×
25.08.2017
217.015.bfa5

Результат интеллектуальной деятельности: СПОСОБ ОЦЕНКИ ПРОЧНОСТИ ЭЛЕМЕНТОВ СВАРНОГО КОРПУСА ПОДВОДНОГО АППАРАТА

Вид РИД

Изобретение

Аннотация: Использование: для оценки прочности элементов сварного корпуса подводных аппаратов сферической и кольцевой формы на основании акустического метода неразрушающего контроля. Сущность изобретения заключается в том, что осуществляют нагружение исследуемого объекта, регистрацию числа импульсов акустической эмиссии (АЭ) и их амплитуды, определение диагностического параметра W, связанного со степенью опасности дефектов, временем до разрушения, пределом прочности σ*, разрушающей нагрузкой F, и его сравнение с критическим значением [W] для определения степени опасности источника импульсов АЭ и работоспособности контролируемого объекта. Также данный способ оценки прочности позволяет производить оценку остаточного ресурса N. Технический результат: повышение точности контроля прочности кольцевых и сферических элементов сварного корпуса подводного аппарата. 6 ил., 2 табл.

Изобретение относится к акустическим методам неразрушающего контроля прочности и предназначено для оценки прочности элементов сварного корпуса подводных аппаратов сферической и кольцевой формы. Изобретение может применяться в машиностроении и строительстве.

Известен способ неразрушающей оценки прочности композитных материалов и изделий из них (Носов В.В., Носов С.В. Акустико-эмиссионный критерий прочности композитных материалов // Известия ВУЗов. М.: Машиностроение. - 1989. - №9, с. 25-29). Способ включает равномерное нагружение диагностируемого изделия, регистрацию при этом числа NΣ импульсов акустической эмиссии (АЭ) и прекращение нагружения в момент выхода временной зависимости натурального логарифма InNΣ числа импульсов АЭ на прямолинейный участок, определение углового коэффициента InNΣ=dlnNΣ/dt этого участка и расчет по его значению разрушающей нагрузки на изделие.

Недостатком способа является невысокая точность АЭ контроля изделия из-за применения расчетов параметров.

Известен способ неразрушающей оценки прочности корпусов двигателей, выполненных из композитных материалов (Носов В.В., Потапов А.И. Оценка прочности корпусных изделий при их гидроиспытаниях по результатам регистрации сигналов акустической эмиссии // Дефектоскопия - 1998, №5, с. 99-107), включающий ступенчатое гидронагружение корпуса путем непрерывного подъема давления в корпусе до уровня F1, выдержка в течение времени t1, подъем давления до второго уровня F2, выдержка в течение времени t2 и так далее до заданного максимального уровня давления. В ходе испытаний проводится регистрация числа N импульсов АЭ. По результатам АЭ испытаний строятся графики временных зависимостей числа импульсов АЭ при различных уровнях давления, в которых выделяли участки, близкие к прямолинейным, определяли угловые коэффициенты и этих участков. Определяли параметр состояния материала диагностируемого изделия YAE и рассчитывали величину разрушающей нагрузки Fp, которую впоследствии сравнивали с рабочей нагрузкой диагностируемого изделия. На основании данного сравнения делался вывод о состоянии диагностируемого изделия.

К недостаткам данного способа можно отнести отсутствие четкой классификации степени опасности выявленных в ходе контроля источников импульсов АЭ, ограниченные возможности, связанные с необходимостью создания ступенчатой равномерной нагрузки на контролируемое изделие.

Известен способ испытания кольцевых образцов на прочность при повторных нагрузках (авторское свидетельство SU №1739259, опубл. 07.06.1992 г.). Способ включает приложение нагрузки к наружной боковой поверхности образца, регистрацию параметров его деформации, по которым судят о прочности образца. Для имитации реальных условий нагружения кольцевых элементов подводных аппаратов кольцевые образцы изготавливают из двух частей, соединенных торцами через промежуточный элемент, свободные торцы выполняют в виде конических поверхностей с вершинами на оси колец, герметизируют их крышками с ответными коническими поверхностями, соосно устанавливают и нагружают в осевом направлении, а нагрузку к наружной боковой поверхности образцов прикладывают повторно статически монотонно изменяющимся гидростатическим давлением с различными скоростями, с учетом которых судят о прочности образцов.

Недостатком способа является трудоемкость нагружения исследуемых объектов. Для оказания давления на боковые поверхности образца необходимо наличие камеры высокого давления. Для крупногабаритных элементов сварного корпуса установка такой камеры нецелесообразна ввиду трудоемкости ее изготовления и высокой стоимости. Еще одним недостатком является то, что исследуемый элемент нагружают сжимающими напряжениями до его разрушения.

Известен способ неразрушающего контроля прочности металлоконструкций (патент РФ №2445616, опубл. 20.03.2012 г.), принятый за прототип, включает нагружение металлоконструкций, регистрацию числа импульсов АЭ и их амплитуды, определение параметра состояния материала контролируемой металлоконструкции YAE и расчет величины диагностического параметра YR. После определения данных параметров величину YAE сравнивают с величиной YR для определения степени опасности источника импульсов АЭ. Далее определяют коэффициенты снижения предела выносливости КПР.В и запаса выносливости S. В завершение определяют исходный ресурс Nc исследуемой металлоконструкции и находят остаточный ресурс Nост, после чего делают окончательный вывод о дальнейшем использовании металлоконструкции.

Недостатком способа является отсутствие указания направления нагружения исследуемого объекта, что в свою очередь не позволяет имитировать рабочие напряжения с высокой точностью.

Техническим результатом изобретения является снижение трудоемкости нагружения и повышение точности контроля прочности кольцевых и сферических элементов сварного корпуса подводного аппарата, выявление развивающихся и склонных к развитию дефектов, проявляющихся в процессе изменения нагрузки, определение пригодности элементов корпуса к дальнейшему использованию или необходимости проведения ремонта или замены данной металлоконструкции.

Технический результат достигается тем, что нагружение, необходимое для инициирования сигналов АЭ, производят по окружностям определенного диаметра или линиям определенной длины в направлении минимальной оси кольцевого сечения с двух взаимно противоположных сторон до напряжений ниже предела текучести материала, а контроль прочности производят посредством определения на основе регистрации числа импульсов АЭ или суммарной амплитуды сигналов АЭ диагностического параметра WAE, значение которого связано со степенью опасности дефектов, временем до разрушения, пределом прочности σ*, разрушающей нагрузкой Fp, где

WAE определяется по формуле

,

где ξ - информационный параметр, в качестве которого используют число NΣ импульсов АЭ или суммарную амплитуду сигналов АЭ, накопленных на этапе однородного разрушения;

- коэффициент нагрузки;

Fраб - величина осевой нагрузки диагностического нагружения, соответствующая рабочим напряжениям;

YAE - параметр состояния материала;

σ - напряжение;

после чего WAE сравнивается с его критическим значением, в результате чего делается вывод о дальнейшем использовании диагностируемого элемента, после которого, в случае работоспособного состояния, определяется остаточный ресурс

,

где - характеристический параметр материала и вида сварного соединения, температуры и частоты его нагружения;

NG - число циклов, соответствующих перегибу кривой усталости;

σR - предел выносливости при заданном коэффициенте асимметрии цикла рабочих напряжений;

m - показатель степени кривой усталости;

NnpNtПР - фактическое число циклов нагружения;

ωN - частота циклов нагружения;

tПР - фактически (предварительно) отработанный ресурс.

Способ оценки прочности элементов сварного корпуса подводного аппарата поясняется следующими фигурами:

фиг. 1 - вид испытываемых образцов;

фиг. 2 - изменение нагрузки и логарифма числа импульсов АЭ от времени при испытании образца №1;

фиг. 3 - изменение нагрузки и логарифма числа импульсов АЭ от времени при испытании образца №2;

фиг. 4 - изменение нагрузки и логарифма числа импульсов АЭ от времени при испытании образца №3;

фиг. 5 - изменение нагрузки и логарифма числа импульсов АЭ от времени при испытании образца №4;

фиг.6 - изменение нагрузки и логарифма числа импульсов АЭ от времени при испытании образца №5, где:

1 - места создания дефектов в сварных швах;

2 - зависимость логарифма числа импульсов АЭ NΣ от времени t;

3 - нагрузки от времени;

4 - участок упругого кинетически однородного разрушения.

Способ осуществляется следующим образом. Для инициирования сигналов АЭ необходимые рабочие напряжения в материале корпуса аппарата имитируют распределенным по окружностям или линиям определенного диаметра или длины приложением нагрузки в направлении минимальной оси кольцевого сечения с двух взаимно противоположных сторон до напряжений ниже предела текучести материала. В процессе нагружения с помощью диагностической акустико-эмиссионной системы фиксируются число импульсов АЭ, амплитуда сигналов, величина нагрузки, время, длительность импульсов и другие параметры. По полученным данным строятся графики изменения нагрузки и логарифма числа импульсов АЭ или же суммарной амплитуды сигналов АЭ от времени (зависит от того, что берется за информационный параметр). Для оценки прочности определяем значение диагностического параметра WAE на участке упругого кинетически однородного разрушения.

Значение рассматриваемого диагностического параметра вычисляется по формуле

,

где ξ - информационный параметр, в качестве которого используют число NΣ импульсов АЭ или суммарную амплитуду сигналов АЭ, накопленных на этапе однородного разрушения;

- коэффициент нагрузки;

Fраб - величина осевой нагрузки диагностического нагружения, соответствующая рабочим напряжениям;

YAE - параметр состояния материала;

σ - напряжение.

Далее, зная величину параметра WAE, можно сделать вывод о работоспособности элемента сварного корпуса, сравнив его с критическим значением [WAE]=YR[σ], где YR - показатель кривой усталости lnNc-σ, Nc - число циклов до разрушения, [σ] - допускаемые напряжения (из проектных расчетов). В случае отсутствия данных значение [WAE] принимается равным единице (данное значение обоснуется результатом проведения множества экспериментов). Вывод составляется на основании следующей классификации:

Здесь [S] - это требуемый коэффициент запаса статической прочности ([S]=1,4÷4 в зависимости от объекта контроля и срока его эксплуатации).

Также есть возможность оценки остаточного ресурса контролируемого объекта:

,

где - характеристический параметр материала и вида сварного соединения, температуры и частоты его нагружения;

NG - число циклов, соответствующих перегибу кривой усталости;

σR - предел выносливости при заданном коэффициенте асимметрии цикла рабочих напряжений;

m - показатель степени кривой усталости;

NnpNtПР - фактическое число циклов нагружения;

ωN - частота циклов нагружения;

tПР - фактически (предварительно) отработанный ресурс.

Главным преимуществом параметра WAE является то, что он не теряет диагностическую ценность в условиях сложного нагружения и неопределенности напряженного состояния реальных статически неопределимых конструкций ввиду того, что он не зависит напрямую от напряжения.

Испытания способа проводились на пяти образцах, которые представляли собой замкнутые кольца. Каждый образец был изготовлен из четырех сегментов, сваренных между собой электродом марки 08Г2С, материал сегментов - сталь марки Ст3. В сварных швах четырех используемых образцов путем высверливания отверстий диаметром 4 мм различной глубины были искусственно созданы дефекты (фиг. 1). Для удобства образцы с различными дефектами были пронумерованы следующим образом:

- образец №1 - дефекты отсутствуют;

- образец №2 - два сквозных отверстия;

- образец №3 - два несквозных отверстия: внутри 3,5 мм, снаружи 3 мм;

- образец №4 - свищ 1 мм и два несквозных отверстия снаружи: 2,4 мм и 3,2 мм;

- образец №5 - два несквозных отверстия внутри: 4 мм и 3 мм.

Образцы имели следующие размеры: диаметр 150 мм ширина 40 мм, отклонение от круговой формы 1 мм на радиус. Наблюдение за процессом разрушения проводилось с помощью автоматизированной диагностической акустико-эмиссионной системы СДАЕ-16(2).

Посредством анализа напряженного состояния было установлено, что для создания напряжений, аналогичных напряжениям, возникающим на глубине 420 м, к образцу необходимо приложить усилие в 1800 Н.

В процессе эксперимента фиксировалось число импульсов АЭ, амплитуда сигналов, величина нагрузки, время, длительность импульсов и другие параметры. По полученным данным были построены графики изменения нагрузки и логарифма числа импульсов АЭ от времени (фиг. 2-6).

Разберем подробно расчет диагностического параметра на участке кинетически однородного разрушения для дефектного образца №2:

Величина Fраб=1310 Н рассчитана по методу конечных элементов для максимально допустимых рабочих напряжений:

σрабт/n=215 МПа/1,4=153 МПа,

где σт=215 МПа - предел текучести материала корпуса, n=1,4 - коэффициент запаса прочности.

Зная величину WAE, можно сделать вывод о работоспособности исследуемого образца в соответствии с таблицей №1. Имея значение коэффициента запаса прочности, рассчитываем значение [S]⋅[WAE]=1,4⋅1=1,4. Таким образом, исходя из диагностического признака WAE≥[S][WAE] определяем класс опасности источника АЭ-IV, что говорит о его катастрофической активности и означает, что образец является неработоспособным.

По аналогии с расчетами, представленными выше, была проведена обработка экспериментальных данных для образцов №1, №3, №4 и №5. Полученные результаты по всем пяти образцам сведены в таблицу №2.

Значение коэффициента корреляции между значениями WAE и рассчитанными на основе МКЭ максимальными напряжениями σmax вблизи искусственных дефектов превышает 0.9, что говорит об информативности представленного диагностического параметра. Также стоит отметить, что расчет напряжений в сложных условиях весьма приблизителен и осуществляется с существенной погрешностью, оценка же параметра WAE не составляет особых затруднений.

Таким образом, применение данного способа оценки прочности элементов сварного корпуса подводного аппарата позволяет выявлять опасные дефекты, дает возможность определить классы опасностей дефектов, выявленных в ходе контроля, а также оценить работоспособность и остаточный ресурс элементов сварного корпуса.


СПОСОБ ОЦЕНКИ ПРОЧНОСТИ ЭЛЕМЕНТОВ СВАРНОГО КОРПУСА ПОДВОДНОГО АППАРАТА
СПОСОБ ОЦЕНКИ ПРОЧНОСТИ ЭЛЕМЕНТОВ СВАРНОГО КОРПУСА ПОДВОДНОГО АППАРАТА
СПОСОБ ОЦЕНКИ ПРОЧНОСТИ ЭЛЕМЕНТОВ СВАРНОГО КОРПУСА ПОДВОДНОГО АППАРАТА
СПОСОБ ОЦЕНКИ ПРОЧНОСТИ ЭЛЕМЕНТОВ СВАРНОГО КОРПУСА ПОДВОДНОГО АППАРАТА
СПОСОБ ОЦЕНКИ ПРОЧНОСТИ ЭЛЕМЕНТОВ СВАРНОГО КОРПУСА ПОДВОДНОГО АППАРАТА
СПОСОБ ОЦЕНКИ ПРОЧНОСТИ ЭЛЕМЕНТОВ СВАРНОГО КОРПУСА ПОДВОДНОГО АППАРАТА
СПОСОБ ОЦЕНКИ ПРОЧНОСТИ ЭЛЕМЕНТОВ СВАРНОГО КОРПУСА ПОДВОДНОГО АППАРАТА
СПОСОБ ОЦЕНКИ ПРОЧНОСТИ ЭЛЕМЕНТОВ СВАРНОГО КОРПУСА ПОДВОДНОГО АППАРАТА
Источник поступления информации: Роспатент

Showing 71-80 of 205 items.
17.02.2018
№218.016.2ac2

Способ открытой разработки месторождений полезных ископаемых

Изобретение относится к горной промышленности, в частности к разработке открытыми горными работами пологих пластов месторождений полезных ископаемых. Техническим результатом является сокращение объемов работ по вскрытию месторождения и продолжительности периода, предшествующего началу...
Тип: Изобретение
Номер охранного документа: 0002642903
Дата охранного документа: 29.01.2018
17.02.2018
№218.016.2cac

Брикет для получения кремния восстановительной плавкой

Изобретение относится к получению кремния. Брикет содержит микросилику, углеродосодержащее сырье, отходы деревообрабатывающей промышленности и связующее вещество. В качестве углеродосодержащего сырья брикет содержит сланцевую пыль, в качестве отходов деревообрабатывающей промышленности -...
Тип: Изобретение
Номер охранного документа: 0002643534
Дата охранного документа: 02.02.2018
09.05.2018
№218.016.37d5

Способ контроля осевой нагрузки на долото при бурении наклонно направленных скважин винтовым забойным двигателем

Изобретение относится к бурению нефтяных и газовых скважин. Техническим результатом является определение фактической осевой нагрузки на долото путем расчета величины силы трения бурильной колонны о стенки скважины при бурении наклонно направленных скважин винтовыми забойными двигателями с...
Тип: Изобретение
Номер охранного документа: 0002646651
Дата охранного документа: 06.03.2018
10.05.2018
№218.016.3c40

Способ извлечения ванадия из нефтяного кокса

Изобретение относится к способу получения ванадия из нефтяного кокса процессом выщелачивания. Способ включает измельчение нефтяного кокса и последующее выщелачивание из него ванадия смесью концентрированных серной и азотной кислот. Степень извлечения ванадия составляет 72,19-80,85%, при этом...
Тип: Изобретение
Номер охранного документа: 0002647725
Дата охранного документа: 19.03.2018
10.05.2018
№218.016.3dd3

Способ определения параметров нейтральной и электронной компонент неравновесной плазмы

Изобретение относится к области диагностики плазмы и может быть использовано для исследований неравновесной анизотропной плазмы непосредственно в рабочих условиях широкого круга газоразрядных устройств: лазеров, плазмотронов, источников света, мощных стабилизаторов тока и напряжения, ключевых...
Тип: Изобретение
Номер охранного документа: 0002648268
Дата охранного документа: 23.03.2018
10.05.2018
№218.016.3e60

Способ обогащения золотосодержащих руд с повышенной сорбционной способностью

Изобретение относится к области обогащения руд флотацией, в частности к флотации золотосодержащих руд, и может быть использовано при обогащении углеродсодержащего сырья различного происхождения. Способ обогащения золотосодержащих руд с повышенной сорбционной способностью включает...
Тип: Изобретение
Номер охранного документа: 0002648402
Дата охранного документа: 26.03.2018
10.05.2018
№218.016.3e6d

Способ извлечения ультрадисперных частиц золота из упорных углеродистых руд

Изобретение относится к области обогащения полезных ископаемых и может быть использовано в горно-обогатительной промышленности при обогащении золотосодержащих углеродистых руд. Способ извлечения ультрадисперсных частиц золота из упорных углеродистых руд включает кондиционирование измельченной...
Тип: Изобретение
Номер охранного документа: 0002648400
Дата охранного документа: 26.03.2018
10.05.2018
№218.016.3e8a

Способ разработки мощных крутопадающих месторождений неустойчивых руд

Изобретение относится к горному делу и может быть использовано для разработки крутопадающих месторождений неустойчивых руд. Способ включает проходку буродоставочных ортов, выемку полезного ископаемого ориентированными вкрест протирания горизонтальными или слабонаклонными камерами полигональной...
Тип: Изобретение
Номер охранного документа: 0002648371
Дата охранного документа: 26.03.2018
10.05.2018
№218.016.3ee0

Шагающая установка для транспортирования и укладки нефтегазовых труб на морском дне

Изобретение относится к горному делу, в частности к устройствам для подводной добычи полезных ископаемых. Устройство может быть использовано также для прокладки нефтегазовых труб на морском дне и на суше, геологоразведочных изысканий, освоения торфяных месторождений, при строительстве в сложных...
Тип: Изобретение
Номер охранного документа: 0002648365
Дата охранного документа: 26.03.2018
10.05.2018
№218.016.40a6

Способ управления режимами на основе нейросетевого диагностирования неисправностей и технического состояния электроприводного газоперекачивающего агрегата

Изобретение относится к диагностике состояния электроприводных устройств. Способ управления режимами на основе нейросетевого диагностирования неисправностей и технического состояния электроприводного газоперекачивающего агрегата включает измерение параметров, сбор информации и проверку ее...
Тип: Изобретение
Номер охранного документа: 0002648413
Дата охранного документа: 27.03.2018
Showing 71-76 of 76 items.
13.02.2018
№218.016.20d5

Способ механической обработки стальной заготовки с дроблением стружки

Способ включает предварительную подготовку обрабатываемой поверхности путем нагрева непрерывным лазерным лучом на глубину снимаемого припуска. Лазерный луч перемещают по прямой траектории с линейной скоростью и с постоянными мощностью излучения и длиной волны под углом наклона к обрабатываемой...
Тип: Изобретение
Номер охранного документа: 0002641444
Дата охранного документа: 17.01.2018
13.02.2018
№218.016.2167

Способ очистки сточных вод от ионов молибдена

Изобретение в металлургической и горнодобывающей промышленности для очистки сточных и шахтных вод от ионов молибдена. Для осуществления способа проводят обработку реагентом-отходом производства, в качестве которого используют железосодержащий суглинок с содержанием железа от 2 до 20% или отход...
Тип: Изобретение
Номер охранного документа: 0002641826
Дата охранного документа: 22.01.2018
17.02.2018
№218.016.2a0c

Способ механической обработки заготовки из титанового сплава

Изобретение относится к способу механической обработки заготовки из титанового сплава. Осуществляют предварительное локальное пластическое деформирование вращающейся заготовки и ее лезвийную обработку путем снятия припуска. Локальное пластическое деформирование заготовки осуществляют непрерывно...
Тип: Изобретение
Номер охранного документа: 0002643022
Дата охранного документа: 29.01.2018
17.02.2018
№218.016.2a12

Способ рекультивации хвостохранилищ

Изобретение относится к области охраны окружающей среды и может быть использовано для изоляции поверхностей хвостохранилищ, слагающихся из токсичных отходов, с целью восстановления нарушенных земель. Способ включает проведение в первый год технического этапа рекультивации путем создания...
Тип: Изобретение
Номер охранного документа: 0002643038
Дата охранного документа: 30.01.2018
17.02.2018
№218.016.2ac2

Способ открытой разработки месторождений полезных ископаемых

Изобретение относится к горной промышленности, в частности к разработке открытыми горными работами пологих пластов месторождений полезных ископаемых. Техническим результатом является сокращение объемов работ по вскрытию месторождения и продолжительности периода, предшествующего началу...
Тип: Изобретение
Номер охранного документа: 0002642903
Дата охранного документа: 29.01.2018
17.02.2018
№218.016.2cac

Брикет для получения кремния восстановительной плавкой

Изобретение относится к получению кремния. Брикет содержит микросилику, углеродосодержащее сырье, отходы деревообрабатывающей промышленности и связующее вещество. В качестве углеродосодержащего сырья брикет содержит сланцевую пыль, в качестве отходов деревообрабатывающей промышленности -...
Тип: Изобретение
Номер охранного документа: 0002643534
Дата охранного документа: 02.02.2018
+ добавить свой РИД