, λ - длина волны излучения, D1 - диаметр

цилиндрического участка стержня.

Изобретение поясняется рисунками, где на фиг. 1 изображена конструкция устройства (вид сбоку), на фиг. 2 изображены энергетические спиновые подзоны для электронов, имеющих спины противоположной ориентации, направление которых указано тонкими стрелками. Направление вниз - параллельно намагниченности стержня, направление вверх - антипараллельно намагниченности стержня. Такая картина наблюдается для каждого из цилиндрических стержней.

Предложенный твердотельный источник электромагнитного излучения (см. фиг. 1) содержит источник питания 1, рабочий слой 2, выполненный в виде пленки из проводящего ферромагнитного материала, расположенной на подложке 3 из диэлектрика или полупроводника, прозрачного для излучения рабочего диапазона длин волн, несколько цилиндрических стержней 4 с заостренными концом из проводящего ферромагнитного материала, соединенных с одним из полюсов источника питания 1, пластину 5 из проводящего материала со сквозными отверстиями 6, число отверстий 6 равно числу цилиндрических стержней 4, каждый из которых входит в соответствующее отверстие 6 так, что его заостренный конец находится в контакте с рабочим слоем 2. Расстояние D между осями соседних цилиндрических стержней 4 выбрано из условия

где n=1, 2, 3, 4… целое число, λ - длина волны излучения, D1 - диаметр цилиндрического участка стержня. Пластина 5 соединена с другим полюсом источника питания 1.

Торец заостренного конца каждого из цилиндрических стержней 4 в плане может иметь произвольную форму (окружность, эллипс, многоугольник и тому подобное). При этом протяженность границы торца - его периметр, определяется из условия

где I - ток, протекающий через твердотельный источник электромагнитного излучения, jn - минимальное значение плотности тока, необходимого для работы твердотельного источника электромагнитного излучения, Δ - толщина рабочего слоя 2, которая выбирается соизмеряемой с толщиной скин-слоя для материала рабочего слоя 2. Цилиндрические стержни 4 служат для подвода электрического тока, формирования намагниченности М2 рабочего слоя 2 и являются радиаторами, охлаждающими рабочую область слоя 2.

Намагниченность М1 каждого из цилиндрических стержней 4 (см. фиг. 1) направлена вдоль его оси, намагниченность М рабочего слоя 2 при отсутствии цилиндрических стержней 4 направлена параллельно плоскости слоя 2, перпендикулярно оси цилиндрических стержней 4. Контакт цилиндрических стержней 4 с рабочим слоем 2 обеспечивает из-за суперпозиции полей М1 и М появление в рабочем слое 2 для каждого контакта составляющей намагниченности М2, параллельной оси цилиндрических стержней 4 и имеющей направленность, противоположную М1 [Е.А. Вилков, П.Е. Зилберман, Г.М. Михайлов, С.Г. Чигарев. Магнитостатическое поле в ТГц структуре стержень-пленка // РЭ, 2014, том 59, №10, с. 1-10]. Такое распределение намагниченности для каждого цилиндрического стержня обеспечивается разнесением соседних цилиндрических стержней на расстояние D, большее диаметра цилиндрического участка стержня 4.

Эффект сложения мощностей излучения от каждого цилиндрического стержня 4 достигается накладыванием на расстояние D дополнительного условия фазирования сигнала

где n=1, 2, 3, 4… целое число, λ - длина волны излучения, D1 - диаметр цилиндрического участка стержня.

Эффект сложения мощности излучения от каждого цилиндрического стержня 4 может достигаться и накоплением мощности в резонансной системе, с выводом ее части из резонатора в свободное пространство. Но и в этом случае необходимо выполнение условия (1).

Устройство работает следующим образом (см. фиг. 2, на которой энергетические подзоны изображены по оси энергии Е). При подаче на цилиндрические стержни 4 и пластину 5 напряжения U источника питания 1 в его цепи возникает электрический ток. Проходя по цилиндрическим стержням 4, спины электронов тока в каждом из цилиндрических стержней ориентируются по или против намагниченности М1, занимая соответственно нижнюю (параллельные спины) или верхнюю (антипараллельные спины) энергетические подзоны, то есть происходит спин-поляризация электрического тока. Поляризации электронов обозначены на фиг. 2 тонкими стрелками. Поляризованный по спину электрический ток, находясь в энергетическом равновесии, удерживаемом намагниченностью М1 за счет смещения по энергии дна подзон на величину ΔЕ1, но имея для обеих энергетических подзон общий уровень Ферми εF, указанный на фиг. 2 штриховой линией, вытекает из цилиндрических стержней 4 и растекается по рабочему слою 2 с иной намагниченностью М2 от каждого стержня до границы соответствующего отверстия 6 пластины 5. Электроны тока, оказавшись в рабочем слое 2 с иной намагниченностью М2, испытывают обменное взаимодействие с намагниченностью М2, направленной против М1,. приводящей к изменению смещения дна подзон до величины ΔЕ2. В результате этого взаимодействия энергетические подзоны меняют свое положение по энергии Е. Электроны со спинами, антипараллельными М1, опускаются по энергии до уровня, показанного на фиг. 2 штрихпунктирной жирной линией, а электроны с противоположными спинами увеличивают свою энергию до уровня, показанного жирной сплошной линией. С учетом кинетической энергии инжектированных из стержней 4 электронов они заполняют все состояния между дном подзон и соответствующими квазиуровнями Ферми εF↓ и εF↑, показанными на фиг. 2 тонкими линиями. Таким образом, спин-поляризованный электрический ток оказывается в энергетически возбужденном состоянии, что наблюдается на длине спиновой релаксации l~30 нм. Проходя этот участок рабочего слоя 2 за границей торца острия каждого из цилиндрических стержней 4, энергетически возбужденные электроны релаксируют с излучением кванта энергии.

Для достижения мощности излучения, превышающей мощность потерь в рабочем слое 2, необходима большая плотность тока 106-109 А/см2. Такая плотность тока достигается в рабочем слое 2 для каждого из цилиндрических стержней 4 у торца его острия из-за малости толщины рабочего слоя (десятки нанометров) и определяется соотношением (2).

В частном случае, когда торец острия каждого из цилиндрических стержней 4 имеет круглую форму, его периметр L=2Rπ, где R - радиус торца острия цилиндрического стержня. Оценка для круглого торца острия стержней 4 показывает, что при электрическом токе 0,1 А, протекающем через каждый цилиндрический стержень 4, плотность тока 107 А/см2 в рабочем слое 2 достигается при R=10 мкм и толщине пленки Δ=10 нм. Опыт работы с заявляемым устройством показывает допустимость протекания и больших значений тока через каждый цилиндрический стержень 4, вплоть до значения в несколько сот мА.

Возможность пропускания таких токов через заявляемое устройство объясняется тем, что высокая плотность тока наблюдается только в очень малом объеме рабочей области 2, определяемом длиной спиновой релаксации (20-30 нм). При удалении от границы торца каждого из цилиндрических стержней 4 плотность тока уменьшается обратно пропорционально расстоянию от его центра. В каждом цилиндрическом стержне 4 наибольшая плотность тока в R/Δ раз меньше плотности тока, достигаемой в рабочей области слоя 2 по границе торца острия каждого из цилиндрических стержней 4.

Работоспособность устройства при таких токах обусловлена еще и тем, что каждый из металлических цилиндрических стержней 4 играет роль радиатора, отводящего тепло из рабочей области. Пластина 5 дополнительно отводит тепло от рабочего слоя 2.

Так как толщина Δ рабочего слоя 2 соизмерима с толщиной скин-слоя на рабочих частотах, то рабочая область слоя 2 представляет собой монолитный излучатель, от которого по всем направлениям в телесный угол 4π распространяется излучение. Электромагнитные волны из рабочей области, слоя 2, распространяются в открытое пространство за подложкой 3.


Твердотельный источник электромагнитного излучения
Твердотельный источник электромагнитного излучения
Твердотельный источник электромагнитного излучения
Твердотельный источник электромагнитного излучения
Твердотельный источник электромагнитного излучения
Источник поступления информации: Роспатент

Showing 21-30 of 91 items.
10.06.2015
№216.013.4f9d

Способ обнаружения неоднородностей линейной формы в оптически непрозрачных средах

Изобретение относится к области радиовидения и может быть применено для обнаружения в миллиметровом диапазоне волн неоднородностей линейной формы в оптически непрозрачных средах. Достигаемый технический результат изобретения - определение точной формы линейных неоднородностей и повышение...
Тип: Изобретение
Номер охранного документа: 0002551902
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.5116

Способ изготовления оптического волокна с эллиптической сердцевиной

Изобретение относится к волоконной оптике, в частности к технологии изготовления оптических волокон (ОВ) с высоким двулучепреломлением, сохраняющих поляризацию излучения. Химическим осаждением на внутреннюю поверхность кварцевой трубы наносят слои изолирующей и отражательной оболочек и...
Тип: Изобретение
Номер охранного документа: 0002552279
Дата охранного документа: 10.06.2015
10.08.2015
№216.013.6a38

Способ дистанционного обнаружения неоднородностей в оптически непрозрачных средах

Изобретение относится к областям радиолокации и дистанционного зондирования и может быть использовано для обнаружения протяженных неоднородностей в оптически непрозрачных средах. Достигаемый технический результат - уменьшение влияния помех, возникающих из-за интерференции отраженных объектом...
Тип: Изобретение
Номер охранного документа: 0002558745
Дата охранного документа: 10.08.2015
20.08.2015
№216.013.6f08

Акустооптическое устройство с перестраиваемым углом наклона пьезопреобразователя

Изобретение относится к акустооптическому устройству, предназначенному для управления оптическим излучением посредством акустооптической брэгговской дифракции света на звуке, и может использоваться для управления амплитудой, частотой, фазой и поляризацией оптического излучения....
Тип: Изобретение
Номер охранного документа: 0002559994
Дата охранного документа: 20.08.2015
10.02.2016
№216.014.c2a9

Вибровискозиметрический датчик

Изобретение относится к области определения вибрационным методом сдвиговой вязкости небольших объемов жидкости в локальной области при одновременном измерении ее температуры. Вибровискозиметрический датчик содержит миниатюрный индуктивный датчик текущего положения миниатюрного зонда,...
Тип: Изобретение
Номер охранного документа: 0002574862
Дата охранного документа: 10.02.2016
20.03.2016
№216.014.cd45

Способ получения монокристаллических алмазных эпитаксиальных пленок большой площади

Изобретение относится к электронной технике и может быть использовано при разработке технологии алмазных электронных приборов увеличенной площади. Способ включает закрепление на подложке монокристаллических алмазных пластин с ориентацией поверхности (100) и последующее нанесение на пластины...
Тип: Изобретение
Номер охранного документа: 0002577355
Дата охранного документа: 20.03.2016
10.05.2016
№216.015.3c63

Способ определения оптимального содержания депрессорной присадки в смазочных композициях

Изобретение относится к области исследования материалов и может быть использовано для исследования вязкостно-температурных свойств жидкости и количественной оценки интенсивности и динамики структурных превращений в процессе подбора состава смазочных композиций моторных масел на стадии их...
Тип: Изобретение
Номер охранного документа: 0002583921
Дата охранного документа: 10.05.2016
20.08.2016
№216.015.4c43

Регулируемая свч линия задержки на поверхностных магнитостатических волнах

Использование: для обработки сигналов в широкополосных СВЧ системах различного назначения. Сущность изобретения заключается в том, что регулируемая СВЧ линия задержки на магнитостатических волнах, содержит установленную неподвижно на основании диэлектрическую подложку с расположенными на ней...
Тип: Изобретение
Номер охранного документа: 0002594382
Дата охранного документа: 20.08.2016
20.08.2016
№216.015.4c59

Устройство для измерения скорости жидкости

Изобретение относится к электроизмерениям и может быть использовано для измерения скорости электропроводной жидкости и ее флуктуаций. Устройство для измерения скорости жидкости содержит измеритель электрического сопротивления и два подключенных к нему электрода, один из которых закреплен...
Тип: Изобретение
Номер охранного документа: 0002594989
Дата охранного документа: 20.08.2016
10.08.2016
№216.015.54c6

Способ изготовления устройств с тонкопленочными сверхпроводниковыми переходами

Использование: для изготовления сверхпроводниковых туннельных переходов, джозефсоновских переходов. Сущность изобретения заключается в том, что наносят без разрыва вакуума трехслойную структуру сверхпроводник - изолятор - нормальный металл (СИН контакт); наносят резист, проводят экспозицию,...
Тип: Изобретение
Номер охранного документа: 0002593647
Дата охранного документа: 10.08.2016
Showing 21-30 of 51 items.
10.06.2015
№216.013.4f9d

Способ обнаружения неоднородностей линейной формы в оптически непрозрачных средах

Изобретение относится к области радиовидения и может быть применено для обнаружения в миллиметровом диапазоне волн неоднородностей линейной формы в оптически непрозрачных средах. Достигаемый технический результат изобретения - определение точной формы линейных неоднородностей и повышение...
Тип: Изобретение
Номер охранного документа: 0002551902
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.5116

Способ изготовления оптического волокна с эллиптической сердцевиной

Изобретение относится к волоконной оптике, в частности к технологии изготовления оптических волокон (ОВ) с высоким двулучепреломлением, сохраняющих поляризацию излучения. Химическим осаждением на внутреннюю поверхность кварцевой трубы наносят слои изолирующей и отражательной оболочек и...
Тип: Изобретение
Номер охранного документа: 0002552279
Дата охранного документа: 10.06.2015
10.08.2015
№216.013.6a38

Способ дистанционного обнаружения неоднородностей в оптически непрозрачных средах

Изобретение относится к областям радиолокации и дистанционного зондирования и может быть использовано для обнаружения протяженных неоднородностей в оптически непрозрачных средах. Достигаемый технический результат - уменьшение влияния помех, возникающих из-за интерференции отраженных объектом...
Тип: Изобретение
Номер охранного документа: 0002558745
Дата охранного документа: 10.08.2015
20.08.2015
№216.013.6f08

Акустооптическое устройство с перестраиваемым углом наклона пьезопреобразователя

Изобретение относится к акустооптическому устройству, предназначенному для управления оптическим излучением посредством акустооптической брэгговской дифракции света на звуке, и может использоваться для управления амплитудой, частотой, фазой и поляризацией оптического излучения....
Тип: Изобретение
Номер охранного документа: 0002559994
Дата охранного документа: 20.08.2015
10.02.2016
№216.014.c2a9

Вибровискозиметрический датчик

Изобретение относится к области определения вибрационным методом сдвиговой вязкости небольших объемов жидкости в локальной области при одновременном измерении ее температуры. Вибровискозиметрический датчик содержит миниатюрный индуктивный датчик текущего положения миниатюрного зонда,...
Тип: Изобретение
Номер охранного документа: 0002574862
Дата охранного документа: 10.02.2016
20.03.2016
№216.014.cd45

Способ получения монокристаллических алмазных эпитаксиальных пленок большой площади

Изобретение относится к электронной технике и может быть использовано при разработке технологии алмазных электронных приборов увеличенной площади. Способ включает закрепление на подложке монокристаллических алмазных пластин с ориентацией поверхности (100) и последующее нанесение на пластины...
Тип: Изобретение
Номер охранного документа: 0002577355
Дата охранного документа: 20.03.2016
10.05.2016
№216.015.3c63

Способ определения оптимального содержания депрессорной присадки в смазочных композициях

Изобретение относится к области исследования материалов и может быть использовано для исследования вязкостно-температурных свойств жидкости и количественной оценки интенсивности и динамики структурных превращений в процессе подбора состава смазочных композиций моторных масел на стадии их...
Тип: Изобретение
Номер охранного документа: 0002583921
Дата охранного документа: 10.05.2016
20.08.2016
№216.015.4c43

Регулируемая свч линия задержки на поверхностных магнитостатических волнах

Использование: для обработки сигналов в широкополосных СВЧ системах различного назначения. Сущность изобретения заключается в том, что регулируемая СВЧ линия задержки на магнитостатических волнах, содержит установленную неподвижно на основании диэлектрическую подложку с расположенными на ней...
Тип: Изобретение
Номер охранного документа: 0002594382
Дата охранного документа: 20.08.2016
20.08.2016
№216.015.4c59

Устройство для измерения скорости жидкости

Изобретение относится к электроизмерениям и может быть использовано для измерения скорости электропроводной жидкости и ее флуктуаций. Устройство для измерения скорости жидкости содержит измеритель электрического сопротивления и два подключенных к нему электрода, один из которых закреплен...
Тип: Изобретение
Номер охранного документа: 0002594989
Дата охранного документа: 20.08.2016
10.08.2016
№216.015.54c6

Способ изготовления устройств с тонкопленочными сверхпроводниковыми переходами

Использование: для изготовления сверхпроводниковых туннельных переходов, джозефсоновских переходов. Сущность изобретения заключается в том, что наносят без разрыва вакуума трехслойную структуру сверхпроводник - изолятор - нормальный металл (СИН контакт); наносят резист, проводят экспозицию,...
Тип: Изобретение
Номер охранного документа: 0002593647
Дата охранного документа: 10.08.2016
+ добавить свой РИД