×
25.08.2017
217.015.b5f1

Результат интеллектуальной деятельности: СПОСОБ УПРАВЛЕНИЯ КОСМИЧЕСКИМ АППАРАТОМ ДЛЯ ОБЛЁТА ЛУНЫ

Вид РИД

Изобретение

№ охранного документа
0002614446
Дата охранного документа
28.03.2017
Аннотация: Изобретение относится к межорбитальным маневрам космических аппаратов (КА) в системе Земля-Луна. Способ включает отстыковку КА от околоземной орбитальной космической станции (ОКС) и выведение его на траекторию облета Луны с возвратом. При возвращении к Земле путём нескольких торможений в её атмосфере КА снижается до высоты орбиты ОКС. Для согласования плоскостей орбит ОКС и КА после первого прохождения атмосферы в точке пересечения этих плоскостей осуществляют поворот линии узлов орбиты КА. Для этого прикладывают к КА соответствующий импульс перпендикулярно плоскости орбиты прилета. Затем КА вновь стыкуют с ОКС. Способ позволит выполнить облет Луны и вернуться на исходную околоземную орбиту за 6,5 сут, с затратами характеристической скорости ~ 1,7 км/сек. Технический результат изобретения направлен на отработку КА, предназначенного для многократных перелетов между околоземной и окололунной ОКС. 5 ил.

Предлагаемый способ управления может быть использован в космической технике при организации облета Луны космическим аппаратом (КА), находящимся, например, в составе околоземной орбитальной станции (ОС). Предполагается, что после проведения облета Луны КА возвращается на исходную околоземную орбиту для последующей стыковки с ОС [1. «Луна. Шаг к технологиям освоения Солнечной системы» под. ред. В.П. Легостаева, M, РКК «Энергия», 2011].

Известен способ управления, выбранный в качестве аналога, в котором выполняется облет Луны. В качестве КА рассматривался космический корабль (КК) «Аполлон-12», выводимый на опорную орбиту с помощью ракеты-носителя (РН) «Сатурн-5». После выведения КК выполняет отлетный импульс для перелета к Луне. Затем у Луны выполняется импульс для перехода на селеноцентрическую орбиту, а после завершения полета вокруг Луны КК выполняет отлетный импульс для перелета к Земле с последующим входом в атмосферу и посадкой в заданном районе и, таким образом, использование этого КА многократно невозможно.

Известен способ управления КА для облета Луны, выбранный в качестве прототипа, включающий приложение к КА, находящемуся на исходной околоземной орбите импульса для облета Луны по возвратной траектории за время t1 [2]. В качестве КА использовался КА «Зонд-7», выводимый на опорную орбиту с помощью РН «Протон». После выведения на околоземную орбиту КА «Зонд-7» выполняет отлетный импульс для облета Луны по возвратной траектории [2. В.И. Левантовский «Механика космического полета в элементарном изложении», М, Наука, 1980]. Основным недостатком такого способа управления является то, что КА после облета Луны входит в атмосферу Земли с последующим приземлением в заданном районе, что также как и в аналоге исключает его многократное использование и является основным недостатком.

Задачей изобретения является возможность отработки КА, предназначенного для многократных перелетов между околоземной ОС и ОС, расположенной на орбите Луны.

Технический результат достигается благодаря тому, что в способе управления КА при облете Луны, включающем приложение к КА, находящемуся на исходной околоземной орбите импульса для облета Луны по возвратной траектории за время t1, в отличие от известного способа через время t2 после облета Луны, необходимое для согласования высоты орбиты прилета с высотой исходной околоземной орбиты, КА возвращают в исходную плоскость околоземной орбиты, для чего после облета КА выводят на эллиптическую орбиту прилета вокруг Земли, а затем на линии пересечения плоскостей орбиты прилета и исходной околоземной орбиты к КА прикладывают импульс в направлении, перпендикулярном плоскости орбиты прилета для поворота линии узлов на угол Δϕ, определенный по формуле:

Δϕ=ωОЗ⋅(t1+t2),

где ωОЗ - угловая скорость прецессии плоскости исходной околоземной орбиты.

Предлагаемый способ рассмотрим на примере КА, пристыкованного к ОС, находящейся на исходной околоземной орбите. Технический результат в предлагаемом способе управления достигается за счет того, что после отделения от ОС и приложения отлетного импульса КА переводится на возвратную траекторию с облетом Луны [2] с длительностью t1 от выдачи отлетного импульса до обратного достижения Земли. По достижению Земли за счет нескольких торможений в атмосфере Земли, переходит на так называемые тормозные эллипсы [2], постепенно снижая высоту орбиты вплоть до высоты орбиты ОС за время t2. За это суммарное время t1+t2 плоскость исходной околоземной орбиты, на которой находится ОС повернется относительно начального положения на угол:

Δϕ=ωОЗ⋅(t1+t2),

где ωОЗ - угловая скорость прецессии плоскости орбиты, возникающая вследствие нецентральности гравитационного поля Земли и составляющая около 5° в сутки. Для согласования плоскостей орбит прилета и исходной околоземной орбиты необходимо на линии их пересечения приложить к КА импульс в направлении, перпендикулярном плоскости орбиты прилета для поворота линии узлов на угол Δϕ. Оптимально, с точки зрения минимизации расходов топлива, этот импульс выполнять после первого входа КА в атмосферу в точке, наиболее близкой к апогею орбиты. После согласования плоскостей и снижение высоты орбиты КА до высоты орбиты ОС КА вновь пристыковывается к ОС.

Сущность изобретения поясняется фиг. 1-4, где:

на фиг. 1 показана схема полета аналога - перелет на окололунную орбиту КК «Апполон-12»,

на фиг. 2 приведена схема полета прототипа - облет Луны КА «Зонд-7»,

на фиг. 3 поясняется схема полета КА по предлагаемому способу,

на фиг. 4 поясняется схема поворота плоскости орбиты КА по предлагаемому способу,

на фиг. 5 представлена схема с последовательными прохождениями на заданном расстоянии от Земли и последующим выходом на орбиту ОС.

На фиг. 1-5 отмечены следующие позиции: 1 - исходная околоземная орбита, 2 - отлетный импульс к Луне, 3 - тормозной импульс, 4 - селеноцентрическая орбита, 5 - отлетный импульс для перелета к Земле, 6 - траектория перелета к Земле, 7 - направление движения Луны, 8 - возвратная траектория КА после облета Луны, 9 - угол разворота плоскости Δϕ, 10 - текущая плоскость орбиты ОС, 11 - линия пересечения двух плоскостей, 12 - импульс поворота плоскости орбиты, 13 - атмосфера Земли, 14 - импульс перехода КА на орбиту околоземной ОС.

На фиг. 1 показана схема полета аналога - перелет на окололунную орбиту по схеме КК «Апполон-12» в системе отсчета вращающейся вместе с линией Земля-Луна. После выведения КК находится на исходной околоземной орбите (1). После приложения отлетного импульса (2), КК перелетает в окрестность Луны, где после выдачи тормозного импульса (3) переходит на селеноцентрическую орбиту (4). Через ~4 суток, когда появляются условия для оптимального перелета к Земле [3. «Основы теории полета космических аппаратов» под ред. Г.С. Нариманова, Машиностроение, Москва, 1972], КК выполняет отлетный импульс (5) и возвращается на Землю по траектории прилета (6) с последующей посадкой в заданном районе.

На фиг. 2 приведена траектория облета Луны с использованием КА «Зонд-7» также в системе отсчета вращающейся вместе с линией Земля-Луна. После выведения КА находится на исходной околоземной орбите (1). В заданной точке орбиты к КА прикладывают отлетный импульс (2), после чего КА облетает Луну со стороны ее движения вокруг Земли (7) и по возвратной траектории прилетает к Земле (8) с последующим приземлением в заданном районе.

На фиг. 3 в проекции на плоскость экватора Земли представлена схема полета КА по предлагаемому способу. После приложения отлетного импульса КА облетает Луну со стороны ее движения вокруг Земли (7) и по возвратной траектории (8) прилетает к Земле с переходом на исходную околоземную орбиту (1), после чего на линии пересечения двух плоскостей выполняется импульс поворота плоскости этой орбиты на угол Δϕ (9), после чего плоскость орбиты КА будет совпадать с текущей плоскостью орбиты ОС (10).

На фиг. 4 поясняется схема поворота плоскости орбиты КА на заданный угол по предлагаемому способу. После прилета к Земле КА возвращается в плоскость околоземной орбиты (1), с которой начался отлет. При этом за время, требуемое для отлета, плоскость орбиты ОС (10) развернется на угол Δϕ (9). При прохождении линии пересечения двух плоскостей (11) к КА прикладывается импульс (12) в направлении, перпендикулярном плоскости орбиты (1), для поворота ее к плоскости орбиты ОС (10).

На фиг. 5 представлена схема перехода КА с возвратной траектории (4) за счет последовательных прохождений в атмосфере Земли (13) на исходную орбиту околоземной ОС (1). КА входит в атмосферу Земли со 2-ой космической скоростью. После первого торможения КА в атмосфере он переходит на эллиптическую орбиту. Последовательные прохождения атмосферы проводятся до тех пор, пока очередной апогей орбиты не достигнет высоты орбиты орбитальной станции НОС. После чего в апогее орбиты выполняется импульс (14) для окончательного перевода КА на орбиту околоземной ОС с последующей с ней стыковкой.

Рассмотрим пример. Пусть V1 - отлетный импульс к Луне (~3200 м/сек). Длительность облета Луны с последующим возвращением к Земле t1 составляет 5 суток, а продолжительность нахождения КА на переходных тормозных эллипсах для согласования высоты орбиты прилета и высоты орбиты ОС t2 - 1.5 суток. Определим по представленной формуле необходимый угол поворота плоскости орбиты прилета КА:

Δϕ=ωОЗ⋅(t1+t2)°~32.5°

Высота апогея первого тормозного эллипса составит около 55 тыс.км, а высота орбиты в точке пересечения двух плоскостей около 22 тыс.км. Затраты характеристической скорости на поворот плоскости орбиты на этой высоте составят около 1650 м/сек [3], а общая продолжительность полета около 6.5 суток.


СПОСОБ УПРАВЛЕНИЯ КОСМИЧЕСКИМ АППАРАТОМ ДЛЯ ОБЛЁТА ЛУНЫ
СПОСОБ УПРАВЛЕНИЯ КОСМИЧЕСКИМ АППАРАТОМ ДЛЯ ОБЛЁТА ЛУНЫ
СПОСОБ УПРАВЛЕНИЯ КОСМИЧЕСКИМ АППАРАТОМ ДЛЯ ОБЛЁТА ЛУНЫ
Источник поступления информации: Роспатент

Showing 191-200 of 370 items.
10.05.2016
№216.015.3ab9

Способ определения высоты облачности

Изобретение относится к измерительной технике и может быть использовано в метеорологии для определения физических параметров атмосферы. Технический результат - повышение оперативности. Для этого дополнительно выполняют навигационные измерения орбиты космического аппарата (КА), производят съемку...
Тип: Изобретение
Номер охранного документа: 0002583877
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3b47

Способ определения характеристик срабатывания пиротехнических изделий при тепловом воздействии и устройство для его реализации

Группа изобретений относится к оборудованию для испытаний пиротехнических изделий (ПИ). Способ определения характеристик самопроизвольного срабатывания ПИ включает тепловое воздействие на корпус ПМ с заданным темпом нагрева до момента его самопроизвольного срабатывания и фиксацию температуры...
Тип: Изобретение
Номер охранного документа: 0002583979
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3b6f

Способ выведения спутника на заданную околоземную орбиту

Изобретение относится к технологии запуска спутников на орбиту. Способ включает размещение спутника внутри космического корабля (КК) перед его выведением на орбиту. После выведения и стыковки КК с орбитальной станцией размещают спутник на внешней поверхности КК. Приводят в рабочее положение...
Тип: Изобретение
Номер охранного документа: 0002583981
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3beb

Двигательная установка космического объекта и гидравлический конденсатор для нее

Изобретение относится к ракетно-космической технике и может быть использовано в двигательных установках (ДУ) космических объектов (КО). ДУ КО содержит криогенный бак с расходным клапаном и с бустерным турбонасосом, баллон высокого давления с газообразным криогенным компонентом для раскрутки...
Тип: Изобретение
Номер охранного документа: 0002583994
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3d40

Способ определения высоты облачности (варианты)

Изобретение относится к измерительной технике и может найти применение при измерении высоты облачности. Технический результат - повышение оперативности. Для этого по варианту 1 выполняют навигационные измерения орбиты космического аппарата. Производят съемку с космического аппарата (КА)...
Тип: Изобретение
Номер охранного документа: 0002583954
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3dee

Пассивное устройство фиксации полезного груза преимущественно к корпусу находящегося на орбите космического корабля

Изобретение относится к стыковочным средствам и инструментам внекорабельной деятельности. Устройство содержит корпус (1), закрепленный на внешней поверхности космического корабля, с кольцом (2), имеющим направляющие выступы (3) и датчики касания (4) с взаимодействующим активным устройством...
Тип: Изобретение
Номер охранного документа: 0002583992
Дата охранного документа: 10.05.2016
20.05.2016
№216.015.3eb5

Устройство фиксации разделяемых элементов конструкции

Изобретение относится к машиностроению и может быть использовано в агрегатах, например, в ракетно-космической технике. Техническим результатом является повышение надежности и долговечности. Устройство фиксации разделяемых элементов конструкции содержит корпус с двумя пневмоцилиндрами и...
Тип: Изобретение
Номер охранного документа: 0002584122
Дата охранного документа: 20.05.2016
20.05.2016
№216.015.3f62

Ракетный разгонный блок и способ его сборки

Изобретение относится к ракетно-космической технике, а именно, к конструкции ракетных разгонных блоков. Ракетный разгонный блок содержит криогенный бак окислителя и бак горючего в виде сегментов полого тора, двухконтурную ферму, корпусной отсек и маршевый двигатель. К нижнему шпангоуту...
Тип: Изобретение
Номер охранного документа: 0002584045
Дата охранного документа: 20.05.2016
20.05.2016
№216.015.3fcb

Воздуховод

Изобретение относится к гибким трубопроводам, предназначенным для обеспечения подачи воздуха в обитаемые и межмодульные отсеки космических объектов. Техническим результатом является повышение скорости стыковки-расстыковки и герметичности узла стыковки. Технический результат достигается тем, что...
Тип: Изобретение
Номер охранного документа: 0002584052
Дата охранного документа: 20.05.2016
20.05.2016
№216.015.40a8

Капиллярная система хранения и отбора жидкости в ракетный двигатель космического объекта (варианты)

Изобретение относится к космической технике и может быть использовано в двигателях космических объектов (КО). Капиллярная система хранения и отбора жидкости в ракетный двигатель КО содержит топливный бак с крышкой и нижним днищем, радиальные перфорированные перегородки, кронштейны, трубопровод...
Тип: Изобретение
Номер охранного документа: 0002584211
Дата охранного документа: 20.05.2016
Showing 191-200 of 297 items.
10.04.2016
№216.015.3034

Способ разгрузки силовых гироскопов космического аппарата с создаваемым магнитным моментом

Изобретение относится к управлению угловым движением космических аппаратов. Для разгрузки системы силовых гироскопов от накопленного кинетического момента используют токовые контуры фазированной антенной решетки (ФАР). По магнитным моментам этих контуров определяют суммарное значение магнитного...
Тип: Изобретение
Номер охранного документа: 0002580593
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.30ad

Устройство формирования сигналов управления (2 варианта)

Предлагаемая группа изобретений относится к области электронной техники и может быть использована в системах управления, где требуется высокая надежность выполнения заданного режима, например, в системах управления космическими аппаратами, в авиационной технике и в других системах. Технический...
Тип: Изобретение
Номер охранного документа: 0002580476
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.319b

Устройство обеспечения чистоты объектов космической головной части (2 варианта)

Изобретение относится к ракетно-космической технике и может быть использовано при подготовке к старту ракеты космического назначения (РКН). Устройство обеспечения чистоты объектов космической головной части содержит побудитель расхода газового компонента, газовод, фильтр, рассекатель потока...
Тип: Изобретение
Номер охранного документа: 0002580602
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.3212

Спасательный модуль

Изобретение относится к спасательной технике. Спасательный модуль включает жесткий корпус с носовой и кормовой частями, внутренней камерой, закрепленный на жестком корпусе салон с такелажным устройством. Он снабжен раскладываемыми опорами для установки на сушу. Жесткий корпус выполнен в виде...
Тип: Изобретение
Номер охранного документа: 0002580592
Дата охранного документа: 10.04.2016
20.04.2016
№216.015.34ac

Комбинированное терморегулирующее покрытие и способ его формирования

Изобретение относится к терморегулирующим покрытиям и способу их формирования на внешних поверхностях космических аппаратов с применением метода газотермического напыления. Комбинированное терморегулирующее покрытие содержит нанесенный на подложку подслой из металлического материала, слой...
Тип: Изобретение
Номер охранного документа: 0002581278
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.3761

Способ управления ориентацией космического аппарата при проведении экспериментов с научной аппаратурой по изучению конвекции

Изобретение относится к управлению ориентацией космического аппарата (КА). Способ включает закрутку КА, измерение расстояния от научной аппаратуры КА по изучению конвекции до оси закрутки, измерение и фиксацию температуры в этой аппаратуре, а также угловой скорости КА. При этом скорость...
Тип: Изобретение
Номер охранного документа: 0002581281
Дата охранного документа: 20.04.2016
10.05.2016
№216.015.3ab9

Способ определения высоты облачности

Изобретение относится к измерительной технике и может быть использовано в метеорологии для определения физических параметров атмосферы. Технический результат - повышение оперативности. Для этого дополнительно выполняют навигационные измерения орбиты космического аппарата (КА), производят съемку...
Тип: Изобретение
Номер охранного документа: 0002583877
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3b47

Способ определения характеристик срабатывания пиротехнических изделий при тепловом воздействии и устройство для его реализации

Группа изобретений относится к оборудованию для испытаний пиротехнических изделий (ПИ). Способ определения характеристик самопроизвольного срабатывания ПИ включает тепловое воздействие на корпус ПМ с заданным темпом нагрева до момента его самопроизвольного срабатывания и фиксацию температуры...
Тип: Изобретение
Номер охранного документа: 0002583979
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3b6f

Способ выведения спутника на заданную околоземную орбиту

Изобретение относится к технологии запуска спутников на орбиту. Способ включает размещение спутника внутри космического корабля (КК) перед его выведением на орбиту. После выведения и стыковки КК с орбитальной станцией размещают спутник на внешней поверхности КК. Приводят в рабочее положение...
Тип: Изобретение
Номер охранного документа: 0002583981
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3beb

Двигательная установка космического объекта и гидравлический конденсатор для нее

Изобретение относится к ракетно-космической технике и может быть использовано в двигательных установках (ДУ) космических объектов (КО). ДУ КО содержит криогенный бак с расходным клапаном и с бустерным турбонасосом, баллон высокого давления с газообразным криогенным компонентом для раскрутки...
Тип: Изобретение
Номер охранного документа: 0002583994
Дата охранного документа: 10.05.2016
+ добавить свой РИД