×
25.08.2017
217.015.c23e

Результат интеллектуальной деятельности: СПОСОБ РЕГИСТРАЦИИ ФАЗОВОГО ПЕРЕХОДА В МАТЕРИАЛЕ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металловедения и физико-химическому анализу веществ, в частности, к способу определения протекания фазовых переходов в металлах и сплавах. Заявлен способ регистрации фазового перехода в материале при воздействии на него давления и температуры, в котором давление на материал создают воздействием газообразной среды, а регистрацию фазового перехода осуществляют по отклонению давления газообразной среды, вызванному изменением объема материала. При этом используют газообразную среду, инертную по отношению к исследуемому материалу. Техническим результатом является повышение точности и чувствительности регистрации фазового перехода, простоты и компактности оборудования, а также возможность определять фазовые переходы при воздействии высоких давлений и температур и достичь малой инерционности системы измерений. 1 з.п. ф-лы, 4 ил.

Изобретение относится к области металловедения и физико-химическому анализу веществ, в частности к способу определения протекания фазовых переходов в металлах и сплавах. В общем случае, способ может быть применен для исследования наличия и характеристик фазовых переходов в любых материалах.

Исторически первыми приборами были рычажные (механические) дилатометры, в которых малое изменение размера образца через систему рычагов вызывало многократно увеличенное смещение стрелки относительно шкалы (Дилатометр // Энциклопедический словарь Брокгауза и Ефрона. В 86 томах. СПб. 1890-1907). В настоящее время широко используются дилатометры, основанные на оптико-механическом, емкостном, индукционном, интерференционном, рентгеновском или радиорезонансном способах определения изменения объема тел при исследованиях протекания фазовых переходов (Дилатометрия // Большая Российская энциклопедия. В 30 томах. Том 8. - М.: Большая Российская энциклопедия, 2007. С. 748-749). Данные виды дилатометров не позволяют работать с образцами материалов под высоким давлением.

Существуют и другие способы определения протекания фазовых переходов. За прототип, как наиболее близкий по технической сущности, взят способ регистрации фазовых переходов в материалах при воздействии на материал давления и температуры, где регистрация фазового перехода осуществляется по изменению температуры образца из исследуемого материала ввиду изменения свойств образца при постоянном или меняющемся тепловом потоке, протекающем через пуансоны и образец. (А.С. СССР №1371198 A1, G01N 25/02, опубл. 15.04.1994. Щенников В.В. Способ регистрации фазового перехода).

Однако данный способ обладает следующими недостатками. В случае низких прочностных свойств исследуемого материала при высоких давлениях необходимо использовать дополнительную оснастку, которая позволяет сохранить форму образца из исследуемого материала (предотвращает сильные деформации, а также выдавливание материала в зазоры между оснасткой и пуансонами). Выбранный в прототипе способ создания необходимого давления сопряжен с использованием громоздкого оборудования. Изменение температуры в данном способе является следствием изменения теплопроводности материала при протекании фазового перехода, что с учетом тепловой инертности системы и погрешности измерения температуры может давать низкую чувствительность данного способа.

Задачей настоящего изобретения является повышение точности и чувствительности регистрации фазового перехода в материале при одновременном упрощении способа.

При использовании изобретения достигается следующий технический результат:

- повышается точность и чувствительность регистрации фазового перехода;

- появляется возможность использовать относительно простое, компактное и дешевое оборудование;

- достигается возможность определять характеристики фазовых переходов при равномерном всестороннем сжатии при больших давлениях и при высоких температурах, что повышает точность регистрации;

- достигается малая инерционность системы измерений.

Для решения указанной задачи и достижения технического результата предложен способ регистрации фазового перехода в материале при воздействии на него давления и температуры, в котором, согласно изобретению, давление на материал создают воздействием газообразной среды, а регистрацию фазового перехода осуществляют по отклонению давления газообразной среды, вызванному изменением объема материала. При этом необходимо использовать газообразную среду, инертную по отношению к исследуемому материалу.

Суть изобретения заключается в следующем. Образец из исследуемого материала помещается внутрь высокопрочной исследовательской ячейки, в которую после герметизации подается газ под давлением. Далее ячейка равномерно нагревается со скоростями, которые обеспечивают малые градиенты температуры по объему исследуемого образца, при этом давление газа внутри ячейки возрастает согласно уравнению состояния для используемого газа. Давление газа увеличивается преимущественно из-за увеличения температуры газа и лишь немного из-за изменения объема внутренней полости вследствие температурного расширения материала образца и материала ячейки. При достижении температуры и давления фазового перехода материал образца меняет объем, следствием чего является дополнительное изменение давления газа внутри ячейки. В случае увеличения объема образца свободный объем ячейки уменьшается и давление возрастает, а в случае уменьшения объема образца свободный объем ячейки увеличивается и давление уменьшается. Такое изменение давления также описывается уравнением состояния данного газа, но зависит от изменения объема, занимаемого газом. Поскольку во время фазового перехода нагрев осуществляется медленно, то вклад увеличения температуры в изменение давления незначителен (меньше чем изменение давления от изменения объема) и поддается оценке с помощью уравнения состояния. После протекания фазового перехода объем образца стабилизируется, и при дальнейшем медленном равномерном нагревании ячейки с образцом будет снова происходить изменение давления газа преимущественно за счет изменения температуры. В результате регистрируются кривые изменения давления и температуры от времени, из которых, зная уравнение состояния используемого газа, можно выделить изменение давления, связанное с изменением температуры газа, изменением давления, обусловленного изменением объема занятого газом вследствие теплового расширения материала образца и материала ячейки, и изменение давления, обусловленное значительным изменением объема образца во время фазового перехода. Это позволяет в дальнейшем, после обработки данных, указать температуру и давление начала фазового перехода, скорость протекания фазового перехода, изменение объема материала при протекании фазового перехода.

Для определения фазового перехода по полученным данным строим график зависимости изменения давления от температуры Р(Т). В обычных условиях рост давления газа пропорционален росту температуры, т.е. кривая Р(Т) имеет практически линейную зависимость (наклон незначительно меняется при изменении давления ввиду изменения сжимаемости газа). Любые значительные отклонения от этой зависимости свидетельствуют об изменениях в материале образца. Продифференцировав кривую Р(Т) по температуре, т.е. перестроив ее в координатах dP/dT, более точно можно определить температуру начала и окончания фазового перехода, а также кинетику фазового перехода. Пример кривых Р(Т) и dP/dT для поиска фазового перехода приведен на фиг. 4. На продифференцированной кривой четко выражен пик, соответствующий фазовому переходу.

Газ, используемый в исследованиях, желательно выбирать из условий

- химической инертности по отношению к исследуемому материалу и конструкционным материалам, примененным в конструкции ячейки;

- малой растворимости и низкого коэффициента диффузии в материалах;

- требуемой величины сжимаемости газа в используемой области давлений и температур;

- наличия достаточно точного уравнения состояния газа в используемой области давлений и температур либо точных экспериментальных данных по сжимаемости газа.

В заявляемом способе создаваемое давление газа воздействует на материал образца со всех сторон, поэтому прочностные характеристики исследуемого материала не важны. Современное оборудование для создания давления газа до нескольких тысяч атмосфер является достаточно компактным (использование термокомпрессоров, газогенераторов). Регистрация фазовых переходов в данном изобретении основана на регистрации изменения давления газовой среды, где основная погрешность измерений определяется используемым датчиком давления (при условии герметичности ячейки, малых деформациях внутренней полости ячейки при воздействии высокого давления) и погрешностью используемого уравнения состояния (менее 0,5% для газов, широко используемых в науке и технике). Инерция такой системы регистрации крайне мала.

Ha фигуре 1 приведена одна из возможных конструктивных схем исследовательской ячейки.

На фигуре 2 приведена одна из возможных газовых схем установки для проведения регистрации фазовых переходов в материале.

На фигуре 3 показан типичный график изменения давления и температуры от времени с указанием, какие процессы определяют изменение давления. График получен при математическом моделировании процессов.

На фигуре 4 приведены экспериментальный график зависимости давления от температуры и кривая, полученная при дифференцировании.

На указанных чертежах использованы следующие обозначения.

На фиг. 1: 1 - штуцер для подачи газа; 2 - нагреватель; 3 - теплоизоляция; 4 - крышка; 5 - место для образца из исследуемого материала; 6 - место установки термопары; 7 - уплотнение; 8 - основание; 9 - резьбовое соединение.

На фиг. 2: 10 - источник газа с нагревателем; 11 - исследовательская ячейка, в которую помещается образец; 12 - вентиль источника газа; 13 - вентиль исследовательской ячейки; 14 - вентиль коммуникации отвода газа (на вакуумный пост и в атмосферу); 15 - коммуникация отвода газа в атмосферу; 16 - датчик для контроля давления газа в источнике газа; 17 - датчик для контроля давления газа в исследовательской ячейке.

На фиг. 3: 18 - фрагменты графика давления, где рост давления преимущественно вызван ростом температуры; 19 - фрагмент графика давления, где рост давления преимущественно вызван изменением объема образца вследствие фазового перехода; 20 - график изменения температуры от времени; 21 - график изменения давления от времени.

Использование способа заключается в следующем.

Внутрь основания 8 в место установки термопары 6 (фиг. 1) устанавливается термопара или платиновый датчик температуры с термопастой для улучшения теплопроводности. Основание 8 крепится к рабочей поверхности. На основание 8 устанавливается уплотнение 7. Устанавливается исследуемый образец на основание 8 так, чтобы после сборки он оказался в полости между крышкой 4 и основанием 8 (место для образца 5). После чего крышку 4 закручивают (резьбовое соединение 9) относительно основания 8 до резкого возрастания усилия. На крышку 4 устанавливаются нагреватель 2 и теплоизоляция 3. Собранная исследовательская ячейка 11 (фиг. 2) стыкуется к вентилю 13 установки подачи газа посредством штуцера 1 (фиг. 1).

Эксперимент начинается с вакуумирования (при необходимости удалить воздух или иную газовую среду, в которой производилась сборка ячейки) и проверки герметичности собранной ячейки (необходимо для дальнейшей корректности получаемых результатов). Для проверки герметичности могут использоваться различные способы, в частности подача давления газа и выдержка в течение относительно длительного времени. При этом падение давления газа по датчику 17 указывает на наличие течи. После проверки герметичности в ячейке 11 (фиг. 2) создаются условия, соответствующие началу эксперимента, т.е. подается газ под необходимым давлением с источника 10 через вентили 12 и 13 в исследовательскую ячейку 11, вентиль 13 закрывается, и ячейка 11 с образцом нагревается нагревателем 2 (фиг. 1) до нужной температуры (до температуры области, где предполагается наличие фазового перехода). Давление газа в исследовательской ячейке 11 контролируется по датчику давления 17. Далее обеспечивается медленный равномерный нагрев ячейки 11 с образцом в предполагаемой области фазового перехода. При этом регистрируются давление газа и температура (см. фиг. 3). Изменению давления газа от температуры соответствуют более пологие участки 18 графика давления, а в области фазового перехода участок графика 19 более крутой. Сопоставление графиков изменения от времени температуры 20 и давления 21 позволяет определить температуру и давление, при которых происходит фазовый переход, а также длительность по времени. После завершения эксперимента ячейка 11 охлаждается, газ стравливается через вентили 13 и 14 в атмосферу по коммуникации 15, образец извлекается. Полученные экспериментальные данные (фиг. 4) подтверждают результаты математического моделирования (фиг. 3), где смоделировано изменение давления в зависимости от температуры и изменения свободного объема ячейки при фазовом переходе материала образца для заявляемого способа регистрации фазовых переходов.

Данный способ позволяет изучать фазовые переходы в различных веществах и материалах (в галлии, церии, олове, стронции, лантане и др., а также в различных сплавах) при давлениях до нескольких тысяч атмосфер и температурах до 500-600 градусов Цельсия (при использовании в конструкции ячейки специальных сталей). Температурный диапазон может быть расширен при использовании жаропрочных конструкционных материалов, что позволяет данным способом изучать фазовые переходы при высоких температурах (в титане, цирконии и др.).

Преимущества данного способа определения фазовых диаграмм заключаются в относительной простоте и компактности исполнения оборудования, его дешевизне по сравнению с оборудованием для ряда дилатометрических методов. Наиболее важное преимущество заявляемого способа заключается в повышении точности и чувствительности регистрации фазового перехода, возможности определять фазовые переходы при воздействии больших давлений и температур на материал, равномерности воздействия давления на образец из изучаемого материала, малой инерционности системы измерения.


СПОСОБ РЕГИСТРАЦИИ ФАЗОВОГО ПЕРЕХОДА В МАТЕРИАЛЕ
СПОСОБ РЕГИСТРАЦИИ ФАЗОВОГО ПЕРЕХОДА В МАТЕРИАЛЕ
СПОСОБ РЕГИСТРАЦИИ ФАЗОВОГО ПЕРЕХОДА В МАТЕРИАЛЕ
СПОСОБ РЕГИСТРАЦИИ ФАЗОВОГО ПЕРЕХОДА В МАТЕРИАЛЕ
Источник поступления информации: Роспатент

Showing 211-220 of 499 items.
17.11.2018
№218.016.9e35

Способ изготовления светопоглощающих элементов оптических систем на стальных подложках

Изобретение относится к области гальванотехники и может быть использовано для изготовления светопоглощающих элементов оптических электронных приборов и оптических систем зеркал, телескопов космических аппаратов. Способ включает предварительную подготовку стальной подложки, обезжиривание и...
Тип: Изобретение
Номер охранного документа: 0002672655
Дата охранного документа: 16.11.2018
21.11.2018
№218.016.9f03

Дифференциальный измерительный преобразователь

Изобретение относится к области измерительной техники, а именно к измерительным преобразователям с частотной формой выходных сигналов. Дифференциальный измерительный преобразователь содержит два генератора частотных сигналов с частотозадаюшими элементами, выходы которых соединены со входами...
Тип: Изобретение
Номер охранного документа: 0002672793
Дата охранного документа: 19.11.2018
21.11.2018
№218.016.9f62

Способ определения коэффициентов трения скольжения и покоя

Изобретение относится к области механических испытаний материалов, в частности к определению коэффициента трения между образцами. Сущность: один из образцов, закрепляемый неподвижно, изготавливают с рабочей поверхностью, имеющей прямолинейную или вогнутую круговую форму. На некотором расстоянии...
Тип: Изобретение
Номер охранного документа: 0002672809
Дата охранного документа: 19.11.2018
21.11.2018
№218.016.9f7d

Устройство для определения положения в пространстве и скорости движущейся плоской поверхности

Использование: для применения в испытаниях на ударное воздействие. Сущность изобретения заключается в том, что устройство для определения положения в пространстве и скорости движущейся плоской поверхности содержит группу установленных на общей платформе электрических контактных датчиков,...
Тип: Изобретение
Номер охранного документа: 0002672808
Дата охранного документа: 19.11.2018
23.11.2018
№218.016.9fc7

Способ определения наличия подрыва взрывчатого вещества, содержащегося в объекте испытания, при его взаимодействии с преградой

Изобретение относится к области испытательной и измерительной техники, а именно к испытаниям и проверке боеприпасов. Заявляемый способ включает получение при помощи высокоскоростной видеокамеры серии изображений распространения воздушной ударной волны (ВУВ), созданной движением объекта...
Тип: Изобретение
Номер охранного документа: 0002672922
Дата охранного документа: 21.11.2018
23.11.2018
№218.016.9fed

Шихта для получения горячим прессованием высокотемпературного композиционного антифрикционного материала на никелевой основе

Изобретение относится к получению горячим прессованием высокотемпературного композиционного антифрикционного материала на никелевой основе. Шихта содержит нанопорошки никеля (Ni) и молибдена (Мо), порошок дисульфида молибдена (MoS) и порошок меди (Cu). При этом частицы порошка дисульфида...
Тип: Изобретение
Номер охранного документа: 0002672975
Дата охранного документа: 21.11.2018
30.11.2018
№218.016.a25e

Устройство для защиты ядерного реактора по превышению мощности

Изобретение относится к ядерной технике, в частности к области контроля функционирования и защиты ядерных установок. Устройство для зашиты ядерного реактора по превышению мощности содержит измеритель мощности, задатчик уставок предупредительных и аварийных сигналов, два блока сравнения сигнала...
Тип: Изобретение
Номер охранного документа: 0002673448
Дата охранного документа: 27.11.2018
13.12.2018
№218.016.a5cf

Волноводная антенна

Изобретение относится к области радиотехники, а именно к области волноводных антенн, и может быть использовано в качестве приемопередающих антенн различных радиотехнических систем, например, на подвижных объектах или в качестве облучателя зеркальных антенн. Волноводная антенна содержит круглый...
Тип: Изобретение
Номер охранного документа: 0002674564
Дата охранного документа: 11.12.2018
13.12.2018
№218.016.a628

Измеритель средней температуры

Изобретение относится к информационно-измерительной технике и может быть использовано для преобразования температуры в напряжение. Измеритель содержит не менее двух термопреобразователей, аналоговый мультиплексор с шиной управления, стабилитрон, источник постоянного напряжения, первый и второй...
Тип: Изобретение
Номер охранного документа: 0002674558
Дата охранного документа: 11.12.2018
14.12.2018
№218.016.a6d9

Устройство согласования замедляющей системы

Изобретение относится к области электронной техники, в частности к устройствам согласования замедляющих систем сверхвысокочастотных приборов О-типа с длительным взаимодействием. Устройство согласования замедляющей системы содержит металлический цилиндрический корпус с расположенной внутри него...
Тип: Изобретение
Номер охранного документа: 0002674750
Дата охранного документа: 13.12.2018
Showing 131-133 of 133 items.
04.04.2018
№218.016.3700

Способ определения показателей однородности дисперсного материала спектральным методом и способ определения масштабных границ однородности дисперсного материала спектральным методом

Изобретения относятся к области определения однородности дисперсных материалов и могут найти применение в порошковой металлургии, в самораспространяющемся высокотемпературном синтезе, в материаловедении и аналитической химии. Способ определения показателей однородности дисперсного материала...
Тип: Изобретение
Номер охранного документа: 0002646427
Дата охранного документа: 05.03.2018
14.11.2018
№218.016.9d3a

Таблетка для изготовления тепловыделяющего элемента ядерного реактора на быстрых нейтронах

Изобретение относится к ядерной технике, в частности к ядерному горючему и способам изготовления дисперсионных топливных таблеток тепловыделяющих элементов. Таблетка для изготовления тепловыделяющего элемента ядерного реактора на быстрых нейтронах содержит равномерно распределенные по объему...
Тип: Изобретение
Номер охранного документа: 0002672256
Дата охранного документа: 13.11.2018
03.08.2019
№219.017.bbfc

Воспламенительный пиротехнический состав

Изобретение относится к пиротехническому малогазовому воcпламенительному составу, который может быть использован для воспламенения рабочего заряда, заключенного в металлическую оболочку, при индукционном нагреве содержащих воспламенительный и рабочий заряды металлических конструкций....
Тип: Изобретение
Номер охранного документа: 0002696387
Дата охранного документа: 01.08.2019
+ добавить свой РИД