×
25.08.2017
217.015.bab2

Результат интеллектуальной деятельности: Оптическое устройство для измерения показателя преломления прозрачных твердых веществ малой толщины и небольших размеров

Вид РИД

Изобретение

Аннотация: Изобретение относится к рефрактометрам. Оптическое устройство для измерения показателя преломления прозрачных твердых веществ образцов с толщиной 0,2-1 мм. и размером 5-12 мм, содержит: блок со сменными лазерными диодами, излучающими в диапазоне длин волн 400-1100 нм, устройство для формирования узкого пучка лучей шириной от 60-120 мкм, образец в виде плоскопараллельной пластины, дополнительный прозрачный оптический элемент, установленный с исследуемым образцом под одним и тем же углом падения, систему регистрации величины смещения светового луча, представляющую собой ПЗС-матрицу с разрешением 2592х1944 пикселей и больше. Технический результат заключается в сокращении времени и увеличении точности измерений показателя преломления света. 3 ил.

Изобретение относится к оптике и может быть использовано в качестве рефрактометра для измерения показателя преломления различных прозрачных и полупрозрачных твердых веществ, в частности - оптической керамики.

Экспериментальные образцы оптической керамики из новых наноматериалов после механической обработки обычно имеют толщину 0.5-1 мм с большими значениями показателя преломления (порядка 2) и малыми поперечными размерами 8-12 мм [1], что накладывает ограничения при выборе методов измерения дисперсии.

В нашей стране и за рубежом рефрактометры для измерения показателя преломления веществ (n) с n~2.0 в диапазоне длин волн 400-1100 нм ввиду их специфики и ограниченного применения серийно не выпускаются. Аналогами данного изобретения являются рефрактометры ИРФ-456, ИРФ-454 Б2М и DR-M4 для измерения показателя преломления на фиксированных длинах волн.

Рефрактометр ИРФ-456, устройство и принцип действия которого описаны в работе [2], предназначен для непосредственного измерения показателей преломления жидких и твердых тел. Рефрактометр может быть применен в медицине, в химической, фармацевтической, пищевой промышленности и других областях. Измеряемые показатели преломления должны находиться в диапазоне 1.3-1.5.

Рефрактометр ИРФ-454 Б2М с подсветкой, производства Казанского оптико-механического завода, имеет диапазон измеряемых показателей преломления только от 1.2 до 1.7 [3].

Для многоволновых Аббе-рефрактометров DR-M4 японской фирмы ATAGO [4] диапазон измерения показателя преломления значительно выше и составляет 1.5164-1.9164 (для λ=450 нм), 1.4700-1.8700 (для λ=589 нм), 1.4558-1.8557 (для λ=680 нм), 1.4304-1.8303 (для λ=1.100 нм).

Как можно заметить, с помощью известных приборов невозможно определить показатели преломления веществ с n≥1.83 в ближней ИК-области, а длины волн можно установить только дискретно.

Хотя метод смещения луча плоскопараллельной пластиной и рассматривается наряду с другими в числе прочих методик для определения показателя преломления, но к настоящему моменту описание серийных приборов и патентов для определения показателя преломления методом смещения луча от плоскопараллельной пластины авторами не обнаружено, за исключением [5]. Также можно отметить работу Смирновой Л.С. [6], где представлен аналогичный способ регистрации лучей при определении показателя преломления, но для клиновидных, толстых образцов и при нормальном падении луча на образец.

Таким образом, за прототип к настоящему изобретению можно принять оптическое устройство, описанное в [5], где показатель преломления твердого материала определяется методом смещения лазерного луча при его наклонном падении на поверхности плоскопараллельной пластины.

Сущность изобретения по [5] состоит в следующем. Узкий пучок лучей света от источника излучения под определенным углом направляется на плоскопараллельную пластину и, преломляясь на ней, смещается на некоторое расстояние параллельно самому себе относительно своего первоначального направления; измерению подлежит величина смещения пучка лучей. Для повышения точности измерений используются дополнительный прозрачный оптический элемент (эталон) с известными показателем преломления и геометрическими размерами, а также точная система с шаговым двигателем с дискретностью шага менее 0,05 мкм, используемая для формирования и сканирования узких пучков лучей. Для непрерывного изменения длины волны используется монохроматор, работающий в диапазоне длин волн от 200 до 1200 нм. Размер измерительного пучка в поперечном сечении s<1 мм. Таким образом, изобретение-прототип позволяет измерять показатель преломления оптической керамики из Nd:Y2O3 с точностью Δn=±0.004.

Недостатками установки по [5] являются: длительность времени измерений (около одного часа), необходимость использования высокоточного электрического привода и монохроматора, усложняющих устройство и существенно увеличивающих его геометрические размеры.

Задачей настоящего изобретения является создание оптического устройства для определения показателя преломления прозрачных твердых материалов с оптической плотностью выше 1.83 при λ=1100 нм на образцах малой толщины (0.3-1.0 мм) и небольших поперечных размеров (5-8 мм) на фиксированных длинах волн в диапазоне от 400 до 1100 нм, позволяющее сократить время измерений до 2-3 мин и обеспечить точность определения показателя преломления Δn=±0.004.

Поставленная задача достигается с помощью оптического устройства, в состав которого входят следующие основные части: блок диодных лазеров с фиксированными длинами волн в диапазоне спектра 400-1100 нм; механическое устройство, формирующее узкий световой пучок шириной 80-90 мкм; высокочувствительная ПЗС-матрица с высоким разрешением, например, 2592×1944 пикселей; специализированная программа, производящая обработку снимка узких пучков в цифровом формате и оптимизирующая полученные данные; дополнительная прозрачная плоскопараллельная пластина (эталон) с известными показателем преломления и геометрическими размерами. Описанное устройство основано на методе смещения луча плоскопараллельной пластиной.

Отличительными особенностями настоящего изобретения от прототипа являются: использование в качестве источника излучения вместо монохроматора с лампой накаливания - лазерных диодов, вместо детекторов излучения типа ФЭУ - ПЗС-матрицы высокого разрешения, а вместо механического сканирования узких пучков лучей - программная обработка зафиксированных снимков в цифровом формате.

Устройство для формирования узкого (60-120 мкм) измерительного светового пучка лучей и дополнительный прозрачный оптический элемент (эталон) с известными показателем преломления и геометрическими размерами для определения точного угла падения луча на плоскопараллельную пластину используются в предлагаемой заявке без каких-либо изменений.

Одновременная регистрация на ПЗС-матрице трех сигналов (опорного, эталонного и измеряемого) делают совершенно излишней точную систему сканирования оптического сигнала щелью шириной 10-30 мкм посредством шагового двигателя с величиной дискретного шага порядка 0,05 мкм.

Для смены длины волны излучения поочередно устанавливаются разные диодные лазеры, излучающие на длинах волн в диапазоне от 400 до 1100 нм; для регистрации световых пучков применена ПЗС-матрица, чувствительная в видимой и ближней ИК-области спектра. Спектральный диапазон измерений определяется спектральным диапазоном чувствительности ПЗС-матрицы.

Указанные отличия в предлагаемом оптическом устройстве позволяют измерять показатели преломления n≥1.83 (при 1100 нм) прозрачных твердых веществ малой толщины (0,2-1 мм) и небольших размеров (5-12 мм), в широком диапазоне длин волн (400-1100 нм) за 2-3 мин вместо 60.

Сущность заявляемого изобретения поясняется блок-схемой усовершенствованной измерительной установки (фиг. 1), схемой расположения пучков лучей на ПЗС-матрице (фиг. 2) и оптической схемой преломления луча на плоскопараллельной пластине (фиг. 3).

На фиг. 1 представлена блок-схема установки: 1 - блок со сменными лазерными диодами, излучающими на разных длинах волн; 2 - блок с образцом и/или эталоном; 3 - ПЗС-матрица; 4 - преобразователь сигналов; 5 - компьютер. На фиг. 2 - схема расположения на изображении следов от пучков лучей, где 6 - опорный пучок, 7 - пучок, отклоненный эталонным образцом, 8 - пучок, отклоненный исследуемым образцом. На фиг. 3 изображена оптическая схема распространения лазерного луча через плоскопараллельную пластину.

Для определения показателя преломления n образца на основе блока с лазерными диодами и ПЗС-матрицы был собран комплексный прибор, блок-схема которого показана на фиг. 1. Лазерное излучение, сформированное в виде узкого пучка лучей, под определенным углом (см. фиг. 1 и 3) направляется на исследуемый образец и дополнительный прозрачный оптический элемент (эталон - 2). Далее пучок лучей преломляется исследуемым и эталонным образцами, смещается ими на разные расстояния (см. фиг. 2) и попадает на ПЗС-матрицу высокого разрешения, изображения с которой через преобразователь сигналов (4) поступают через USB-разъем на компьютер, где фиксируются в виде цифровых снимков.

Полученные с ПЗС-матрицы данные на экране компьютера (5) представляются в виде изображения четырех линий (см. фиг. 2). Высота падающего пучка лучей выбирается так, чтобы его верхняя и нижняя части, проходя мимо плоскопараллельных пластин образца и эталона, распространялись далее без преломления и формировали на ПЗС-матрице два следа опорного пучка (6).

При падении луча на образец под углом i (см. фиг. 3) происходит преломление луча до угла j. Выходя из образца, луч вновь преломляется и принимает направление, параллельное первоначальному. При этом преломленный луч смещается вдоль нижней плоскости образца на расстояние X.

Измерив по исследуемому образцу смещение X (расстояние между линиями 6 и 8 на фиг. 2), можно определить показатель преломления по следующей формуле

где n - показатель преломления материала, i - угол между падающим лучом и нормалью к поверхности образца, X - смещение луча от первоначального положения, d - толщина образца.

Из формулы (1) следует, что показатель преломления n можно вычислить, экспериментально, измерив угол падения i, толщину образца d и величину смещения X.

Точность определения показателя преломления исследуемого образца сильно зависит от точности нахождения угла падения i. Непосредственное измерение угла падения является отдельной сложной задачей и требует использования точных дорогостоящих оптических приборов, например, типа гониометр. Однако для этой цели применен дополнительный простой оптический элемент, эталон - плоскопараллельная прозрачная пластина из стекла марки К8 с известным показателем преломления и толщиной 1 мм. В качестве эталона можно использовать любое другое твердое прозрачное вещество с показателем преломления n больше 1,5, так как меньшее значение не обеспечивает заявленную точность при определении показателей преломления порядка 2. Зная показатель преломления n, толщину d эталона и экспериментально определив на нем величину смещения X луча (расстояние между линиями 6 и 7 на фиг. 2) посредством численного решения уравнения (1) можно найти угол падения i, по которому затем вычислить искомое значение показателя преломления исследуемого образца.

Исследуемый образец и дополнительная прозрачная плоскопараллельная пластина устанавливаются под одним и тем же углом падения i либо поочередно в держатель образцов, либо вместе параллельно друг к другу. Во втором случае процедура измерений значительно упрощается и ускоряется.

С помощью специальной программы производится попиксельное сканирование зарегистрированного изображения пучков лучей (их следов) и анализируется распределение интенсивности в поперечных сечениях пучков отклоненных лучей. Затем методом усреднения находят для эталонного и измеряемого пучков лучей положение координат X, входящих в расчетную формулу (1), и посредством численного решения уравнения (1) по известному значению показателя преломления n эталона определяется угол i падения пучка лучей на эталон и образец. По найденному углу i и координате X смещения луча, преломленного образцом, по формуле (1) вычисляется показатель преломления n исследуемого материала.

Определенный таким образом показатель преломления для образца из оксида иттрия с неодимом при использовании полупроводникового лазера (650 нм) составил 1.934, что соответствует в пределах ошибок измерений значению в работе [5]. Таким образом, заявляемое оптическое устройство позволило определить показатель преломления оптической керамики из Nd:Y2O3 с точностью не ниже Δn=±0.004, упростить конструкцию и ускорить измерения в 30 раз.

Заявляемое оптическое устройство может быть применено и для других целей, например, для определения клиновидности плоскопараллельных пластин при известном их показателе преломления.

Источники информации

1. Багаев С.П., Осипов В.В., Иванов М.Г., Соломонов В.И. и др. Высокопрозрачная керамика на основе Nd3+:Y2O3. // Фотоника. - 2007. -№5. - с. 24-29.

2. Иоффе Б.В. / Рефрактометрические методы химии, 3 изд., перераб., Л., Химия, 1983.

3. http://kazan-omz.ru/list/Laboratornye-pribory-1891/Refraktometr-laboratornyi-IRF-454B2M.html.

4. Многоволновые Аббе рефрактометры DR-M4. /http://www.atago.ru/stationary/abbe.html.

5. Осипов B.B., Орлов A.H., Каширин В.И., Лисенков В.В. / Оптическое устройство для измерения показателя преломления прозрачных твердых веществ малой толщины и небольших размеров методом параллельного смещения светового луча. Патент №2492449.

6. Смирнова Л.А. / Способ определения показателя преломления клиновидных образцов. Патент №2032166,

Оптическое устройство для определения показателя преломления прозрачных твердых веществ образцов с толщиной от 0,2 до 1 мм и размером от 5 до 12 мм, содержащее источник излучения, устройство для формирования узкого пучка лучей шириной 60-120 мкм, образец в виде плоскопараллельной пластины и дополнительный прозрачный оптический элемент с известными показателем преломления и геометрическими размерами, установленный с исследуемым образцом под одним и тем же углом падения либо поочередно в держатель образцов, либо вместе параллельно друг к другу, систему регистрации величины смещения светового луча, отличающееся тем, что в качестве источника излучения используется блок со сменными лазерными диодами, излучающими в диапазоне длин волн 400-1100 нм, а в системе регистрации и обработки данных применяется ПЗС-матрица с разрешением 2592х1944 пикселей и больше.
Оптическое устройство для измерения показателя преломления прозрачных твердых веществ малой толщины и небольших размеров
Оптическое устройство для измерения показателя преломления прозрачных твердых веществ малой толщины и небольших размеров
Оптическое устройство для измерения показателя преломления прозрачных твердых веществ малой толщины и небольших размеров
Оптическое устройство для измерения показателя преломления прозрачных твердых веществ малой толщины и небольших размеров
Источник поступления информации: Роспатент

Showing 21-29 of 29 items.
29.05.2018
№218.016.56b9

Способ поверхностной дезинфекции яйца

Изобретение относится к области пищевой промышленности, а именно к способам дезинфекции пищевых продуктов. Способ поверхностной дезинфекции яйца путем облучения пучком ускоренных электронов предусматривает облучение яйца в герметичной пластиковой упаковке за счет подбора энергии электронов. При...
Тип: Изобретение
Номер охранного документа: 0002654622
Дата охранного документа: 21.05.2018
09.06.2018
№218.016.5bf6

Батарея трубчатых твердооксидных элементов с тонкослойным электролитом электрохимического устройства и узел соединения трубчатых твердооксидных элементов в батарею (варианты)

Изобретение относится к высокотемпературным электрохимическим устройствам на основе твердооксидных элементов (ТОЭ) - элементов с твердым электролитом, точнее к конструкции батареи трубчатых ТОЭ и узлов соединения (УС) ТОЭ в батарею. Техническим результатом является создание батареи, в которой...
Тип: Изобретение
Номер охранного документа: 0002655671
Дата охранного документа: 29.05.2018
19.07.2018
№218.016.7251

Плоский спиральный индуктор сильного магнитного поля (варианты)

Изобретение относится к электротехнике и может быть использовано в индукторах устройств для магнитно-импульсной обработки материалов (МИОМ), такой как прессование порошков, штамповка листовых заготовок и т.д., использующих ток высокой частоты и большой амплитуды для генерации сильного...
Тип: Изобретение
Номер охранного документа: 0002661496
Дата охранного документа: 17.07.2018
26.07.2018
№218.016.7576

Высокоактивная многослойная тонкопленочная керамическая структура активной части элементов твердооксидных устройств

Высокоактивная многослойная тонкопленочная керамическая структура активной части элементов твердооксидных устройств для высокоэффективной генерации тока, генерации водорода электролизом воды, генерации кислорода и азота твердооксидными кислородными насосами, конверсии топливных газов с...
Тип: Изобретение
Номер охранного документа: 0002662227
Дата охранного документа: 25.07.2018
03.11.2018
№218.016.9a2b

Способ получения оптически прозрачной керамики на основе оксида лютеция

Использование: для создания оптически прозрачной керамики. Сущность изобретения заключается в том, что способ получения оптически прозрачной керамики на основе оксида лютеция заключается в спекании прокаленного пресс-порошка в искровой плазме, при этом максимально допустимая для используемой...
Тип: Изобретение
Номер охранного документа: 0002671550
Дата охранного документа: 01.11.2018
12.04.2019
№219.017.0be5

Способ допирования mgo-nalo керамик ионами железа

Изобретение относится к области квантовой электроники и может использоваться для синтеза активной среды при создании мощных лазеров, генерирующих в среднем ИК-диапазоне длин волн. Техническим результатом изобретения является повышение однородности распределения, концентрации и толщины активного...
Тип: Изобретение
Номер охранного документа: 0002684540
Дата охранного документа: 09.04.2019
13.06.2019
№219.017.8132

Способ изготовления высокоплотных объемных керамических элементов с использованием электрофоретического осаждения наночастиц (варианты)

Изобретение относится к области получения керамических материалов и может быть использовано для изготовления высокоплотной, в том числе оптической, керамики. В способе изготовления высокоплотных объемных керамических элементов с использованием электрофоретического осаждения (ЭФО) наночастиц...
Тип: Изобретение
Номер охранного документа: 0002691181
Дата охранного документа: 11.06.2019
28.06.2019
№219.017.9975

Микро-планарный твердооксидный элемент (мп тоэ), батарея на основе мп тоэ (варианты)

Изобретение относится к области электротехники, а именно к конструкциям микропланарных твердооксидных топливных элементов (МП ТОЭ) и батарей на их основе. МПТОЭ имеет мембрану из тонкослойного твердого электролита с анодом и катодом на противоположных поверхностях (активная часть) и...
Тип: Изобретение
Номер охранного документа: 0002692688
Дата охранного документа: 26.06.2019
14.12.2019
№219.017.edb6

Система-носитель для направленной доставки антибиотиков пенициллинового и антрациклинового ряда

Изобретение относится к фармацевтике и может быть использовано для производства системы-носителя для направленной доставки лекарств при диагностике или терапии. Предложена система-носитель для направленной доставки антибиотиков пенициллинового и антрациклинового ряда на основе нанопорошка,...
Тип: Изобретение
Номер охранного документа: 0002708894
Дата охранного документа: 12.12.2019
Showing 21-22 of 22 items.
15.03.2019
№219.016.e08a

Способ генерации сильноточных пучков быстрых электронов в газонаполненном ускорительном промежутке

Изобретение относится к сильноточной электронике. Технический результат заключается в повышении надежности и увеличении срока службы. Согласно изобретению способ генерации сильноточных пучков быстрых электронов в газонаполненном ускорительном промежутке включает в себя ускорение эмитируемых с...
Тип: Изобретение
Номер охранного документа: 0002317660
Дата охранного документа: 20.02.2008
12.04.2019
№219.017.0be5

Способ допирования mgo-nalo керамик ионами железа

Изобретение относится к области квантовой электроники и может использоваться для синтеза активной среды при создании мощных лазеров, генерирующих в среднем ИК-диапазоне длин волн. Техническим результатом изобретения является повышение однородности распределения, концентрации и толщины активного...
Тип: Изобретение
Номер охранного документа: 0002684540
Дата охранного документа: 09.04.2019
+ добавить свой РИД