×
25.08.2017
217.015.b80f

Результат интеллектуальной деятельности: СПОСОБ ОГРАНИЧЕНИЯ ВОДОПРИТОКА В ТРЕЩИНОВАТЫХ КАРБОНАТНЫХ КОЛЛЕКТОРАХ

Вид РИД

Изобретение

№ охранного документа
0002614997
Дата охранного документа
03.04.2017
Аннотация: Предложенное изобретение относится к нефтедобывающей промышленности и может быть использовано для проведения водоизоляционных работ в обводненных карбонатных пластах, в том числе ограничения притока подошвенной, законтурной или закачиваемой воды, поступающей по высокопроницаемым трещинам. Технический результат предложенного изобретения заключается в повышении эффективности изоляции водопритоков за счет увеличения стойкости изолирующего геля к перепадам давления в условиях трещиноватых карбонатных коллекторов. Способ изоляции водопритоков в трещиноватых карбонатных коллекторах включает приготовление и закачку в зону изоляции водного раствора полиалюминия хлорида и оставление скважины на реагирование. В изолируемый интервал закачивают последовательно 5-15 м водного 10-15%-ного раствора полиалюминия хлорида с pH=3,5-5 и 10-25 м водной суспензии глинопорошка плотностью 1080-1320 кг/м, указанный цикл закачивания повторяют от 1 до 5 раз в зависимости от приемистости. По окончании закачивания необходимого количества циклов дополнительно закачивают 15 м водного 10-15%-ного раствора полиалюминия хлорида, закачивание производится непрерывно. При резком возрастании давления закачивание суспензии глинопорошка прекращают и далее закачивают только водный раствор полиалюминия хлорида в запланированном объеме и оставляют скважину на реагирование в течение 24-48 ч. 2 табл.

Предложение относится к нефтедобывающей промышленности и может быть использовано для проведения водоизоляционных работ в обводненных карбонатных пластах, в том числе ограничения притока подошвенной воды, законтурной или закачиваемой воды, поступающей по высокопроницаемым трещинам.

Известен способ обработки обводненных карбонатных коллекторов (патент RU №2383724, МПК Е21В 43/22, опубл. 10.03.2010 г., бюл. №7), включающий предварительное насыщение высокообводненных каналов коагулянтом путем закачки 20%-ного раствора хлористого кальция, последующую закачку буферного слоя пресной воды, затем раствора гидролизованных в щелочи отходов волокна или тканей полиакрилонитрила - ГОПАН, буферного слоя пресной воды и осуществление солянокислотного воздействия. Указанную закачку повторяют, причем в состав первой порции раствора ГОПАН дополнительно вводят 0,1-1,0% сухих негидролизованных измельченных отходов волокна полиакрилонитрила, осуществляют закачку первой порции раствора ГОПАН при давлении закачки на устье скважины, равном 20% от давления гидроразрыва обрабатываемого пласта. Закачку каждой последующей порции раствора ГОПАН производят с повышением давления закачки на устье скважины относительно предыдущей на 10% от давления гидроразрыва обрабатываемого пласта. Давление закачки не должно превышать 50% от давления гидроразрыва обрабатываемого пласта, каждую последующую порцию раствора ГОПАН, начиная с третьей, разбавляют водой по отношению к предыдущей в 2 раза.

Недостатком известного способа является сложность его исполнения из-за отсутствия промышленного производства гидролизованных в щелочи отходов волокна или тканей полиакрилонитрила.

Известен способ водоизоляции карбонатных коллекторов (патент RU №2166080, МПК Е21В 43/27, опубл. 27.04.2001 г., бюл. №12), включающий закачку гелеобразующего состава из водорастворимого неорганического сульфата, водорастворимого соединения кремния и воды. В качестве водорастворимого неорганического сульфата состав содержит сульфат алюминия, а в качестве водорастворимого соединения кремния - кремнефтористоводородную кислоту при следующем соотношении ингредиентов, мас. %:

сульфат алюминия 4,3-8,7
кремнефтористоводородная кислота 3,3-6,7
вода остальное

Известен способ изоляции вод в скважинах (патент RU №1329240, МПК Е21В 33/138, опубл. 09.08.1995 г., бюл. №22), включающий закачку гидролизованного полиакрилонитрила, добавки и пресной воды. С целью повышения изолирующей способности состава в условиях слабоминерализованных вод и высокопроницаемых коллекторов за счет образования более объемного тампонирующего осадка, в качестве добавки состав содержит силикат натрия при следующем соотношении компонентов, мас. %:

гидролизованный полиакрилонитрил 3-10
силикат натрия 10-30
вода остальное.

Недостатком известных способов является их низкая эффективность в условиях карбонатных коллекторов.

Наиболее близким по технической сущности к заявляемому является способ изоляции водопритоков в обводненных карбонатных коллекторах (патент RU №2487235, МПК Е21В 43/22, опубл. 10.07.2013 г., бюл. №19). Способ включает приготовление и закачку в обводненный пласт добывающей скважины водоизолирующего реагента, который предварительно готовят из 8-15%-ного раствора полиалюминия хлорида с pH=3,5-5 на 0,05%-ном водном растворе полиакриламида DP9-8177. Реагент закачивают в добывающую скважину и оставляют скважину на реагирование в течение 24-36 ч.

Недостатком известного способа является низкая стойкость изолирующего состава на основе полиалюминия хлорида и полиакриламида к перепадам давления в условиях трещиноватого пласта.

Технической задачей предложения является повышение эффективности изоляции водопритоков за счет увеличения стойкости изолирующего геля к перепадам давления в условиях трещиноватых карбонатных коллекторов.

Техническая задача решается способом ограничения водопритока в трещиноватых карбонатных коллекторах, включающим приготовление и закачку в зону изоляции водного раствора полиалюминия хлорида и оставление скважины на реагирование.

Новым является то, что в изолируемый интервал закачивают последовательно 5-15 м3 водного 10-15%-ного раствора полиалюминия хлорида с pH=3,5-5 и 10-25 м3 водной суспензии бентонитового глинопорошка плотностью 1080-1320 кг/м3, указанный цикл закачивания повторяют от 1 до 5 раз в зависимости от приемистости скважины, по окончании закачивания необходимого количества циклов дополнительно закачивают 10-25 м3 водного 10-15%-ного раствора полиалюминия хлорида, закачивание циклов производится непрерывно, причем при резком возрастании давления закачивание водной суспензии бентонитового глинопорошка прекращают и далее закачивают только водный раствор полиалюминия хлорида и оставляют скважину на реагирование в течение 24-48 ч.

Реагенты, применяемые в предложении:

- полиалюминия хлорид представляет собой порошок светло-желтого цвета с pH=3,5-5, с массовой долей оксида алюминия (Al2O3) не менее 30%, массовой долей нерастворимого в воде остатка - не более 0,5%;

- бентонитовый глинопорошок, предназначенный для приготовления и регулирования свойств буровых растворов на водной основе, с массовой долей влаги не более 10%, с остатком на сите №05 после мокрого ситового анализа не более 0% и на сите №0071 - не более 10%;

- вода пресная, сточная или минерализованная хлоркальциевого типа плотностью 1000-1180 кг/м3.

Сущность предложенного способа заключается в блокировании путей притока воды в трещиноватых карбонатных коллекторах гелем, образующимся из водного раствора полиалюминия хлорида при его контактировании с карбонатным коллектором, и реализуется путем циклической последовательной закачки в изолируемый интервал порций водного раствора полиалюминия хлорида и водной суспензии бентонитового глинопорошка. Требуемое количество циклов в зависимости от приемистости изолируемого интервала установлено опытным путем и представлено в табл. 1.

Для приготовления раствора полиалюминия хлорида и суспензии бентонитового глинопорошка может быть использована пресная, сточная или минерализованная вода хлоркальциевого типа плотностью 1000-1180 кг/м3. Раствор полиалюминия хлорида и суспензию бентонитового глинопорошка одновременно с приготовлением закачивают в скважину. Закачивание должно производиться непрерывно. На скважине при перемешивании готовят и непрерывно и последовательно закачивают в скважину 10-15%-ный водный раствор полиалюминия хлорида и суспензию глинопорошка плотностью 1080-1320 кг/м3. После закачки в обводненный карбонатный пласт добывающей скважины 10-15%-ного водного раствора полиалюминия хлорида с pH=3,5-5 и суспензии бентонитового глинопорошка в зоне изоляции формируется гидроизоляционный экран за счет взаимодействия полиалюминия хлорида с карбонатной составляющей породы, при этом образуется гель полигидроокиси алюминия, который вместе с суспензией бентонитового глинопорошка уменьшает сечение промытых поровых каналов и трещин. Кроме того, при взаимодействии полиалюминия хлорида с карбонатной породой в порах пласта уменьшается количество воды вследствие ее расхода на образование геля полигидроокиси алюминия, а выделяющийся углекислый газ способствует лучшему смешению реагирующих веществ.

Лабораторными испытаниями установлено, что для гелеобразования полиалюминия хлорида оптимальной является область pH от 3,5 до 5. Количество закачанных циклов водного 10-15%-ного раствора полиалюминия хлорида с pH=3,5-5 и водной суспензии бентонитового глинопорошка плотностью 1080-1320 кг/м3, а также объемы закачиваемых циклов установлены опытным путем.

После закачки в обводненный карбонатный пласт добывающей скважины нескольких циклов водного 10-15%-ного раствора полиалюминия хлорида с pH=3,5-5 и суспензии глинопорошка плотностью 1080-1320 кг/м3 наиболее проницаемые интервалы пласта, содержащие каверны и трещины, забиваются глинопорошком. Увеличение стойкости изолирующего экрана к перепадам давления достигается суммированием сопротивлений течению воды, создаваемых гелем полигидроокиси алюминия и глинопорошком. Скважину оставляют на реагирование в течение 24-48 ч и запускают в работу.

Эффективность и водоизолирующая способность составов по предлагаемому способу и наиболее близкого аналога были испытаны на моделях пласта длиной 30 см, внутренним диаметром 2,7 см, заполненных измельченным мрамором, имитирующих трещиноватый карбонатный пласт с прослойками различной проницаемости (1 и 10 мкм2). Первоначально через модель пласта прокачивают воду, проводят замер ее расхода и определяют исходную проницаемость модели. Далее через модели последовательно прокачивают испытуемые составы согласно описанию в формуле изобретения.

Объем закачанных составов равнялся поровому объему моделей пласта. Модели оставляют на гелеобразование, после чего прокачивают воду и определяют давление прорыва воды. Усредненные результаты модельных испытаний водоизолирующей способности предлагаемого способа и наиболее близкого аналога представлены в табл. 2.

По результатам модельных испытаний установлена лучшая изолирующая способность водоизолирующего состава по предлагаемому способу по сравнению с наиболее близким аналогом, которую определяют по величинам давления прорыва воды в моделях через 24 ч и 6 мес, подтверждающих эффективность предлагаемого способа.

Пример практического применения.

Имеется скважина с обсадной колонной диаметром 146 мм, эксплуатирующая карбонатный трещиноватый пласт, интервал перфорации в скважине - 866-869 м. В скважину на глубину 836 м спускают колонну насосно-компрессорных труб с условным диаметром 73 мм. Приемистость пласта составила 30 м3/ч при давлении 10 МПа, удельная приемистость - 3,0 м3/(ч⋅МПа). Проводится закачивание 2-х циклов водного раствора полиалюминия хлорида и водной суспензии бентонитового глинопорошка. Приготовление водного 10%-ного раствора полиалюминия хлорида и водной суспензии бентонитового глинопорошка проводили с использованием установки КУДР-4 (далее - КУДР). Запустили перемешивающее устройство в смесительной емкости КУДР. Подали в емкость установки КУДР воду плотностью 1000 кг/м3 с расходом 10 м3/ч и порошок полиалюминия хлорида с расходом 1,0 т/ч, при этом расход полученного 10%-ного водного раствора полиалюминия хлорида плотностью 1052 кг/м3 составил 10 м3/ч. Подачу порошка полиалюминия хлорида осуществляли из цементосмесительного агрегата (посредством шнеков) на глиноподъемник, а с глиноподъемника - в смесительную емкость. Перемешивающийся в смесительной емкости водный раствор полиалюминия хлорида непрерывно откачивался в скважину, таким образом в скважину закачали 10 м3 водного раствора полиалюминия хлорида. Далее начали приготовление и закачивание водной суспензии бентонитового глинопорошка. Запустили перемешивающее устройство в смесительной емкости КУДР. Начали подавать в емкость установки КУДР воду плотностью 1090 кг/м3 с расходом 8,8 м3/ч и бентонитовый глинопорошок с расходом 2,85 т/ч. Расход водной суспензии бентонитового глинопорошка плотностью 1245 кг/м3 составил 10 м3/ч. Подачу глинопорошка осуществляли из цементосмесительного агрегата (посредством шнеков) на глиноподъемник, а с глиноподъемника в смесительную емкость. Осуществляли периодический контроль плотности водной суспензии бентонитового глинопорошка в смесительной емкости, плотность составила 1245 кг/м3. Перемешивающаяся в смесительной емкости суспензия глинопорошка непрерывно откачивалась в скважину с расходом 10 м3/ч, таким образом в скважину закачали 10 м3 водной суспензии бентонитового глинопорошка. Затем в скважину последовательно закачали 10 м3 водного раствора полиалюминия хлорида и 10 м3 водной суспензии бентонитового глинопорошка. Далее закачали 10 м3 водного раствора полиалюминия хлорида (приготовленные аналогичным способом) и 2,5 м3 воды плотностью 1000 кг/м3 с целью продавливания закачанных реагентов в пласт. Оставили скважину на реагирование в течение 48 ч. Далее провели контрольную промывку скважины от возможных остатков продуктов структурирования водоизоляционной композиции со спуском колонны насосно-компрессорных труб до забоя, освоили скважину, спустили подземное оборудование и ввели скважину в эксплуатацию. В результате проведенных работ обводненность продукции скважины снизилась на 36%, дебит нефти увеличился в 3 раза.

Таким образом, использование предлагаемого способа позволяет повысить эффективность изоляции водопритоков за счет увеличения стойкости изолирующего геля к перепадам давления в условиях трещиноватых карбонатных коллекторов.

Способ изоляции водопритоков в трещиноватых карбонатных коллекторах, включающий приготовление и закачку в зону изоляции водного раствора полиалюминия хлорида и оставление скважины на реагирование, отличающийся тем, что в изолируемый интервал закачивают последовательно 5-15 м водного 10-15%-ного раствора полиалюминия хлорида с рН=3,5-5 и 10-25 м водной суспензии бентонитового глинопорошка плотностью 1080-1320 кг/м, указанный цикл закачивания повторяют от 1 до 5 раз в зависимости от приемистости скважины, по окончании закачивания необходимого количества циклов дополнительно закачивают 10-25 м водного 10-15%-ного раствора полиалюминия хлорида, закачивание циклов производится непрерывно, причем при резком возрастании давления закачивание водной суспензии бентонитового глинопорошка прекращают и далее закачивают только водный раствор полиалюминия хлорида и оставляют скважину на реагирование в течение 24-48 ч.
Источник поступления информации: Роспатент

Showing 251-260 of 499 items.
22.09.2018
№218.016.88d3

Способ изоляции водопритоков в скважине (варианты)

Группа изобретений относится к нефтегазодобывающей промышленности, в частности к способам проведения водоизоляционных работ в добывающих скважинах, а также к способам выравнивания профиля приемистости в нагнетательных скважинах. Способ изоляции водопритоков в скважину по первому варианту...
Тип: Изобретение
Номер охранного документа: 0002667241
Дата охранного документа: 18.09.2018
22.09.2018
№218.016.88f0

Клапан штангового насоса (варианты)

Изобретение относится к области нефтедобывающей промышленности, в частности к области эксплуатации скважин штанговыми насосами в горизонтальных и наклонных скважинах. Клапан штангового насоса содержит корпус, седло, направляющую для шара, поджимаемого к седлу гравитационным толкателем....
Тип: Изобретение
Номер охранного документа: 0002667302
Дата охранного документа: 18.09.2018
22.09.2018
№218.016.88fb

Способ фиксации внутренней пластмассовой трубы на концах металлической футерованной трубы

Изобретение относится к области трубопроводного транспорта. Способ включает футерование металлической трубы пластмассовой трубой, удаление концов пластмассовой трубы от торцов металлической трубы на длину, превышающую длину зоны термической деструкции пластмассовой трубы от тепла сварки,...
Тип: Изобретение
Номер охранного документа: 0002667307
Дата охранного документа: 18.09.2018
22.09.2018
№218.016.88fe

Способ разработки нефтяного пласта скважиной с горизонтальным окончанием

Изобретение относится к нефтедобывающей промышленности и может найти применение при разработке неоднородных терригенных или карбонатных продуктивных пластов скважинами с горизонтальным окончанием. Технический результат - повышение эффективности способа за счет повышения его технологичности и...
Тип: Изобретение
Номер охранного документа: 0002667242
Дата охранного документа: 18.09.2018
22.09.2018
№218.016.8936

Способ гидравлического разрыва пласта

Изобретение относится к нефтяной промышленности и может быть применено при гидравлическом разрыве карбонатного пласта или залежи высоковязкой нефти. Способ включает перфорацию стенок скважины в необходимом интервале скважины каналами глубиной не менее протяженности зоны концентрации напряжений...
Тип: Изобретение
Номер охранного документа: 0002667255
Дата охранного документа: 18.09.2018
22.09.2018
№218.016.8969

Состав для изоляции водопритока в скважину с низкой пластовой температурой (варианты)

Группа изобретений относится к нефтедобывающей промышленности, в частности к составам для изоляции водопритока в добывающих скважинах и обработки нагнетательных скважин с целью выравнивания профиля приемистости и увеличения охвата пластов заводнением. По первому варианту состав содержит...
Тип: Изобретение
Номер охранного документа: 0002667254
Дата охранного документа: 18.09.2018
22.09.2018
№218.016.8983

Способ перфорации скважины и обработки призабойной зоны карбонатного пласта

Изобретение относится к нефтегазодобывающей промышленности, к области эксплуатации скважин, а именно к способам для вторичного вскрытия и обработки призабойной зоны карбонатного пласта. Способ включает спуск в эксплуатационную колонну (ЭК) закрепленных на колонне насосно-компрессорных труб...
Тип: Изобретение
Номер охранного документа: 0002667239
Дата охранного документа: 18.09.2018
22.09.2018
№218.016.8990

Способ определения пространственной ориентации трещины гидроразрыва в горизонтальном стволе скважины

Изобретение относится к проведению гидравлического разрыва пласта (ГРП) и может быть применено для определения ориентации трещины в горизонтальном стволе скважины, полученной в результате ГРП. Способ включает проведение ГРП с образованием трещины разрыва и определение пространственной...
Тип: Изобретение
Номер охранного документа: 0002667248
Дата охранного документа: 18.09.2018
23.09.2018
№218.016.8a86

Способ многократного гидравлического разрыва пласта в открытом стволе наклонной скважины

Изобретение относится к способам гидравлического разрыва в открытых стволах горизонтальных скважин, вскрывших многопластовую продуктивную залежь нефти с низкими фильтрационно-емкостными свойствами с подошвенной водой в карбонатных породах. Способ включает бурение скважины в продуктивном пласте,...
Тип: Изобретение
Номер охранного документа: 0002667561
Дата охранного документа: 21.09.2018
15.10.2018
№218.016.9207

Состав для изоляции водопритока в скважину

Изобретение оотносится к нефтедобывающей промышленности, в частности к составам для изоляции водопритока в добывающих и нагнетательных скважинах, и предназначено для проведения водоизоляционных работ в скважинах. Состав для изоляции водопритока в скважину содержит 2,8-13,5 мас. % силиката...
Тип: Изобретение
Номер охранного документа: 0002669648
Дата охранного документа: 12.10.2018
Showing 221-225 of 225 items.
13.11.2019
№219.017.e0d8

Состав для изоляции водопритока в скважину

Изобретение относится к нефтедобывающей промышленности, в частности к составам для изоляции водопритока в добывающих и нагнетательных скважинах, и предназначено для проведения водоизоляционных работ в высокотемпературных скважинах. Состав для изоляции водопритока в скважину содержит 1 об.ч....
Тип: Изобретение
Номер охранного документа: 0002705670
Дата охранного документа: 11.11.2019
15.11.2019
№219.017.e2c7

Гелеобразующий состав для изоляции водопритоков в скважину

Изобретение относится к нефтегазодобывающей промышленности, в частности к составам для изоляции водопритоков в добывающих скважинах, регулирования охвата обрабатываемого пласта и профиля приемистости нагнетательных скважин. Гелеобразующий состав содержит 6-10 мас.ч. гидролизованного...
Тип: Изобретение
Номер охранного документа: 0002706150
Дата охранного документа: 14.11.2019
16.01.2020
№220.017.f602

Состав для изоляции водопритока в скважину

Изобретение относится к нефтедобывающей промышленности, в частности к составам для изоляции водопритока в добывающих и нагнетательных скважинах, и предназначено для проведения водоизоляционных работ в скважинах. Состав содержит 45-55 мас.% 15-25%-ного водного раствора полиалюминия хлорида и...
Тип: Изобретение
Номер охранного документа: 0002710862
Дата охранного документа: 14.01.2020
05.02.2020
№220.017.fe9b

Состав для изоляции водопритока в скважину

Изобретение относится к нефтедобывающей промышленности, в частности к составам для изоляции водопритока в добывающих и нагнетательных скважинах, и предназначено для проведения водоизоляционных работ в скважинах. Состав содержит 8,0-15,0 мас. % силиката натрия, 85-92 мас. % пресной воды. При...
Тип: Изобретение
Номер охранного документа: 0002713063
Дата охранного документа: 03.02.2020
23.02.2020
№220.018.05be

Состав для изоляции водопритока в скважину

Изобретение относится к нефтедобывающей промышленности, в частности к составам для изоляции водопритока в добывающих и нагнетательных скважинах, и предназначено для проведения водоизоляционных работ в скважинах. Состав содержит 8,0-15,0 мас.% силиката натрия и 85-92 мас.% пресной воды....
Тип: Изобретение
Номер охранного документа: 0002714753
Дата охранного документа: 20.02.2020
+ добавить свой РИД