×
25.08.2017
217.015.bf03

Результат интеллектуальной деятельности: Способ определения содержания монометиланилина в углеводородных топливах

Вид РИД

Изобретение

Аннотация: Изобретение относится к контролю качества углеводородных топлив. Содержание монометиланилина (ММА) в углеводородных топливах определяют по цветовому переходу индикаторного тестового средства после контактирования с анализируемой пробой. Индикаторное тестовое средство представляет собой пластину для тонкослойной хроматографии марки «Sorbfil» с сорбентом силикагель, импрегнированную раствором индикатора - тетрахлор-1,4-бензохинона. По появлению в месте контактирования анализируемой пробы с индикаторным тестовым средством пятна, имеющего окраску от светло-фиолетовой до темно-синей, судят о присутствии ММА в пробе, после чего определяют интенсивность окраски пятна и по градуировочной зависимости интенсивности окраски пятна от концентрации определяют концентрацию ММА в углеводородном топливе. Достигается повышение чувствительности и селективности анализа. 4 ил., 4 табл., 4 пр.

Изобретение относится к способам исследования и анализа материалов химическими способами с помощью химических индикаторов, в частности к способу определения содержания монометиланилина (ММА) (тривиальное название в промышленности продукта, основным веществом которого является N-метиланилин) в углеводородных топливах - автомобильных и авиационных бензинах, дизельных топливах и топливах для реактивных двигателей, и может быть использовано в стационарных и/или передвижных лабораториях контроля качества нефтепродуктов, на автозаправочных станциях и нефтебазах.

Монометиланилин обладает значительной антидетонационной активностью и применяется, в том числе в составе многочисленных комплексных присадок, для повышения октанового числа автомобильных бензинов. Применение присадок на основе ММА имеет, однако, негативные эффекты, такие, как торможение процесса горения, снижение экономичности двигателя и повышение токсичности отработанных газов. Современные нормативные документы [Технический регламент Таможенного союза «О требованиях к автомобильному и авиационному бензину, дизельному и судовому топливу, топливу для реактивных двигателей и мазуту» (утв. решением Комиссии Таможенного союза от 18 октября 2011 г. №826). 2012. 22 С., ГОСТ 32513-2013. «Топлива моторные. Бензин неэтилированный», Изм. №6 к ГОСТ 51105-97 «Топлива для двигателей внутреннего сгорания. Неэтилированный бензин»] вводят запрет на использование ММА, а следовательно, и присадок на его основе, в составе автомобильных бензинов (АБ) экологического класса 5, что, в свою очередь, предъявляет повышенные требования к чувствительности методов контроля за содержанием ММА в АБ. В связи с возможностью привнесения ММА из состава АБ при хранении или при неполном сливе придонного слоя в состав других видов углеводородных топлив необходимо определение содержания примесей ММА в дизельных топливах (ДТ), топливах для реактивных двигателей (ТРД) и в авиационных бензинах (АвБ). Кроме того, ММА может применяться как компонент композиций для авиационного бензина [RU 2569311, 2015].

При изучении научно-технической и патентной литературы были выявлены следующие способы определения ММА в топливах.

Известны газохроматографические способы определения ММА в автомобильных бензинах [ГОСТ Р 54323-2011. «Бензины автомобильные. Определение N-метиланилина методом капиллярной газовой хроматографии», Стандарт организации СТО 08151164-015-2010. «Хроматографический метод определения монометиланилина технического в автомобильных бензинах», г. Москва, 2010, ФАУ «25 ГосНИИ химмотологии Минобороны России»]. Общими недостатками способов является использование дорогостоящего, нетранспортабельного оборудования, невысокая чувствительность определения ММА в бензинах (0,1% об.), значительные трудозатраты при проведении испытаний, а также определение ММА только в автомобильных бензинах и невозможность определения ММА в составе других углеводородных топлив (дизельных и топлив для реактивных двигателей). Особо следует отметить, что при анализе по ГОСТ Р 54322-2011 некоторых автомобильных бензинов, не содержащих ММА, в области хроматограммы, характерной для ММА, появляется сигнал, не относящийся к ММА, но характеризующийся тем же временем удерживания.

Другая группа методов основана на использовании индикаторных тест-систем, в которых о концентрации ММА в анализируемом АБ судят по изменению окраски твердого носителя или индикаторной бумаги. Так, известен способ определения содержания ММА в АБ с помощью кислотно-основного индикатора - бромфенолового синего. Выводы о присутствии ММА в АБ делают по изменению цвета индикаторной бумаги, пропитанной водно-спиртовым (1:1) раствором бромфенолового синего с концентрацией 0,15-0,25% масс. Перед анализом бензина носитель погружают в раствор соляной кислоты концентрации 0,01-0,02 моль/дм3, после чего бумага приобретает желтую окраску. После контактирования с пробой анализируемого бензина по изменению цвета твердого носителя от желтого через зеленый до фиолетово-синего судят о наличии ММА в бензине. Содержание ММА определяют по градуировочной цветовой шкале [RU 2425366, 2011].

Недостатком указанного способа является неизбирательность кислотно-основного индикатора бромфенолового синего по отношению к ММА, а именно способность его реагировать и с другими компонентами АБ, проявляющими свойства оснований, например, с моющими присадками и щелочами, используемыми при очистке нефтяных фракций. Возможно также получение недостоверных результатов при анализе образцов АБ, основность которых снижена за счет присутствия в составе бензина продуктов кислотного характера, например продуктов его окисления, накапливающихся в бензине при длительном хранении. К числу недостатков способа относится необходимость использования при его выполнении агрессивного химического реагента - соляной кислоты. Кроме того, оценка цвета индикаторной бумаги субъективна, что снижает достоверность результатов определений.

Известен также способ определения содержания ММА в углеводородных топливах по цветовому переходу индикаторного тестового средства, в качестве которого используют таблетированный нейтральный оксид алюминия с иммобилизованным на его поверхности гексацианоферратом (III) калия, после контактирования с пробой анализируемого топлива. Индикаторное тестовое средство готовят обработкой порошка нейтрального оксида алюминия водным раствором гексацианоферрата (III) калия (ГЦФК) концентрации 0,9-1,3% масс. с последующей сушкой при температуре 105-115°C в течение 80-90 мин. Полученный сорбент таблетируют прессованием. Для определения содержания ММА в пробе анализируемого топлива несколько ее капель наносят на таблетку индикаторного средства и фиксируют его цвет в месте контакта с пробой. Концентрацию ММА в пробе определяют по изменению цвета и интенсивности окрашивания пятна на таблетке от ярко-желтого до красно-коричневого, для чего сравнивают зафиксированный цвет с предварительно подготавливаемой градуировочной цветовой шкалой. Фиксацию цвета пятна и его сравнение с градуировочной цветовой шкалой проводят непосредственно после контакта тестового средства с анализируемой пробой топлива при содержании ММА в концентрации свыше 0,01-0,03% об.; при содержании ММА в меньшей концентрации фиксацию цвета пятна проводят спустя 5-10 мин после контакта [RU 2548724, 2013].

Недостатком указанного способа является низкая достоверность получаемых результатов, обусловленная использованием гексацианоферрата (III) калия, являющегося универсальным окислителем, способным реагировать с другими компонентами АБ, например, металлосодержащими присадками. Кроме того, зависимость продолжительности периода развития окраски пятна от концентрации ММА существенно затрудняет проведение анализа; предел обнаружения составляет 0,01% об., что, в свою очередь, не позволяет достоверно судить об отсутствии ММА в углеводородных топливах; кроме того, получение тестового средства достаточно трудоемко и продолжительно во времени, а оценка цвета пятна на таблетке субъективна, что может приводить к ошибкам в определении концентрации ММА.

Наиболее близким по технической сущности и взятым за прототип является способ определения монометиланилина в автомобильном бензине индикаторным тестовым средством по его цветовому переходу после контактирования с пробой анализируемого бензина. В качестве индикатора используют 4-метоксибензолдиазоний тетрафторборат, нанесенный на твердофазный носитель - бумагу для экспресс-тестов или индикаторную трубку, в качестве основы-наполнителя которой используют двуокись кремния. Содержание N-метиланилина в бензине при использовании бумаги для экспресс-тестов определяют по изменению ее окраски от белой до розовой, светло-красной, красной или темно-бордовой. При использовании индикаторной трубки содержание N-метиланилина определяют по длине зоны трубки, имеющей темно-красную окраску. Используемый в качестве индикатора 4-метоксибензолдиазоний тетрафторборат предварительно синтезируют путем смешения 4-метоксианилина в растворе соляной кислоты с тетрафторборатом аммония с добавлением водного раствора азотистокислого натрия с последующим отделением и сушкой выпавшего осадка. Из реагентной индикаторной бумаги, обработанной пропиточным водным раствором 4-метоксибензолдиазония тетрафторбората с добавкой щавелевой кислоты, готовят индикаторные полоски, а индикаторный сорбент - оксид кремния - помещают в стеклянные трубки с перетяжкой и с длиной столбика наполнителя 90 мм. Концентрацию N-метиланилина в бензине определяют по изменению цвета индикаторной бумаги после контакта с пробой топлива и сравнения результата с градуировочной цветовой шкалой либо по длине окрашенной в темно-красный цвет зоны трубки [RU 2489715, 2012].

Недостатками способа являются неселективность по отношению к ММА реакции азосочетания и, как следствие, - возможность участия в указанной реакции других ароматических аминов и фенолов, в том числе антиокислительных присадок, присутствующих в составе АБ, что может приводить к получению ложноположительных результатов при определении ММА, а также недостаточно высокая чувствительность определения ММА, составляющая 0,1% об. Кроме того, область применения способа ограничена только анализом автомобильных бензинов.

Перед авторами стояла задача разработки высокочувствительного, селективного, простого в исполнении, доступного для широкого применения и высокопроизводительного метода определения ММА как в автомобильных бензинах, так и в других видах углеводородных топлив.

Технический результат изобретения - повышение селективности и чувствительности (минимальная определяемая концентрация составляет 0,005% об. против 0,1% об. для прототипа) определения с одновременным упрощением изготовления индикаторного тестового средства и снижением стоимости расходных материалов за счет использования коммерчески доступных реактивов и пластин для тонкослойной хроматографии.

Указанный технический результат достигается тем, что в способе определения содержания монометиланилина (ММА) в углеводородных топливах индикаторным тестовым средством по цветовому переходу после контактирования с пробой анализируемого топлива согласно изобретению в качестве индикатора используют тетрахлор-1,4-бензохинон, нанесенный на пластину для тонкослойной хроматографии марки «Sorbfil» с сорбентом силикагель, и по появлению пятна, имеющего окраску от светло-фиолетовой до темно-синей, судят о присутствии ММА в пробе, после чего определяют интенсивность окраски пятна и по градуировочной зависимости интенсивности окраски пятна от концентрации определяют концентрацию ММА в углеводородном топливе.

Изобретение проиллюстрировано фиг. 1-4:

фиг. 1 - внешний вид пятен, соответствующих ММА, на поверхности индикаторного тестового средства после контактирования с растворами сравнения ММА в модельной смеси состава автомобильных бензинов;

фиг. 2 - градуировочный график для определения ММА в автомобильных бензинах в координатах «натуральный логарифм концентрации ММА в растворах сравнения» - «натуральный логарифм интенсивности окраски пятна, соответствующего ММА»;

фиг. 3 - градуировочные графики для определения ММА в топливах для реактивных двигателей марок ТС-1 и РТ в координатах «концентрация ММА в растворах сравнения» - «интенсивность окраски пятна, соответствующего ММА»;

фиг. 4 - градуировочные графики для определения ММА в дизельных топливах ДТ-Л, ДТ-З и ДТ-А в координатах «концентрация ММА в растворах сравнения» - «интенсивность окраски пятна, соответствующего ММА».

Использование в заявляемом способе тонкослойной хроматографии (ТСХ), позволяющей проводить разделение компонентов анализируемых проб, в том числе отделение аналита от других компонентов проб [«Основы тонкослойной хроматографии (планарная хроматография)» Пер. с англ. / Гейсс Ф., под ред. В.Г. Березкина. – М.: 1988. - С. 31-33], в ее радиальном варианте [«Основы тонкослойной хроматографии (планарная хроматография)» Пер. с англ. / Гейсс Ф., под ред. В.Г. Березкина. – М.: 1988. - С. 163-172] обусловливает устранение мешающих влияний компонентов топлив на результаты определений ММА.

В качестве реагента-индикатора был выбран тетрахлор-1,4-бензохинон (хлоранил), являющийся реагентом для детектирования вторичных аминов в воздухе и водных растворах, реакция с которыми протекает с образованием окрашенных продуктов. Хлоранил - кристаллическое вещество желтого цвета (Тпл=295-296°C) [«Свойства органических соединений: Справочник. - Под. ред. Потехина А.А. - Л.: Химия, 1984. - С. 116-117], коммерчески доступный реактив.

В качестве основы для нанесения раствора реагента-индикатора при приготовлении индикаторного тестового средства были использованы пластины для ТСХ марки «Sorbfil» ПТСХ-АФ-А-УФ по ТУ 4215-002-43636866-2007 производства фирмы ООО «Имид» (Краснодар) (10*10 см) с широкопористым сорбентом силикагель (размер частиц 5-17 мкм). Коммерческая доступность таких пластин делает возможным массовое использование заявляемого способа. При контактировании сорбента, импрегнированного раствором тетрахлор-1,4-бензохинона, с пробами топлив, содержащих ММА, на поверхности сорбента наблюдается образование четко очерченных пятен, имеющих окраску различного цвета, интенсивность которой возрастает с увеличением концентрации ММА в топливах, например, от светло-фиолетовой (при концентрации ММА в АБ 0,005% об.) до темно-синей (при концентрации ММА в АБ 2,5% об.) (фиг. 1).

Использование для определения ММА в углеводородных топливах, являющихся сложными смесями, содержащими значительное число компонентов, в качестве индикатора тетрахлор-1,4-бензохинона в совокупности с осуществлением операции импрегнирования его раствором пластин для ТСХ с широкопористым сорбентом силикагель позволило обеспечить протекание на поверхности пластин цветной реакции между индикатором и ММА из состава анализируемых топлив с образованием четко очерченных цветовых пятен ее продукта, имеющих специфическую окраску, дифференцирующуюся в зависимости от концентрации ММА в топливе. Это подтверждается нижеприведенными примерами.

Способ определения содержания ММА в углеводородных топливах реализуется следующим образом.

Готовят пропиточный раствор для пластины марки «Sorbfil» ПТСХ-АФ-А-УФ. Для этого навеску тетрахлор-1,4-бензохинона массой 10 г растворяют в 30 мл толуола, суспензию интенсивно перемешивают на магнитной мешалке при температуре 35-40°C в течение 10 минут. Маточный раствор отделяют декантированием и переносят в емкость для импрегнирования, в которую затем помещают пластину для ТСХ. Пластину выдерживают в пропиточном растворе в течение 8-10 минут, затем высушивают на воздухе до полного испарения с ее поверхности толуола. После импрегнирования пластина приобретает светло-желтую окраску. Индикаторное тестовое средство может храниться в темном месте в течение 6 месяцев.

Для определения присутствия ММА в углеводородных топливах на приготовленное индикаторное тестовое средство наносят одну-две капли анализируемой пробы топлива. О присутствии ММА в анализируемой пробе судят по появлению в месте контактирования тестового средства с пробой пятен, имеющих окраску от светло-фиолетовой до темно-синей. При отсутствии ММА в пробе окраска пятен варьируется от светлой желто-розовой до светло-коричневой.

Для количественного определения содержания ММА индикаторное тестовое средство с визуально наблюдаемыми пятнами, образовавшимися в месте его контактирования с анализируемой пробой топлива, высушивают на воздухе в течение 5 минут, после чего определяют интенсивность окраски пятна и по градуировочному графику ее концентрационной зависимости определяют концентрацию ММА в анализируемой пробе.

Изобретение поясняется следующими примерами определения содержания ММА в углеводородных топливах.

Пример 1

Определение ММА в автомобильном бензине

Анализируемые пробы АБ наносят на индикаторное тестовое средство, которое высушивают на воздухе в течение 5 минут. При появлении на поверхности тестового средства имеющих характерную окраску пятен, соответствующих ММА, тестовое средство сканируют на планшетном сканере с сохранением изображений в формате JPG. С помощью инструмента «Гистограмма» программы GIMP 2.8 в центре каждого пятна, соответствующего ММА, выбирают ячейку растра размером 15*15 рх и определяют яркость окраски (А) по каналам RGB, после чего по формуле (I=255-А) вычисляют интенсивность окраски пятен. Концентрацию ММА в составе анализируемых проб АБ определяют по градуировочному графику зависимости величин натурального логарифма интенсивности окраски пятна, ln(I), от значений натурального логарифма концентрации, ln(С), описываемому функцией ln(I)=0,1245*ln(C)+4,3168, (R2=0,992) (фиг. 2). Градуировочная зависимость была получена сканированием и цифровой обработкой изображений пятен, соответствующих ММА, образовавшихся при контактировании тестового средства с пробами растворов сравнения, приготовленных на основе модельной смеси (МС) состава АБ, содержащей изооктан, гептан и толуол в концентрации 50, 20 и 30% об., соответственно, с различной концентрацией ММА. Концентрация ММА в растворах сравнения составляла от 0,005% об. до 2,5% об. Результаты определения для испытанных образцов №№1-3 АБ приведены в таблице 1.

Пример 2

Определение ММА в топливе для реактивных двигателей.

Анализируемые пробы ТРД наносят на поверхность индикаторного тестового средства, которое высушивают на воздухе в течение 5 минут. При появлении на поверхности тестового средства имеющих характерную окраску пятен, соответствующих ММА, индикаторное тестовое средство сканируют на планшетном сканере. С использованием программы GIMP 2.8 в центре изображения каждого пятна выбирают ячейку растра размером 15*15 рх и определяют яркость окраски (А) по каналам RGB, после чего по формуле (I=255-А) вычисляют интенсивность окраски пятен. Концентрацию ММА в анализируемых пробах ТРД определяют по градуировочным графикам зависимости величин интенсивности окраски пятна, (I), от концентрации, (С), описываемым функцией I=105,6*C+87,78 (R2=0,9905) для топлива РТ и функцией I=99,3C+93,19 (R2=0,9855) - для топлива ТС-1 (фиг. 2). Градуировочные зависимости были получены сканированием и цифровой обработкой изображений пятен, соответствующих ММА, образовавшихся при контактировании тестового средства с пробами растворов сравнения, приготовленных на основе не содержащих ММА образцов ТРД марок ТС-1 и РТ с различным содержанием ММА. Содержание ММА в растворах сравнения составляло от 0,1% об. до 0,5% об. Результаты определения для испытанных образцов №№4 и 5 ТРД приведены в таблице 2.

В примере анализу подвергали образцы, приготовленные соответственно на основе образцов ТРД марок РТ и ТС-1, не содержащих ММА, введением в них ММА в известной концентрации. Концентрация введенного ММА в образцах №№4 и 5 составила 0,35 и 0,16% об. соответственно.

Пример 3

Определение ММА в дизельном топливе

Для определения содержания ММА в составе ДТ анализируемые образцы дизельного топлива наносят на индикаторное тестовое средство. Высушивают его на воздухе в течение 5 минут, после чего сканируют на планшетном сканере с сохранением изображений в формате JPG. С использованием программы GIMP 2.8 в центре изображения каждого пятна выбирают ячейку растра размером 15*15 рх и рассчитывают интенсивность окраски пятен. Концентрацию ММА в образцах ДТ определяют по градуировочным графикам зависимости величин интенсивности окраски пятна, (I), от концентрации, (С), описываемым функцией I=46,0*С+116,6 (R2=0,9874) для топлива ДТ-Л, функцией I=97,231*С+86,638 (R2=0,9823) - для топлива ДТ-З и функцией I=91,346*С+91,708 (R2=0,9988) - для топлива ДТ-А (фиг. 3). Градуировочные зависимости были получены сканированием и цифровой обработкой изображений пятен, соответствующих ММА, образовавшихся при контактировании тестового средства с пробами растворов сравнения с различной концентрацией ММА, приготовленных на основе не содержащих ММА образцов ДТ летнего, зимнего и арктического соответственно. Содержание ММА в растворах сравнения составляло от 0,1% об. до 1% об. Результаты определения для испытанных образцов №№6-8 приведены в таблице 3.

В примере анализу подвергали образцы №№6, 7 и 8, приготовленные соответственно на основе образцов ДТ летнего, зимнего и арктического, не содержащих ММА, введением в них ММА в концентрации 0,24, 0,35 и 0,43% об. соответственно.

Пример 4

Определение ММА в углеводородных топливах, не содержащих ММА

Пробы не содержащих ММА образцов АБ марки АИ-95 К5, образцы ТРД марок РТ и ТС-1 и образцы ДТ летнего, зимнего и арктического наносят на индикаторное тестовое средство с последующим высушиванием его на воздухе в течение 5 минут. Наблюдают изменение окраски индикаторного тестового средства в месте контактирования тестового средства с анализируемыми пробами. Описание проявившейся окраски приведено в таблице 4.

Полученная окраска пятен существенно отличается от окраски пятен проб, содержащих ММА, в том числе в концентрации 0,005% об. (фиг. 1), которая является минимально определяемой.

Таким образом, описываемый способ определения содержания ММА в углеводородных топливах с использованием разработанного индикаторного тестового средства является более чувствительным (минимальная определяемая концентрация составляет 0,005% об. против 0,1% об. для прототипа) и селективным и позволяет проводить достоверное определение более низких концентраций ММА по сравнению с известными способами. Способ может широко применяться благодаря простоте изготовления индикаторного тестового средства и доступности, а также незначительной стоимости расходных материалов - реактивов и пластин для тонкослойной хроматографии. Применение способа позволяет повысить производительность определений ММА по сравнению с таковой для известных способов за счет возможности проведения одновременного экспресс-анализа значительного количества проб углеводородных топлив, число которых ограничено только размерами используемой хроматографической пластины.

Способ определения содержания монометиланилина (ММА) в углеводородных топливах индикаторным тестовым средством по его цветовому переходу после контактирования с пробой анализируемого топлива, отличающийся тем, что в качестве индикатора используют тетрахлор-1,4-бензохинон, нанесенный на пластину для тонкослойной хроматографии марки «Sorbfil» с сорбентом силикагель, и по появлению пятна, имеющего окраску от светло-фиолетовой до темно-синей, судят о присутствии ММА в пробе, после чего определяют интенсивность окраски пятна и по градуировочной зависимости интенсивности окраски пятна от концентрации определяют концентрацию ММА в углеводородном топливе.
Способ определения содержания монометиланилина в углеводородных топливах
Способ определения содержания монометиланилина в углеводородных топливах
Источник поступления информации: Роспатент

Showing 81-90 of 105 items.
10.07.2019
№219.017.b194

Пакет присадок к моторным маслам и масло, его содержащее

Использование: при производстве масел для серийных и перспективных высокофорсированных бензиновых двигателей и турбонаддувных дизелей, эксплуатирующихся в холодных и арктических климатических зонах. Сущность: пакет присадок содержит щелочной алкилсалицилат кальция, раствор в масле...
Тип: Изобретение
Номер охранного документа: 0002461609
Дата охранного документа: 20.09.2012
02.10.2019
№219.017.cb54

Способ определения предельной температуры применения дизельных топлив

Изобретение относится к контролю качества топлив, в частности к определению предельной температуры применения дизельных топлив (ДТ) путем моделирования процесса низкотемпературного расслоения топлива, происходящего в топливных баках машин. При осуществлении способа отобранную от механических...
Тип: Изобретение
Номер охранного документа: 0002701373
Дата охранного документа: 26.09.2019
10.10.2019
№219.017.d451

Система управления работой автомобильного дизеля в динамическом режиме самостоятельного холостого хода

Изобретение относится к двигателестроению. Система управления работой автомобильного дизеля в динамическом режиме самостоятельного холостого хода содержит дизель с центробежным регулятором (1) частоты вращения коленчатого вала, задатчик (2) скоростного режима, включатель (5) тока. Контактные...
Тип: Изобретение
Номер охранного документа: 0002702445
Дата охранного документа: 08.10.2019
22.11.2019
№219.017.e543

Способ изготовления водоотталкивающей перегородки для фильтров-сепараторов

Изобретение относится к фильтрующим материалам для жидкостей или жидкостей в газообразном состоянии, к способам изготовления устройств, в частности водоотталкивающей перегородки, для очистки углеводородных жидкостей, преимущественно моторных топлив, от свободной воды и может применяться во всех...
Тип: Изобретение
Номер охранного документа: 0002706608
Дата охранного документа: 19.11.2019
01.12.2019
№219.017.e892

Система охлаждения стационарного двигателя внутреннего сгорания

Изобретение относится к системам жидкостного охлаждения стационарных двигателей внутреннего сгорания (ДВС), преимущественно входящих в состав моторных стендов, и может быть использовано для проведения испытаний двигателей в заводских условиях, в ремонтных организациях, в исследовательских...
Тип: Изобретение
Номер охранного документа: 0002707787
Дата охранного документа: 29.11.2019
29.01.2020
№220.017.fb10

Автоматизированная установка для определения энерго-баллистических характеристик жидких углеводородных горючих

Изобретение относится к области испытаний материалов, в частности жидких углеводородных горючих для исследования применимости жидких углеводородных горючих с требуемыми характеристиками в заданных условиях. Установка содержит установленную с возможностью колебаний обогреваемую рабочую камеру в...
Тип: Изобретение
Номер охранного документа: 0002712227
Дата охранного документа: 27.01.2020
29.01.2020
№220.017.fb1f

Способ оценки стабильности гидравлических жидкостей для авиационной техники

Изобретение относится к области испытаний жидкостей для гидравлических систем авиационной техники, в частности для оценки стабильности гидравлических жидкостей. Способ включает заполнение рабочей жидкостью герметичной термостатируемой емкости, испытание рабочей жидкости в заданных условиях в...
Тип: Изобретение
Номер охранного документа: 0002712230
Дата охранного документа: 27.01.2020
15.04.2020
№220.018.14c7

Автоматизированная установка контроля технического состояния специального технологического оборудования автотопливозаправщиков

Изобретение относится к испытательному оборудованию контроля технического состояния специального технологического оборудования автотопливозаправщиков. Установка содержит единый переносной корпус, выполненный в виде трансформируемого в столешницу (1) модуля, на которой жестко закреплен отрезок...
Тип: Изобретение
Номер охранного документа: 0002718713
Дата охранного документа: 14.04.2020
09.06.2020
№220.018.259c

Миниаспиратор для определения различных аналитов в воздухе

Изобретение относится к системам контроля воздуха с использованием химических способов, преимущественно с использованием индикаторных трубок, заполненных химическим индикатором, размещаемых в едином с побудителем расхода воздуха корпусе, и может быть использовано при исследованиях воздуха на...
Тип: Изобретение
Номер охранного документа: 0002723026
Дата охранного документа: 08.06.2020
09.06.2020
№220.018.25c4

Способ оценки склонности дизельных топлив к образованию отложений в инжекторах систем впрыска дизельных двигателей

Изобретение относится к методам оценки эксплуатационных свойств дизельных топлив, в частности к способу оценки склонности дизельных топлив к образованию отложений в инжекторах систем впрыска дизельных двигателей, включающему прокачку испытываемого топлива через нагретый до заданной температуры...
Тип: Изобретение
Номер охранного документа: 0002723099
Дата охранного документа: 08.06.2020
Showing 61-70 of 70 items.
20.11.2017
№217.015.efa7

Способ оценки низкотемпературной прокачиваемости моторных топлив для двигателей транспортных средств

Изобретение относится к области испытания топлив. Способ включает подачу охлажденного до заданной температуры топлива через фильтр тонкой очистки, варьирование значениями подачи и давления топлива в топливной линии, регистрацию расхода топлива через фильтр тонкой очистки и критической...
Тип: Изобретение
Номер охранного документа: 0002629201
Дата охранного документа: 25.08.2017
19.01.2018
№218.016.02df

Установка для очистки жидкостей и газов

Изобретение относится к устройствам для очистки жидкостей и газов от твердых механических загрязнений и эмульсионной воды. Установка для очистки жидкостей и газов от твердых механических примесей и эмульсионной воды содержит корпус с нормированной площадью поперечного сечения, герметично...
Тип: Изобретение
Номер охранного документа: 0002630125
Дата охранного документа: 05.09.2017
20.01.2018
№218.016.15ca

Способ получения концентрата адипиновой кислоты и натриевой щелочи из щелочных стоков производства капролактама

Изобретение относится к способу получения концентрата адипиновой кислоты и натриевой щелочи из щелочных стоков производства капролактама, включающему электролиз стоков в мембранном электролизере с получением в катодном пространстве натриевой щелочи. Способ характеризуется тем, что электролиз...
Тип: Изобретение
Номер охранного документа: 0002635106
Дата охранного документа: 09.11.2017
13.02.2018
№218.016.22a2

Устройство для оценки электризации жидких нефтепродуктов

Изобретение относится к устройствам для оценки физико-химических свойств жидких нефтепродуктов. Устройство содержит герметичную двухступенчатую камеру, в ступени большего диаметра которой установлен генератор электростатических зарядов в виде сосуда с подвижным электродом, закрепленном на...
Тип: Изобретение
Номер охранного документа: 0002642257
Дата охранного документа: 24.01.2018
04.04.2018
№218.016.3034

Технологический комплекс мойки и зачистки жестких вертикальных резервуаров

Изобретение относится к устройствам для мойки и зачистки полых изделий от отложений и может быть использовано на складах и базах горючего при эксплуатации вертикальных резервуаров. Технологический комплекс содержит моечную установку, гидропривод, вакуумную установку и оборудование мойки и...
Тип: Изобретение
Номер охранного документа: 0002644905
Дата охранного документа: 14.02.2018
22.02.2019
№219.016.c5a5

Передвижная лаборатория горючего

Изобретение описывает передвижную лабораторию горючего, которая включает средства пожаротушения и электропитания, рабочий стол с ящиками для реактивов и лабораторной посуды для отбора проб горючего, средства определения: крепости спиртов; плотности горючего; вязкости кинематической; количества...
Тип: Изобретение
Номер охранного документа: 0002680388
Дата охранного документа: 20.02.2019
08.03.2019
№219.016.d39b

Способ контроля качества противоводокристаллизационных жидкостей на основе этилцеллозольва

Изобретение относится к исследованию или анализу материалов путем определения их химических или физических свойств, и может быть использовано в лабораториях контроля качества предприятий нефтепродуктообеспечения. При выявлении несмешиваемости с водой анализируемую пробу...
Тип: Изобретение
Номер охранного документа: 0002681308
Дата охранного документа: 06.03.2019
10.04.2019
№219.017.027b

Способ определения химической стабильности автомобильных бензинов

Изобретение относится к лабораторной оценке эксплуатационных свойств автомобильных бензинов применительно к определению возможного срока их хранения на предприятиях, потребляющих и производящих автомобильные бензины. Способ включает размещение пробы в сосуде, который помещают в бомбу и...
Тип: Изобретение
Номер охранного документа: 0002391661
Дата охранного документа: 10.06.2010
19.04.2019
№219.017.2e0f

Способ получения осажденного полифенольного комплекса из чаги

Изобретение относится к фармацевтической, косметической промышленности. Осуществляют получение диффузионного сока чаги, осаждение его добавлением 20%-ного раствора соляной кислоты до значения рН 2,0-2,2. Диффузионный сок чаги получают с использованием, в качестве экстрагента, водного раствора...
Тип: Изобретение
Номер охранного документа: 0002392952
Дата охранного документа: 27.06.2010
12.04.2023
№223.018.4a56

Способ маркировки нефтепродуктов

Изобретение относится к области нефтехимии, нефтепродуктообеспечения и к средствам борьбы с хищениями и фальсификацией нефтепродуктов. Изобретение касается способа маркировки нефтепродуктов, заключающегося во введении в массу нефтепродукта маркера, представляющего собой органическое соединение,...
Тип: Изобретение
Номер охранного документа: 0002745064
Дата охранного документа: 18.03.2021
+ добавить свой РИД