×
25.08.2017
217.015.bccd

Результат интеллектуальной деятельности: Способ кодирования-декодирования цифровых статических видеоизображений

Вид РИД

Изобретение

Аннотация: Изобретение относится к области цифровой обработки сигналов. Технический результат заключается в повышении коэффициента компрессии цифровых статических видеоизображений при незначительном снижении качества декодированного изображения, применительно к изображениям небольших форматов при неоднородном характере внешнего освещения видеосцены, содержащей фоновый объект, проекция которого занимает значительную площадь изображения. Технический результат достигается за счет того, что в процессе кодирования изображение разделяется на две составляющие, в том числе на удобную для вейвлет-преобразования однородную составляющую, учитывающую освещение видеосцены далекими источниками освещения, а также на удобную для представления коэффициентами двумерного преобразования Фурье неоднородную составляющую, характеризующую главным образом неравномерность освещения, обусловленную близкими источниками освещения видеосцены, после чего однородный компонент изображения представляется разностными матрицами соответствующих исходных сигналов и выделенной неравномерной составляющей и кодируется с применением вейвлет-преобразования, а неоднородный компонент представляется матрицами коэффициентов и кодируется на основе двумерного преобразования Фурье. 9 ил.

Техническое решение относится к области цифровой обработки сигналов, в частности к способам кодирования-декодирования цифровых статических видеоизображений, и может быть применено в системах хранения и обработки визуальной информации.

Известен аналогичный способ кодирования-декодирования цифровых статических видеоизображений на основе стандарта кодирования MPEG-4, описанный в книге Яна Ричардсона «Видеокодирование Н.264 и MPEG-4 - стандарты нового поколения», Москва: Техносфера, 2005. - 368 с., с. 197 и состоящий в следующем: при кодировании каждого очередного изображения кодером опрашивают датчик цветного изображения, далее полученное изображение представляют тремя исходными цветовыми матрицами, соответствующими красному, зеленому и синему цветовым компонентам изображения, после чего сохраняют исходные цветовые матрицы в памяти кодера, затем к каждой исходной цветовой матрице применяют вейвлет-прербразование, в ходе которого получают низкочастотный и высокочастотный компоненты матрицы, после чего к низкочастотному компоненту текущей матрицы последовательно применяют квантование и кодирование с пространственным прогнозом, затем к высокочастотному компоненту текущей матрицы применяют квантование, сканирование и кодирование по методу нулевых деревьев, а после этого к предварительным кодам обоих частотных компонентов текущей матрицы применяют энтропийное арифметическое кодирование, после кодирования всех исходных матриц набор полученных кодов передают декодеру, декодером в процессе проведения декодирования изображения для каждой декодируемой цветовой матрицы сначала применяют к полученным кодам энтропийное арифметическое декодирование, в результате чего получают раздельные коды низкочастотного и высокочастотного компонентов матрицы, после чего к низкочастотному компоненту текущей матрицы последовательно применяют декодирование с пространственным прогнозом и деквантование, затем к высокочастотному компоненту текущей матрицы применяют декодирование по методу нулевых деревьев, обратное сканирование и деквантование, после чего по декодированным низкочастотным и высокочастотным компонентам посредством обратного вейвлет-преобразования восстанавливают исходную текущую матрицу изображения, а после декодирования всех цветовых матриц восстанавливают исходное изображение.

Недостатком указанного аналога является низкое значение коэффициента компрессии видеоизображений применительно к изображениям небольших форматов при неоднородном характере внешнего освещения видеосцены, содержащей фоновый объект, проекция которого занимает значительную площадь изображения.

В качестве прототипа выбран способ кодирования-декодирования цифровых статических видеоизображений на основе стандарта кодирования MPEG-4, описанный в книге Яна Ричардсона «Видеокодирование Н.264 и MPEG-4 - стандарты нового поколения», Москва: Техносфера, 2005. - 368 с., с. 197 и состоящий в следующем: при кодировании каждого очередного изображения кодером опрашивают датчик цветного изображения, далее полученное изображение представляют тремя исходными цветовыми матрицами, соответствующими красному, зеленому и синему цветовым компонентам изображения, после чего сохраняют исходные цветовые матрицы в памяти кодера, затем к каждой исходной цветовой матрице применяют вейвлет-преобразование, в ходе которого получают низкочастотный и высокочастотный компоненты матрицы, после чего к низкочастотному компоненту текущей матрицы последовательно применяют квантование и кодирование с пространственным прогнозом, затем к высокочастотному компоненту текущей матрицы применяют квантование, сканирование и кодирование по методу нулевых деревьев, а после этого к предварительным кодам обоих частотных компонентов текущей матрицы применяют энтропийное арифметическое кодирование, после кодирования всех исходных матриц набор полученных кодов передают декодеру, декодером в процессе проведения декодирования изображения для каждой декодируемой цветовой матрицы сначала применяют к полученным кодам энтропийное арифметическое декодирование, в результате чего получают раздельные коды низкочастотного и высокочастотного компонентов матрицы, после чего к низкочастотному компоненту текущей матрицы последовательно применяют декодирование с пространственным прогнозом и деквантование, затем к высокочастотному компоненту текущей матрицы применяют декодирование по методу нулевых деревьев, обратное сканирование и деквантование, после чего по декодированным низкочастотным и высокочастотным компонентам посредством обратного вейвлет-преобразования восстанавливают исходную текущую матрицу изображения, а после декодирования всех цветовых матриц восстанавливают исходное изображение.

Недостатком прототипа является низкое значение коэффициента компрессии видеоизображений применительно к изображениям небольших форматов при неоднородном характере внешнего освещения видеосцены, содержащей фоновый объект, проекция которого занимает значительную часть изображения.

Задачей технического решения является существенное повышение коэффициента компрессии цифровых статических видеоизображений при незначительном снижении качества декодированного изображения применительно к изображениям небольших форматов при неоднородном характере внешнего освещения видеосцены, содержащей фоновый объект, проекция которого занимает значительную площадь изображения.

Поставленная задача решается благодаря тому, что в способе кодирования-декодирования цифровых статических видеоизображений, содержащем следующую последовательность действий: при кодировании каждого очередного изображения кодером опрашивают датчик цветного изображения, далее полученное изображение представляют тремя исходными цветовыми матрицами, соответствующими красному, зеленому и синему цветовым компонентам изображения, после чего сохраняют исходные цветовые матрицы в памяти кодера, затем к каждой исходной цветовой матрице применяют вейвлет-преобразование, в ходе которого получают низкочастотный и высокочастотный компоненты матрицы, после чего к низкочастотному компоненту текущей матрицы последовательно применяют квантование и кодирование с пространственным прогнозом, затем к высокочастотному компоненту текущей матрицы применяют квантование, сканирование и кодирование по методу нулевых деревьев, а после этого к предварительным кодам обоих частотных компонентов текущей матрицы применяют энтропийное арифметическое кодирование, после кодирования всех исходных матриц набор полученных кодов передают декодеру, декодером в процессе проведения декодирования изображения для каждой декодируемой цветовой матрицы сначала применяют к полученным кодам энтропийное арифметическое декодирование, в результате чего получают раздельные коды низкочастотного и высокочастотного компонентов матрицы, после чего к низкочастотному компоненту текущей матрицы последовательно применяют декодирование с пространственным прогнозом и деквантование, затем к высокочастотному компоненту текущей матрицы применяют декодирование по методу нулевых деревьев, обратное сканирование и деквантование, после чего по декодированным низкочастотным и высокочастотным компонентам посредством обратного вейвлет-преобразования восстанавливают исходную текущую матрицу изображения, а после декодирования всех цветовых матриц восстанавливают исходное изображение; предусмотрены следующие отличия: после получения изображения его логически разделяют на более мелкие фрагменты одинаковой формы и размера, называемые макроблоками, при этом форму и размеры макроблоков задают предварительно, после формирования исходных цветовых матриц изображения внутри каждого макроблока выбирают по одному опорному пикселу таким образом, чтобы цветовые векторы любых двух опорных пикселов как можно более лучшим образом удовлетворяли бы условию приближенной линейной зависимости цветовых векторов опорных пикселов

ƒn1≈λn1,n2ƒn2

ƒn1, ƒn2 - цветовые векторы пары опорных пикселов с номерами n1, n2;

λn1,n2 - множитель линейной зависимости для указанной пары пикселов;

причем порядок расположения значений цветовых компонентов в векторе ƒn1 соответствует порядку расположения цветовых компонентов в векторе ƒn2, а алгоритм поиска опорных пикселов и формулу оценки степени линейной зависимости цветовых векторов опорных пикселов выбирают предварительно, далее трем исходным цветовым матрицам изображения ставят в соответствие три опорных матрицы уменьшенного макроблочного формата исходного изображения, значения которых заполняют значениями соответствующих опорных пикселов, далее в каждой опорной матрице находят наименьшее значение, после чего матрицу перезаполняют значениями соответствующих разностей ее исходных элементов и найденного наименьшего значения, далее каждой полученной опорной матрице ставят в соответствие матрицу коэффициентов двумерного дискретного преобразования Фурье, при этом спектр преобразования выбирают предварительно, далее с помощью масштабирования опорных матриц каждой опорной матрице ставят в соответствие масштабируемую матрицу, размеры которой задают предварительно равными размерам исходных цветовых матриц, при этом алгоритм и формулу масштабирования опорных матриц выбирают предварительно, далее из каждой исходной цветовой матрицы вычитают соответствующую ей масштабируемую матрицу и получают соответствующую разностную цветовую матрицу, после этого разностные матрицы обрабатывают стандартным образом, начиная с разделения матрицы на низкочастотную и высокочастотную составляющие посредством вейвлет-преобразования, затем к каждой матрице коэффициентов преобразования Фурье последовательно применяют квантование, зигзагообразное сканирование и кодирование сериями переменной длины, после этого декодеру передают коды разностных матриц, а также коды коэффициентов двумерных преобразований Фурье, декодером по полученным кодам разностных матриц сначала стандартным образом восстанавливают сами разностные матрицы, начиная с энтропийного арифметического декодирования, затем по полученным кодам числовых серий декодируют коэффициенты двумерных преобразований Фурье, при этом к кодам текущего двумерного преобразования Фурье последовательно применяют декодирование серий, обратное сканирование и деквантование, далее при использовании полученных коэффициентов посредством двумерного дискретного преобразования Фурье в декодере восстанавливают опорные матрицы, при этом спектр двумерного преобразования Фурье задают предварительно, таким же, как и в кодере, далее по опорным матрицам аналогично процессу кодирования получают масштабируемые матрицы, после этого декодированные разностные матрицы складывают с соответствующими им масштабируемыми матрицами, в результате чего восстанавливают исходные матрицы изображения, размерности всех одноименных соответствующих матриц в кодере и декодере выбирают равными и задают предварительно, перед кодированием изображения.

Устройство для реализации предложенного способа кодирования-декодирования цифровых видеоизображений состоит из ноутбука «SAMSUNG R530», цифровой web-камеры «hama AC-150», подставки для web-камеры, освещаемого объекта, первичного источника освещения объекта, вторичного источника освещения объекта, разветвителя, источника электричества, съемочной площадки. К ноутбуку 1 подключена цифровая web-камера 2, находящаяся на подставке 3, предназначенная для съемки поверхности объекта 4, освещаемого первичным 5 и вторичным 6 источниками освещения. К разветвителю 7 подключены ноутбук и первичный источник освещения, а сам разветвитель подключен к источнику электричества 8. Все перечисленные выше элементы расположены на съемочной площадке 9. Ноутбук и источники освещения находятся во включенном состоянии, причем на ноутбуке загружено программное обеспечение для проведения сравнительного анализа прототипного и заявляемого способов кодирования-декодирования цифровых видеоизображений. Ноутбук снабжен программным обеспечением, позволяющим осуществлять заявляемый способ в отдельности, а также осуществлять эксперимент по проведению сравнительного анализа моделей видеокодеков (кодер и декодер) на базах прототипного и заявляемого способов. В эксперименте по сравнению двух моделей видеокодеков обрабатывается один и тот же кадр, получаемый программно с web-камеры и принимаемый в качестве входного изображения. Чувствительность web-камеры, а также расстояния от съемочного объекта до источников освещения подобраны таким образом, чтобы для всех цветовых компонентов всех пикселов входного изображения их относительные значения яркости не превышали бы значения дискретного максимума в 254 отн. ед. яркости при программном представлении каждого цветового компонента 1-им байтом, то есть, чтобы в изображении не было «засветки». Эксперимент устроен следующим образом: сначала изображение записывается и обрабатывается моделью видеокодека на базе прототипного способа, при этом в памяти ноутбука сохраняется обрабатываемое изображение, после чего сохраненное изображение обрабатывается моделью видеокодека на базе заявляемого способа. Все параметры и технические характеристики перечисленных выше конструктивных элементов, параметры модели видеокодека на базе заявляемого способа, а также параметры и схемы сравниваемых моделей видеокодеков, реализующих прототипный и заявляемый способы кодирования-декодирования изображений, при прочих равных условиях и параметрах, представлены в таблицах (Таблица 1) и (Таблица 2) и на фигурах (ФИГ. 1, ФИГ. 2, ФИГ. 3).

Описанный выше способ кодирования-декодирования цифровых видеоизображений осуществляется следующим образом: на ноутбуке запускают программный вариант по осуществлению заявляемого способа в отдельности или эксперимент по проведению сравнительного анализа моделей видеокодеков на базах прототипного и заявляемого способов нажатием соответствующей кнопки. После этого ожидают окончания обработки изображения и вывода на экран результатов осуществления заявляемого способа в отдельности, либо результатов эксперимента по сравнению моделей видеокодеков, использующих прототипнй и заявляемый способы.

Наличие причинно-следственной связи между совокупностью существенных признаков заявляемого объекта и достигаемым техническим результатом показано в таблице 3. Табличные данные основаны на результатах экспериментов по сравнительному анализу моделей видеокодеков на базах прототипного и заявляемого способов.

Согласно результатам экспериментальных данных предложенный способ кодирования декодирования обеспечивает повышение коэффициента компрессии цифровых видеоизображений примерно на 5-15% при незначительном снижении качества декодированного изображения в среднем на 0,5-1%.

Техническая сущность заявляемого технического решения поясняется следующими дополнительными материалами.

ФИГ. 1. Структурная схема устройства для реализации прототипного и заявляемого способов.

ФИГ. 2. Функциональная схема кодера в устройстве для реализации прототипного способа.

ФИГ. 3. Функциональная схема кодера в устройстве для реализации заявляемого способа.

ФИГ. 4. Экспериментальное видеоизображение.

ФИГ. 5. Бинарная маска высокочастотного яркостного компонента вейвлет-преобразования при кодировании исходной матрицы изображения с применением прототипного способа.

ФИГ. 6. Пример задания опорных точек аппроксимации неоднородного компонента освещения в заявляемом способе.

ФИГ. 7. Бинарная маска высокочастотного яркостного компонента вейвлет-преобразования при кодировании разностной матрицы изображения с применением заявляемого способа.

ФИГ. 8. Схема экспериментальной установки для сравнения эффективностей работы видеоеодеков на базах прототипного и заявляемого способов.

ФИГ. 9. Снимок экспериментальной установки для сравнения эффективностей работы видеоеодеков на базах прототипного и заявляемого способов.

Объяснение необходимости введения совокупности указанных отличительных признаков состоит в следующем. Известно, что высокая эффективность вейвлет-преобразования, с точки зрения сжатия информации, достигается главным образом за счет кодирования высокочастотного компонента вейвлет-преобразования, матрицы которого содержат значительное количество нулевых значений. Исходя из этого, напротив, наличие значительного количество ненулевых элементов в матрицах этого компонента крайне нежелательно и обуславливается, в общем случае, либо резкими изменениями цветовых свойств поверхностных узоров освещаемых объектов (внутренний фактор), либо неравномерным характером освещения этих объектов (внешний фактор), либо и тем, и тем в совокупности. Так, например, бинарная маска высокочастотного компонента яркостного сигнала ФИГ. 5, полученная в ходе обработки изображения, показанного на ФИГ. 4, при использовании прототипного способа кодирования, показывает, что даже после квантования элементов указанного компонента, его матрица содержит много ненулевых значений (отмечены на маске белым цветом). То же самое справедливо и для матриц цветовых компонентов низкочастотной составляющей изображения. Суть введенных изменений преследует цель искусственно разделить исходное изображение на так называемые однородную (обусловленную в большей степени первичным далеким источником освещения) и неоднородную (обусловленную в большей степени близким вторичным источником освещения) составляющие, так как показано на ФИГ. 3, в отличие от схемы на ФИГ. 2. При этом однородная составляющая, представляемая разностной матрицей, не содержит резких изменений сигнала в рамках изображения, и потому, будучи закодированной стандартным образом с помощью вейвлет-преобразования занимает много меньший объем кода нежели исходное изображение (для сравнения бинарная маска яркостного компонента этой однородной составляющей показана на ФИГ. 7). Вторая же часть, представляемая коэффициентами преобразования, и вовсе кодируется небольшими матрицами коэффициентов двумерного преобразования Фурье. Аппроксимация неоднородной составляющей изображения ведется именно с применением двумерного преобразования Фурье, поскольку в этом случае имеется дополнительная возможность закодировать кодами серий переменной длины еще и сами эти матрицы коэффициентов, учитывая, что в правых нижних углах этих матриц скапливается большое количество нулевых значений. Для получения более «сильного» технического эффекта, во-первых, необходимо использовать изображения небольших форматов, поскольку при кодировании именно таких изображений сильнее проявляется недостаток вейвлет преобразования при неоднородности внешнего освещения. Второе условие состоит собственно в наличии неоднородного характера внешнего освещения видеосцены, и, в общем случае, чем выше неоднородность этого освещения, тем сильнее указанный технический эффект заявляемого способа. Третье и последнее ограничение, состоит в том, что в изображении необходим фоновый объект, проекция которого занимает значительную площадь изображения, это необходимо, для того, чтобы лучше выявить опорные точки, то есть узлы аппроксимации неоднородной составляющей освещения. В общем случае, согласно экспериментальным данным, чем лучше выполняются данные условия, тем сильнее проявляется технический эффект сжатия изображения.

Технико-экономическое обоснование заявляемого способа состоит в том, что при его применении возможно хранение большего количества изображений при тех же объемах памяти, а значит, в общем случае можно сэкономить на количестве таких запоминающих устройств при прочих равных условиях. Еще одно экономически-выгодное применение предложенного способа состоит в его использовании в рамках кодирования кадровых видеопотоков с целью обработки предложенным способом опорных кадров этих потоков (цифровое телевидение, интернет- общение в режиме on-line). К указанным кадрам при обработке видео не применяется компенсация движения и они кодируются как статические изображения. Как следствие их коды занимают больший объем памяти, нежели прогнозируемые кадры, а на передачу этих кодов на расстояние затрачивается больше энергии. Предложенный способ может снизить объемы кодов таких опорных кадров, и как следствие, снизить энергетические затраты на их передачу посредством радиосвязи.


Способ кодирования-декодирования цифровых статических видеоизображений
Способ кодирования-декодирования цифровых статических видеоизображений
Способ кодирования-декодирования цифровых статических видеоизображений
Способ кодирования-декодирования цифровых статических видеоизображений
Способ кодирования-декодирования цифровых статических видеоизображений
Способ кодирования-декодирования цифровых статических видеоизображений
Источник поступления информации: Роспатент

Showing 101-110 of 162 items.
12.08.2019
№219.017.bed9

Акселерометр

Изобретение относится к измерительной технике и предназначено для использования в приборах компенсационного типа в системах стабилизации, навигации, наведения, медицинского назначения. Сущность изобретения заключается в том, что акселерометр дополнительно содержит фильтр, интегратор, сумматор и...
Тип: Изобретение
Номер охранного документа: 0002696667
Дата охранного документа: 05.08.2019
16.08.2019
№219.017.c031

Способ электроэрозионной обработки детали

Изобретение относится к электроэрозионным методам обработки материалов и может быть использовано для высокоточной обработки деталей из металлов и сплавов со сложными поверхностями. Способ включает электроэрозионную обработку детали в диэлектрической жидкости с нагревом поверхности...
Тип: Изобретение
Номер охранного документа: 0002697314
Дата охранного документа: 13.08.2019
17.08.2019
№219.017.c15f

Автоматизированная система экологического мониторинга и прогнозирования загрязнения атмосферного воздуха промышленного региона

Изобретение относится к области экологии и может быть использовано для экологического мониторинга и прогнозирования загрязнения атмосферы промышленного региона. Сущность: система содержит датчики (4) экологического контроля состояния атмосферы, датчики (1) замеров концентраций загрязняющих...
Тип: Изобретение
Номер охранного документа: 0002697571
Дата охранного документа: 15.08.2019
02.10.2019
№219.017.d077

Компенсационный акселерометр

Изобретение относится к измерительной технике и предназначено для использования в приборах компенсационного типа в системах стабилизации, навигации, наведения и медицине. Сущность изобретения заключается в том, что в компенсационный акселерометр дополнительно введены местная отрицательная...
Тип: Изобретение
Номер охранного документа: 0002700339
Дата охранного документа: 16.09.2019
04.10.2019
№219.017.d1fa

Способ импульсно-циклической электрохимической обработки

Изобретение относится к электрохимическим методам размерной обработки металлов и сплавов и может быть использовано для высокоэффективной обработки труднообрабатываемых металлов и сплавов с обеспечением режимов исключения коротких замыканий. Способ импульсно-циклической электрохимической...
Тип: Изобретение
Номер охранного документа: 0002701909
Дата охранного документа: 02.10.2019
04.10.2019
№219.017.d235

Способ электрохимикомеханической обработки арочных зубьев цилиндрических зубчатых колес

Изобретение относится к электрохимикомеханической обработке арочных зубьев цилиндрических зубчатых колес. Осуществляют раздельную последовательную принудительную обкатку выпуклых сторон всех зубьев заготовки инструментом для электрохимикомеханической обработки выпуклых сторон зубчатых колес и...
Тип: Изобретение
Номер охранного документа: 0002701977
Дата охранного документа: 02.10.2019
18.10.2019
№219.017.d81f

Способ лечения профессионального стресса

Изобретение относится к медицине, а именно к восстановительной медицине, физиотерапии, и может быть использовано для лечения профессионального стресса. Для этого накладывают катоды на область лба, аноды на сосцевидные отростки. Прокладки под электродами смачивают водой. Прокладки на анодах...
Тип: Изобретение
Номер охранного документа: 0002703328
Дата охранного документа: 16.10.2019
26.10.2019
№219.017.db40

Щековая дробилка

Изобретение относится к дроблению руд, твердых материалов, а именно, к щековым дробилкам и может быть применено в горнорудной, химической, металлургической и других областях промышленности. Щековая дробилка содержит корпус с боковыми стенками, камеру дробления, включающую подвижную щеку,...
Тип: Изобретение
Номер охранного документа: 0002704267
Дата охранного документа: 25.10.2019
14.11.2019
№219.017.e15e

Штамп для вытяжки с утонением

Изобретение относится к обработке металлов давлением, в частности к штамповой оснастке для получения полых деталей с помощью операции вытяжки с утонением. На нижней плите установлены направляющие колонки и промежуточная плита с направляющими втулками, копиры, взаимодействующие с г-образными...
Тип: Изобретение
Номер охранного документа: 0002705830
Дата охранного документа: 12.11.2019
14.11.2019
№219.017.e1a0

Штамп для вытяжки полых деталей с переменной толщиной стенки по высоте

Изобретение относится к обработке металлов давлением, в частности к штамповой оснастке для получения полых деталей с переменной толщиной стенки по высоте с помощью совмещения операции вытяжки с утонением и выдавливания. Штамп содержит верхнюю плиту с пуансонодержателем, нижнюю плиту, на которой...
Тип: Изобретение
Номер охранного документа: 0002705829
Дата охранного документа: 12.11.2019
Showing 41-47 of 47 items.
13.02.2018
№218.016.21e1

Высокопрочный мелкозернистый бетон

Изобретение относится к строительным материалам и может быть использовано для изготовления изделий из смеси для модифицированного бетона в гражданском, промышленном и транспортном строительстве Технический результат - получение смеси для модифицированного бетона марки по подвижности П2 с...
Тип: Изобретение
Номер охранного документа: 0002641813
Дата охранного документа: 22.01.2018
17.02.2018
№218.016.29f9

Устройство дистанционного контроля параметров условий труда с коррекцией по температуре

Изобретение относится к области контроля параметров условий труда для управления уровнями физических факторов производственной среды. Устройство содержит блок контроля, датчики температуры, относительной влажности, скорости движения воздуха, преобразователи сигналов, задатчики максимальных и...
Тип: Изобретение
Номер охранного документа: 0002643109
Дата охранного документа: 30.01.2018
04.04.2018
№218.016.2ec4

Способ испытания образцов из материала при растяжении с повышенной температурой

Изобретение относится к способам испытания металлов на растяжение с высокой температурой нагрева и может быть использовано при определении зависимости интенсивности напряжения от степени и скорости деформации, которые необходимо учитывать в технологических расчетах формоизменяющих операций...
Тип: Изобретение
Номер охранного документа: 0002644452
Дата охранного документа: 12.02.2018
04.04.2018
№218.016.350d

Способ краткосрочного прогноза землетрясений

Изобретение относится к области сейсмологии и может быть использовано для краткосрочного прогнозирования землетрясений. Сущность: определяют прогнозную дату землетрясения. Определяют вероятностные места возникновения землетрясения как окрестности радиусом 770 км от пересечений...
Тип: Изобретение
Номер охранного документа: 0002645878
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.357e

Абсолютный оптический однооборотный угловой энкодер

Изобретение относится к измерительной технике и может быть использовано для бесконтактного определения положения вала электродвигателя. Абсолютный оптический однооборотный угловой энкодер содержит n оптопар, где n - разрядность энкодера, растровый диск с одной кодирующей дорожкой, состоящей из...
Тип: Изобретение
Номер охранного документа: 0002645880
Дата охранного документа: 28.02.2018
31.07.2019
№219.017.ba40

Способ оценки отношения сигнал-шум на входе приёмного устройства для радиосигнала с цифровой амплитудной модуляцией

Изобретение относится к области измерений электрических величин. Отношение сигнал-шум рассчитывают с помощью решения комплексного уравнения в частных производных второго порядка вида u(t,x) - функция внешних возмущений; u(t,x) - искомая функция, эквивалент напряжения распространения; q,q,q,q,q...
Тип: Изобретение
Номер охранного документа: 0002695953
Дата охранного документа: 29.07.2019
26.11.2019
№219.017.e6d5

Способ беспроводной передачи цифровых панорамных аэровидеоизображений

Изобретение относится к области вычислительной техники. Технический результат заключается в сохранении качества передаваемых изображений в условиях меняющегося расстояния передачи и нестабильного уровня внешних помех. Способ беспроводной передачи цифровых панорамных аэровидеоизображений...
Тип: Изобретение
Номер охранного документа: 0002707139
Дата охранного документа: 22.11.2019
+ добавить свой РИД