×
25.08.2017
217.015.c1d9

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ МАНГАНИТОВ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к методам определения состава и количества компонентов, входящих как в природные минералы, так и соединения, полученные в различных химических реакциях, при действии температуры и давления. Способ определения концентрации манганита лантана в смеси синтезированного порошка системы LaSrMnO, полученного смешиванием исходных составляющих в виде порошков LaO, MnCO и SrCO и их последующим синтезом, включает определение коэффициента отражения порошка манганита лантана в видимой области спектра на длине волны 546 нм. Значение концентрации манганита лантана, соответствующее определенной величине коэффициента отражения в видимой области спектра на длине волны 546 нм, определяют по градуировочной зависимости, предварительно построенной для различных синтезированных порошков манганита лантана системы LaSrMnO по данным рентгенофазового анализа, определяющим концентрацию манганита лантана, и значениям коэффициента отражения в видимой области спектра на длине волны 546 нм. Техническим результатом является определение концентрации манганита лантана для порошков, полученных в различных условиях. 4 ил., 1 табл., 7 пр.

При высокотемпературном синтезе твердых растворов из смесей нескольких порошков их концентрация - концентрация основной фазы (ОФ) - будет определяться технологическими условиями: температурой и временем прогрева, типом и концентрацией составляющих смесей. Для определения концентрации ОФ, образованных новых соединений и не прореагировавших исходных составляющих смесей существует несколько способов, основанных на различных физических процессах. Наиболее распространенным является рентгенофазовый анализ (РФА), осуществляемый с помощью рентгеновских дифрактометров. При таком способе концентрацию соединений, находящихся в синтезируемом порошке, определяют по интенсивности рентгеновских лучей, отраженных от различных узлов кристаллических решеток ОФ и составляющих [1, 2].

Известен и широко применяется спектрофотометрический способ определения концентрации соединений в твердой фазе. Он заключается в помещении в жидкость данного соединения, измерении спектров пропускания как самой жидкости, так и раствора с этим соединением. По полученным значениям коэффициента пропускания на определенных длинах волн рассчитывается оптическая плотность, строится графическая зависимость оптической плотности от концентрации соединения. Затем по этой зависимости для конкретного вещества определяется значение концентрации по результатам измерения оптической плотности [1, 2].

Если синтезированное или природное соединение содержит несколько составляющих - смесь компонентов, то для определения концентрации каждой составляющей данным способом градуировку необходимо проводить по каждой составляющей на определенном спектральном участке или при определенной длине волны излучения. И затем, сопоставляя градуировки для каждой составляющей, определить их концентрацию.

В спектрах диффузного отражения манганитов редкоземельных элементов (МРЭ) в солнечном диапазоне (02-2,5 мкм) в области 0,5-0,6 мкм регистрируется "провал" в значениях коэффициента отражения. Величина провала зависит от типа замещающего элемента и его концентрации. Например, в соединениях La(1-x)CaxMnO3 (фиг. 1) провал зарегистрирован в области 0,2-1,2 мкм, минимальное значение коэффициента отражения соответствует 0,65 мкм. При увеличении концентрации ионов кальция от значений x=0,1 до x=0,175 и далее до x=0,3 коэффициент отражения как во всей области провала 0,2-1,2 мкм, так и в точке минимального значения увеличивается от 0,18 до 0,22 и 0,24 соответственно [3].

По величине провала в спектрах диффузного отражения можно определять концентрацию дефектов в порошках, характеризующих технологию их получения или последующей обработки. Например, в спектрах диффузного отражения порошков диоксида циркония регистрировали "провал" в ультрафиолетовой области вблизи края основного поглощения. Было установлено [4, 5], что он определяется ионами Zr3+, концентрация которых изменяется в зависимости от условий получения порошков ZrO2, от режимов их прессования (фиг. 2) или при облучении.

В соединениях La(1-x)SrxMnO3 (фиг. 3) провал зарегистрирован в области 0,35-0,85 мкм, минимальное значение коэффициента отражения соответствует области спектра 0,52-0,6 мкм. При увеличении концентрации ионов стронция от значений x=0,1 до x=0,175 и далее до x=0,3 коэффициент отражения во всей области "провала" уменьшается. В области минимального значения он уменьшается от 0,18 до 0,17 и 0,15, соответственно. Значение длины волны с наименьшей величиной коэффициента отражения не определено [6].

Регистрируемый "провал" в значениях коэффициента отражения характеризует свойства образованных соединений при синтезе и может служить мерой определения концентрации ОФ. Данный способ выбран в качестве прототипа.

В отличие от прототипа, в предлагаемом способе производится сопоставление минимального значения коэффициента отражения в области провала соединений La(1-x)SrxMnO3, соответствующего длине волны 546 нм, для каждого порошка, синтезированного в различных режимах. Для определения концентрации МРЭ используются данные рентгенофазового анализа (РФА) и спектров диффузного отражения. Изменением условий синтеза соединений в виде порошков достигаются различные значения концентрации La(1-x)SrxMnO3, которые определяются методом РФА. Для каждого типа синтезированного порошка определяется коэффициент отражения на длине волны 546 нм. Затем производится сопоставление полученных значений концентрации La(1-x)SrxMnO3 со значениями коэффициента отражения на длине волны 546 нм для порошков, синтезированных в различных условиях. Полученная графическая зависимость является градуировочной для определения концентрации основной фазы - соединений La(1-)SrxMnO3.

Для получения зависимости концентрации La(1-x)SrxMnO3 от коэффициента отражения и построения градуировочной зависимости проводили экспериментальные исследования, в которых в различных режимах синтеза получали различную концентрацию ОФ и определяли коэффициент отражения на длине волны 546 нм.

Пример 1. Порошки La2O3, MnCO3 и SrCO3 смешивали в весовых количествах, соответствующих получению соединения La0,825Sr0,175MnO3 при 100% выходе основной фазы. Добавляли дистиллированную воду, смесь диспергировали в магнитной мешалке в течение 2 часов, затем выпаривали 6 часов в сушильном шкафу при температуре 150°C. Последующий прогрев смеси осуществляли в муфельной печи 2 часа при 800°C. Рентгенофазовый анализ осуществляли на рентгеновском дифрактометре Shimadzu XRD 6000. Анализ показал образование ОФ - твердого раствора La0,825Sr0,175MnO3 в количестве 19,6 мас. %, в остальной состав входят новое соединение Mn3O4 и часть не прореагировавших исходных соединений La2O3 и SrCO3. Коэффициент диффузного отражения такого состава синтезированного порошка, измеренный спектрофотометром Perkin Elmer Lambda на длине волны 546 нм, равен 22,8%.

Пример 2. Порошки La2O3, MnCO3 и SrCO3 смешивали в весовых количествах, соответствующих получению соединения La0,825Sr0,175MnO3 при 100% выходе основной фазы (ОФ). Добавляли дистиллированную воду, смесь диспергировали в магнитной мешалке в течение 2 часов, затем выпаривали 6 часов в сушильном шкафу при температуре 150°C. Последующий прогрев смеси осуществляли в муфельной печи 2 часа при 900°C. Рентгенофазовый анализ осуществляли на рентгеновском дифрактометре Shimadzu XRD 6000. Анализ показал образование ОФ - твердого раствора La0,825Sr0,175MnO3 в количестве 35,1 мас. %, в остальной состав входят новое соединение Mn3O4 и часть не прореагировавших исходных соединений La2O3 и SrCO3. Коэффициент диффузного отражения такого состава синтезированного порошка, измеренный спектрофотометром Perkin Elmer Lambda на длине волны 546 нм, равен 22,5%.

Пример 3. Порошки La2O3, MnCO3 и SrCO3 смешивали в весовых количествах, соответствующих получению соединения La0,825Sr0,175MnO3 при 100% выходе основной фазы (ОФ). Добавляли дистиллированную воду, смесь диспергировали в магнитной мешалке в течение 2 часов, затем выпаривали 6 часов в сушильном шкафу при температуре 150°C. Последующий прогрев смеси осуществляли в муфельной печи 2 часа при 1000°C. Рентгенофазовый анализ осуществляли на рентгеновском дифрактометре Shimadzu XRD 6000. Анализ показал образование ОФ - твердого раствора La0,825Sr0,175MnO3 в количестве 59,6 мас. %, в остальной состав входят новое соединение Mn3O4, и часть не прореагировавшего исходного соединения La2O3. Коэффициент диффузного отражения такого состава синтезированного порошка, измеренный спектрофотометром Perkin Elmer Lambda на длине волны 546 нм, равен 18,8%.

Пример 4. Порошки La2O3, MnCO3 и SrCO3 смешивали в весовых количествах, соответствующих получению соединения La0,825Sr0,175MnO3 при 100% выходе основной фазы (ОФ). Добавляли дистиллированную воду, смесь диспергировали в магнитной мешалке в течение 2 часов, затем выпаривали 6 часов в сушильном шкафу при температуре 150°C. Последующий прогрев смеси осуществляли в муфельной печи 2 часа при 1100°C. Рентгенофазовый анализ осуществляли на рентгеновском дифрактометре Shimadzu XRD 6000. Анализ показал образование ОФ - твердого раствора La0,825Sr0,175MnO3 в количестве 79,8 мас. %, в остальной состав входят новое соединение Mn3O4. Коэффициент диффузного отражения такого состава синтезированного порошка, измеренный спектрофотометром Perkin Elmer Lambda на длине волны 546 нм, равен 16,9%.

Пример 5. Порошки La2O3, MnCO3 и SrCO3 смешивали в весовых количествах, соответствующих получению соединения La0,825Sr0,175MnO3 при 100% выходе основной фазы (ОФ). Добавляли дистиллированную воду, смесь диспергировали в магнитной мешалке в течение 2 часов, затем выпаривали 6 часов в сушильном шкафу при температуре 150°C. Последующий прогрев смеси осуществляли в муфельной печи 2 часа при 1200°C. Рентгенофазовый анализ осуществляли на рентгеновском дифрактометре Shimadzu XRD 6000. Анализ показал образование ОФ - твердого раствора La0,825Sr0,175MnO3 в количестве 84,4 мас. %, в остальной состав входят новое соединение Mn3O4. Коэффициент диффузного отражения такого состава синтезированного порошка, измеренный спектрофотометром Perkin Elmer Lambda на длине волны 546 нм, равен 16,3%.

Пример 6. Порошки La2O3, MnCO3 и SrCO3 смешивали в весовых количествах, соответствующих получению соединения La0,825Sr0,175MnO3 при 100% выходе основной фазы (ОФ). Добавляли дистиллированную воду, смесь диспергировали в магнитной мешалке в течение 2 часов, затем выпаривали 6 часов в сушильном шкафу при температуре 150°C. Последующий прогрев смеси осуществляли в муфельной печи 2 часа при 1250°C. Рентгенофазовый анализ осуществляли на рентгеновском дифрактометре Shimadzu XRD 6000. Анализ показал образование ОФ - твердого раствора La0,825Sr0,175MnO3 в количестве 88,5 мас. %, в остальной состав входят новое соединение Mn3O4. Коэффициент диффузного отражения такого состава синтезированного порошка, измеренный спектрофотометром Perkin Elmer Lambda на длине волны 546 нм, равен 15,9%.

Пример 7. Порошки La2O3, MnCO3 и SrCO3 смешивали в весовых количествах, соответствующих получению соединения La0,825Sr0,175MnO3 при 100% выходе основной фазы (ОФ). Добавляли дистиллированную воду, смесь диспергировали в магнитной мешалке в течение 2 часов, затем выпаривали 6 часов в сушильном шкафу при температуре 150°C. Последующий прогрев смеси осуществляли в муфельной печи 6 часов при 1200°C. Рентгенофазовый анализ осуществляли на рентгеновском дифрактометре Shimadzu XRD 6000. Анализ показал образование ОФ - твердого раствора La0,825Sr0,175MnO3 в количестве 92,1 мас. %, в остальной состав входят новое соединение Mn3O4. Коэффициент диффузного отражения такого состава синтезированного порошка, измеренный спектрофотометром Perkin Elmer Lambda на длине волны 546 нм, равен 15,5%.

Полученные значения концентрации ОФ и коэффициента отражения на длине волны 546 нм для указанных режимов прогрева смесей порошков сведены в таблицу.

Построенный по данным таблицы график (фиг. 4) показывает, что экспериментальные результаты удовлетворительно укладываются на одну прямую, которая и является градуировочной зависимостью. По ней, зная коэффициент отражения на длине волны 546 нм, можно определить концентрацию манганитов лантана.

Список использованных источников

1. Физические методы исследования неорганических веществ. / Под ред. А.Б. Никольского. М.: Академия, 2006, 444 с.

2. Михайлов М.М. Радиационное и космическое материаловедение. Изд-во Томского университета, Томск, 2008, 440 с.

3. G. Tang, Y. Yu, Y. Cao, W. Chen, The thermochromic properties of La1-xSrxMnO3 compounds, Solar Energy Materials & Solar Cells, vol. 92, pp. 1298-1301, 2008.

4. Михайлов M.M., Рябчикова Л.Е., Кузнецов Н.Я. Способ отборочных испытаний порошков двуокиси циркония. // АС №1152358 от 22 декабря 1984 г.

5. Михайлов М.М., Кузнецов Н.Я. Образование центров окраски в порошках ZrO2 при прессовании и последующем облучении. // Неорганические материалы, 1988, т. 24, №5, с. 785-789.

6. K. Takenaka, K. Iida, Y. Sawaki, S. Sugai, Y. Moritomo, A. Nakamura. Optical Reflectivity Spectra Measured on Cleaved Surfaces of La1-xSrxMnO3: Evidence against Extremely Small Drude Weight, Journal of the Physical Society of Japan, vol. 68, pp. 1828-1831, 1999.

Способ определения концентрации манганита лантана в смеси синтезированного порошка системы LaSrMnO, полученного смешиванием исходных составляющих в виде порошков LaO, MnCO и SrCO с последующим их синтезом, включающий определение коэффициента отражения порошка манганита лантана в видимой области спектра на длине волны 546 нм, отличающийся тем, что значение концентрации манганита лантана, соответствующее определенной величине коэффициента отражения в видимой области спектра на длине волны 546 нм, определяют по градуировочной зависимости, предварительно построенной для различных синтезированных порошков манганита лантана системы LaSrMnO по данным рентгенофазового анализа, определяющим концентрацию манганита лантана, и значениям коэффициента отражения в видимой области спектра на длине волны 546 нм.
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ МАНГАНИТОВ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ МАНГАНИТОВ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ
Источник поступления информации: Роспатент

Showing 11-20 of 64 items.
20.10.2014
№216.012.feb9

Способ измерения угла тангажа летательного аппарата и устройство для его реализации

Изобретение относится к радионавигации и может использоваться в системах посадки летательных аппаратов по приборам. Технический результат - повышение точности. Для этого из точки с известными координатами излучают горизонтально линейно поляризованные электромагнитные волны, на борту...
Тип: Изобретение
Номер охранного документа: 0002531065
Дата охранного документа: 20.10.2014
10.11.2014
№216.013.040c

Пигмент на основе смесей микро- и нанопорошков диоксида циркония

Изобретение может быть использовано в космической технике, строительстве, в химической, пищевой и легкой промышленности. Пигмент для светоотражающих покрытий содержит смесь частиц диоксида циркония со средним размером 3 мкм и наночастицы диоксида циркония размером 30-40 нм. Концентрация...
Тип: Изобретение
Номер охранного документа: 0002532434
Дата охранного документа: 10.11.2014
20.11.2014
№216.013.0912

Пигмент на основе смесей микро- и нанопорошков оксида алюминия

Изобретение относится к составам пигментов для белых красок и покрытий, в том числе для терморегулирующих покрытий космических аппаратов. Пигмент для светоотражающих покрытий содержит смесь частиц оксида алюминия микронных размеров с наночастицами оксида алюминия. Смесь перемешивают в магнитной...
Тип: Изобретение
Номер охранного документа: 0002533723
Дата охранного документа: 20.11.2014
10.01.2015
№216.013.173a

Магнитно-полупроводниковый умножитель частоты в четыре раза

Изобретение относится к преобразовательной технике. Магнитно-полупроводниковый умножитель частоты в четыре раза содержит трехфазный трансформатор с искусственной нулевой точкой в первичной обмотке и двумя вторичными обмотками с одинаковым уровнем выходного напряжения. К вторичным обмоткам...
Тип: Изобретение
Номер охранного документа: 0002537374
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.186f

Сварочный трансформатор для ручной дуговой сварки

Изобретение относится к области дуговой сварки металлов плавящимися электродами и предназначено для сварки металлоконструкций и изделий различной толщины при производстве монтажных и ремонтных работ в строительстве, в быту и других областях народного хозяйства. Устройство содержит трансформатор...
Тип: Изобретение
Номер охранного документа: 0002537683
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1993

Магнитно-полупроводниковый умножитель частоты в восемь раз

Изобретение относится к преобразовательной технике. Магнитно-полупроводниковый умножитель частоты в восемь раз выполнен на базе восьми двухобмоточных дросселей насыщения, соединенных по мостовой схеме, которые подключены одной диагональю к двум четырехпроводным сетям, сдвинутым между собой на...
Тип: Изобретение
Номер охранного документа: 0002537975
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1a62

Магнитно-полупроводниковый умножитель частоты

Магнитно-полупроводниковый умножитель частоты относится к преобразовательной технике и может быть использован в качестве статического регулируемого источника питания электротехнологических установок. Задачей изобретения является повышение коэффициента мощности, обеспечение независимости...
Тип: Изобретение
Номер охранного документа: 0002538182
Дата охранного документа: 10.01.2015
20.01.2015
№216.013.1ee8

Магнитно-полупроводниковый умножитель частоты в шесть раз

Изобретение относится к преобразовательной технике, умножителям частоты и может быть использовано в качестве регулируемого источника питания электротехнологических установок - индукционного нагрева, для выпрямителей и т.п. Магнитно-полупроводниковый умножитель частоты в шесть раз выполнен на...
Тип: Изобретение
Номер охранного документа: 0002539353
Дата охранного документа: 20.01.2015
20.02.2015
№216.013.2bcf

Способ и устройство фазового регулирования переменного напряжения

Изобретение относится к области электротехники, в частности к регулированию переменного напряжения и тока. Технический результат заключается в расширении диапазона регулирования напряжения при индуктивной нагрузке независимо от ее параметров и создании надежного регулятора переменного...
Тип: Изобретение
Номер охранного документа: 0002542672
Дата охранного документа: 20.02.2015
10.06.2015
№216.013.51c7

Способ синтеза порошков твердых растворов basrtio

Изобретение может быть использовано при изготовлении пигментов для белых красок и покрытий, в том числе для терморегулирующих покрытий. Для получения порошков твердых растворов BaSrTiO порошки карбоната бария BaCO, карбоната стронция SrCO и диоксида титана TiO смешивают в необходимом количестве...
Тип: Изобретение
Номер охранного документа: 0002552456
Дата охранного документа: 10.06.2015
Showing 11-20 of 71 items.
20.10.2014
№216.012.feb9

Способ измерения угла тангажа летательного аппарата и устройство для его реализации

Изобретение относится к радионавигации и может использоваться в системах посадки летательных аппаратов по приборам. Технический результат - повышение точности. Для этого из точки с известными координатами излучают горизонтально линейно поляризованные электромагнитные волны, на борту...
Тип: Изобретение
Номер охранного документа: 0002531065
Дата охранного документа: 20.10.2014
10.11.2014
№216.013.040c

Пигмент на основе смесей микро- и нанопорошков диоксида циркония

Изобретение может быть использовано в космической технике, строительстве, в химической, пищевой и легкой промышленности. Пигмент для светоотражающих покрытий содержит смесь частиц диоксида циркония со средним размером 3 мкм и наночастицы диоксида циркония размером 30-40 нм. Концентрация...
Тип: Изобретение
Номер охранного документа: 0002532434
Дата охранного документа: 10.11.2014
20.11.2014
№216.013.0912

Пигмент на основе смесей микро- и нанопорошков оксида алюминия

Изобретение относится к составам пигментов для белых красок и покрытий, в том числе для терморегулирующих покрытий космических аппаратов. Пигмент для светоотражающих покрытий содержит смесь частиц оксида алюминия микронных размеров с наночастицами оксида алюминия. Смесь перемешивают в магнитной...
Тип: Изобретение
Номер охранного документа: 0002533723
Дата охранного документа: 20.11.2014
10.01.2015
№216.013.173a

Магнитно-полупроводниковый умножитель частоты в четыре раза

Изобретение относится к преобразовательной технике. Магнитно-полупроводниковый умножитель частоты в четыре раза содержит трехфазный трансформатор с искусственной нулевой точкой в первичной обмотке и двумя вторичными обмотками с одинаковым уровнем выходного напряжения. К вторичным обмоткам...
Тип: Изобретение
Номер охранного документа: 0002537374
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.186f

Сварочный трансформатор для ручной дуговой сварки

Изобретение относится к области дуговой сварки металлов плавящимися электродами и предназначено для сварки металлоконструкций и изделий различной толщины при производстве монтажных и ремонтных работ в строительстве, в быту и других областях народного хозяйства. Устройство содержит трансформатор...
Тип: Изобретение
Номер охранного документа: 0002537683
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1993

Магнитно-полупроводниковый умножитель частоты в восемь раз

Изобретение относится к преобразовательной технике. Магнитно-полупроводниковый умножитель частоты в восемь раз выполнен на базе восьми двухобмоточных дросселей насыщения, соединенных по мостовой схеме, которые подключены одной диагональю к двум четырехпроводным сетям, сдвинутым между собой на...
Тип: Изобретение
Номер охранного документа: 0002537975
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1a62

Магнитно-полупроводниковый умножитель частоты

Магнитно-полупроводниковый умножитель частоты относится к преобразовательной технике и может быть использован в качестве статического регулируемого источника питания электротехнологических установок. Задачей изобретения является повышение коэффициента мощности, обеспечение независимости...
Тип: Изобретение
Номер охранного документа: 0002538182
Дата охранного документа: 10.01.2015
20.01.2015
№216.013.1ee8

Магнитно-полупроводниковый умножитель частоты в шесть раз

Изобретение относится к преобразовательной технике, умножителям частоты и может быть использовано в качестве регулируемого источника питания электротехнологических установок - индукционного нагрева, для выпрямителей и т.п. Магнитно-полупроводниковый умножитель частоты в шесть раз выполнен на...
Тип: Изобретение
Номер охранного документа: 0002539353
Дата охранного документа: 20.01.2015
20.02.2015
№216.013.2bcf

Способ и устройство фазового регулирования переменного напряжения

Изобретение относится к области электротехники, в частности к регулированию переменного напряжения и тока. Технический результат заключается в расширении диапазона регулирования напряжения при индуктивной нагрузке независимо от ее параметров и создании надежного регулятора переменного...
Тип: Изобретение
Номер охранного документа: 0002542672
Дата охранного документа: 20.02.2015
10.06.2015
№216.013.51c7

Способ синтеза порошков твердых растворов basrtio

Изобретение может быть использовано при изготовлении пигментов для белых красок и покрытий, в том числе для терморегулирующих покрытий. Для получения порошков твердых растворов BaSrTiO порошки карбоната бария BaCO, карбоната стронция SrCO и диоксида титана TiO смешивают в необходимом количестве...
Тип: Изобретение
Номер охранного документа: 0002552456
Дата охранного документа: 10.06.2015
+ добавить свой РИД