×
25.08.2017
217.015.b578

Результат интеллектуальной деятельности: Свариваемый сплав на основе алюминия для противометеоритной защиты

Вид РИД

Изобретение

Аннотация: Изобретение относится к деформируемым свариваемым сплавам на основе алюминия, предназначенным для использования в качестве противометеоритной защиты критических элементов космических аппаратов. Сплав содержит, мас.%: цинк 2-8,5, магний 1,5-3,5, марганец 0,1-0,5, хром 0,05-0,3, цирконий 0,05-0,3, гафний 0,05-1,5, бериллий 0,0001-0,01, по меньшей мере один элемент из группы: медь, титан, никель, кобальт до 0,30 каждого, алюминий и неизбежные примеси в сумме не более 0,7 - остальное. За счет однородной мелкозернистой структуры обеспечивается высокая сопротивляемость ударному воздействию при повышении прочности, удовлетворительной пластичности и свариваемости. 2 з.п. ф-лы, 5 пр., 2 табл., 6 ил.

Изобретение относится к деформируемым свариваемым сплавам на основе алюминия, предназначенным для использования в качестве противометеоритной защиты критических элементов космических аппаратов.

В случае использования сплава поглощение всей или части энергии метеоритной частицы выполняет непосредственно корпус аппарата или стенка (экран). Известно, что уровень защитных свойств сплавов, обусловливающих сопротивляемость ударному воздействию, при достаточном запасе пластичности определяется их прочностью (твердостью). К сплавам для изготовления корпусов предъявляются также высокие требования технологичности, в частности обрабатываемости давлением и свариваемости.

Как правило, алюминиевые сплавы для противометеоритной защиты создаются на базе систем Al-Mg(-Zn) или Al-Zn-Mg, легированных переходными металлами, которые образуют дисперсные включения интерметаллидных фаз. Прочность (твердость) сплавов возрастает с ростом суммарного содержания основных легирующих элементов Zn+Mg. Однако суммарное содержание, как правило, ограничено 8-9% вследствие снижения пластичности сплавов.

Известны сплавы на основе алюминия системы Al-Mg-Zn, предназначенные для повышения прочности и бронестойкости, содержащие (мас. %):

Mg 4-6, Mn 0,21-4, Zn макс. 0,9, Zr<0,3, Cr<0,3, Sc<0,5, Ti<0,3, Fe<0,5, Si<0,45, Ag<0,4, Cu<0,25, другие элементы и неизбежные примеси каждого <0,05, в сумме <0,20, алюминий остальное (патент Германии №2461638 C22C 21/08, C22F 1/047);

Mg 5,1-6,5, Mn 0,4-1,2, Zn 0,45-1,5, Zr до 0,2, Cr до 0,3, Ti до 0,2, Fe до 0,5, Si до 0,4, Cu 0,002-0,25, кальций до 0,01, бериллий до 0,01, по меньшей мере, один элемент из группы бор, углерод - каждого до 0,6, по меньшей мере, один элемент из группы висмут, свинец, олово каждого до 0,1, скандий, серебро, литий - каждого до 0,5, ванадий, церий, иттрий - каждого до 0,25, по меньшей мере, один элемент из группы никель и кобальт - каждого до 0,25, алюминий и неизбежные примеси остальное (патент РФ №2431692 C22C 21/06).

Защитные свойства сплавов недостаточны вследствие низкой прочности.

Известны броневые сплавы системы Al-Zn-Mg, модифицированные цирконием и титаном, содержащие (мас. %):

цинк 4,7-5,3, магний 2,1-2,6, марганец 0,05-0,15, хром 0,12-0,25, титан 0,03-0,10, цирконий 0,07-0,12, бериллий 0,0002-0,005, железо 0,05-0,35, кремний 0,05-0,25, натрий 0,0001-0,0008, медь не более 0,2, алюминий остальное (патент РФ №2312915 C22C 21/10),

цинк 4,7-5,3, магний 2,1-2,6, хром 0,12-0,25, титан 0,03-0,10, цирконий 0,07-0,12, бериллий 0,0002-0,005, железо 0,05-0,35, кремний 0,05-0,25, бор 0,0003-0,003, натрий 0,0001-0,0008, медь не более 0,2, алюминий остальное (патент РФ №2312914 C22C 21/10),

цинк 5,4-6,2, магний 2,51-3,0, марганец 0,1-0,3, хром 0,12-0,25, титан 0,03-0,10, цирконий 0,07-0,12, бериллий 0,0002-0,005, натрий 0,0001-0,0008, медь не более 0,2, железо не более 0,3, кремний не более 0,2, алюминий остальное (патент РФ №2310693 C22C 21/10).

Модифицирование цирконием и титаном измельчает зерно и способствует повышению прочности, свариваемости сплавов, однако количество модификаторов при традиционных методах литья слитков под прокатку листа ограничено из-за образования грубых интерметаллидов. В результате сопротивляемость сплавов ударному воздействию оказывается недостаточной.

Наиболее близким к предлагаемому по технической сущности и достигаемому эффекту является сплав на основе алюминия по патенту РФ №2349664 C22C 21/10. Сплав содержит цинк, магний, марганец, хром, титан, цирконий при следующем соотношении компонентов (мас. %):

алюминий основа
цинк 4,9-5,5
магний 1,5-1,9
марганец 0,2-0,5
хром 0,15-0,25
титан 0,03-0,10
цирконий 0,07-0,12

примеси:

медь не более 0,20
железо не более 0,35
кремний не более 0,25
другие не более 0,1
суммарное содержание цинка и магния 6,4-7,4 мас. %
отношение содержания цинка к содержанию магния 2,57-3,67

Цинк и магний в регламентированном количестве и соотношении обеспечивают достаточно высокую прочность сплава. Благодаря модифицированию цирконием и титаном сплав имеет удовлетворительную свариваемость. Однако эффект модифицирования при указанном количестве модификаторов недостаточен. Наличие достаточно грубых интерметаллидов в структуре снижает сопротивляемость ударному воздействию.

Задачей, на решение которой направлено предлагаемое изобретение, является повышение сопротивляемости ударному воздействию при повышении прочности и удовлетворительной свариваемости. Это достигается тем, что сплав на основе алюминия, содержащий цинк, магний, марганец, хром, цирконий, дополнительно содержит гафний, бериллий, по меньшей мере, один элемент из группы медь, титан, никель, кобальт при следующем соотношении компонентов (мас. %):

цинк 2-8,5
магний 1,5-3,5
марганец 0,1-0,5
хром 0,05-0,3
цирконий 0,05-0,3
гафний 0,05-1,5
бериллий 0,0001-0,01

по меньшей мере, один элемент из группы:

медь, титан, никель, кобальт в количестве до 0,30 каждого
алюминий и неизбежные примеси в сумме не более 0,7 остальное

Выбор содержания цинка и магния в сплаве согласно общим принципам создания сплавов системы Al-Zn-Mg соответствует двум областям фазового состава (при температуре 20°C): α-твердый раствор на основе алюминия (далее α)-η(MgZn2)-T(Al2Mg3Zn3) и α-β(Al3Mg2)-T, в которых отношение Zn:Mg составляет соответственно 1,2-4 и 0,15-0,9. Все упрочняющие фазы в системе Al-Zn-Mg являются вторичными. Прочность и эффект старения сплавов растут при увеличении содержания Zn и Mg. Сплавы с более низким содержанием Zn отличаются пониженной прочностью и высоким относительным удлинением. При промежуточном отношении Zn:Mg сплавы мало пластичны и склонны к коррозии под напряжением. Суммарное содержание Zn+Mg в большинстве случаев ограничивается 7-8% из-за образования грубых интерметаллидов, снижения пластичности и коррозионной стойкости.

Содержание гафния в пределах 0,05-1,5 мас. % эффективно модифицирует структуру и позволяет избежать образования грубых интерметаллидов при литье слитков под прокатку в охлаждаемый кристаллизатор при содержании Zn+Mg более 8%. Совместно с марганцем, цирконием и титаном препятствует рекристаллизации.

Содержание марганца в пределах 0,1-0,5 мас. % обеспечивает измельчение первичного зерна и затрудняет рост зерен при рекристаллизации, увеличивая допустимую температуру и продолжительность технологических нагревов сплава. Содержание марганца ограничено во избежание образования грубых интерметаллидов типа AlnMnmSikFek.

Модифицирование цирконием и титаном дополнительно измельчает зерно, способствует повышению прочности, свариваемости, их количество ограничено 0,30 мас. % условием предотвращения образования грубых интерметаллидов при традиционных методах литья слитков.

Хром повышает коррозионную стойкость сплава. Содержание 0,30 мас. %, как и содержание циркония и титана, определяется условием предотвращения образования грубых интерметаллидов при традиционных методах литья слитков.

Микродобавка бериллия защищает при плавке жидкий расплав от окисления.

Присутствие добавок:

меди - дополнительно повышает коррозионную стойкость сплава, не приводя в количестве до 0,30 мас. % к ухудшению свариваемости, и способствует дополнительному упрочнению при искусственном старении;

титана в количестве до 0,30 мас. % - модифицирует структуру, не приводя к образованию грубых интерметаллидов при традиционных методах литья слитков;

никеля и кобальта в количестве до 0,30 мас. % - способствуют укреплению когезивных связей.

Упрочнение сплава обеспечивают, главным образом, цинк и магний после закалки и искусственного старения, а также цирконий, титан, хром, медь и гафний в твердом растворе или в виде дисперсных интерметаллидов. Цирконий, титан и гафний в предлагаемых количествах эффективно модифицируют структуру при традиционных способах литья слитков, препятствуют росту зерна, образованию и росту интерметаллидов, позволяют сохранить однородную мелкозернистую структуру при технологических нагревах на металлургическом переделе и упрочняющей термообработке и обеспечить высокую сопротивляемость ударному воздействию при повышении прочности и удовлетворительной свариваемости.

Примеры конкретного применения

Из сплавов шести составов (таблица 1) отливали полунепрерывным методом в охлаждаемый кристаллизатор слитки диаметром 95 мм. Количество примесей во всех случаях не превышало (мас. %): железа 0,3, кремния 0,3, прочих 0,1. Слитки гомогенизировали по режиму 480°C, 6 ч. Затем из них прессовали полосы с поперечным сечением 16×40 мм, из которых поперек прессования прокатывали листы толщиной 4 мм. Листы закаливали в воде с температуры 460°C и искусственно старили по режиму 120°C, 22 ч.

Пример 1

Сплав на основе алюминия, содержащий (мас. %): 8,0 Zn, 2,7 Mg, 0,2 Mn, 0,01 Cu, 0,15 Cr, 0,1 Zr, 0,2 Hf; 0001 Be. Сумма Zn+Mg 10,7, отношение Zn:Mg 2,96. Структура листа рекристаллизованная, с избыточными фазами интерметаллидов типа AlnMnmSikFek дисперсностью 1-5 мкм, максимально до 20 мкм (фигура 1). Прочность сплава, наиболее высокая из приведенной в примерах 1-5, составляет 618 МПа при удлинении более 9,2% и ударной вязкости 7,7 Дж/см2 (таблица 2).

Пример 2

Сплав на основе алюминия, содержащий (мас. %): 6 Zn, 3 Mg, 0,2 Mn, 0,2 Cu, 0,15 Cr, 0,15 Zr, 0,05 Ti, 0,5 Hf, 0,1 Ni, 0,001 Be. Сумма Zn+Mg 9, отношение Zn:Mg 2. Структура листа нерекристаллизованная, избыточные фазы типа AlnMnmSikFek внутри зерен, в основном сферические, размером в пределах 1 мкм, на границах зерен вытянуты вдоль направления прокатки максимально до 40-45 мкм (фигура 2). Прочность сплава 576 МПа при удлинении 5,7% и ударной вязкости 8,7 Дж/см2 (таблица 2).

Пример 3

Сплав на основе алюминия, содержащий (мас. %): 6 Zn, 3 Mg, 0,2 Mn, 0,2 Cu, 0,15 Cr, 0,15 Zr, 0,1 Ti, 1,0 Hf, 0,1 Ni, 0,001 Be. Сумма Zn+Mg 9, отношение Zn:Mg 2. Структура листа нерекристаллизованная, избыточные фазы внутри зерен в пределах 1 мкм, на границах зерен вдоль направления прокатки максимально до 30 мкм (фигура 3). Прочность сплава 579 МПа при удлинении 6,4% и ударной вязкости 12,4 Дж/см2 (таблица 2).

Пример 4

Сплав на основе алюминия, содержащий (мас. %): 4,5 Zn, 3,5 Mg, 0,2 Mn, 0,25 Cr; 0,15 Zr, 0,05 Ti, 0,5 Hf; 0,1 Ni; 01 Co, 0,001 Be. Сумма Zn+Mg 8, отношение Zn:Mg 1,3. Структура листа (фигура 4) нерекристаллизованная, размеры и морфология интерметаллидов аналогична примеру 3. Прочность сплава 592 МПа при удлинении 4,8% и ударной вязкости 17,8 Дж/см2 (таблица 2). Из представленных примеров сплав имеет лучшие значения σ02, модуля упругости и ударной вязкости.

Пример 5

Сплав на основе алюминия, содержащий (мас. %): 3 Zn, 5 Mg, 0,2 Mn, 0,15 Cr, 0,15 Zr, 0,05 Ti, 0,5 Hf, 0,0001 Be. Сумма Zn+Mg 8, отношение Zn:Mg 0,6. Структура листа нерекристаллизованная (фигура 5), интерметаллиды типа AlnMnmSikFek наиболее дисперсные из представленных примеров. Прочность сплава 488 МПа при наиболее высоких из приведенных примеров удлинении 9,4% и ударной вязкости 12,5 Дж/см2 (таблица 2).

Пример 6 (прототип)

Сплав на основе алюминия, содержащий (мас. %): 6 Zn, 3 Mg, 0,2 Mn, 0,2 Cu, 0,15 Cr, 0,15 Zr, 0,05 Ti, 0,001 Be. Сумма Zn+Mg 9, отношение Zn:Mg 2. Структура листа помимо избыточных фаз интерметаллидов типа AlnMnmSikFek содержит грубые интерметаллиды типа Al3Zr, Al3Cr размером до 60 мм, как правило, образующие цепочки на границах зерен (фигура 6). Прочность сплава 520 МПа при удлинении 4,5% и ударной вязкости 7,5 Дж/см2 (таблица 2).

Таким образом, предлагаемый сплав за счет однородной мелкозернистой структуры обеспечивает повышение прочности и сопротивляемости ударному воздействию при удовлетворительной пластичности. Сплавы 1-4 с отношением Zn:Mg 1,3-2,96 характеризуются повышенной по сравнению с прототипом прочностью, возрастающей с увеличением суммарного содержания Zn+Mg. Сплав 5 с отношением Zn:Mg 0,6 при более низкой прочности имеет лучшие по сравнению с прототипом показатели пластичности и ударной вязкости.


Свариваемый сплав на основе алюминия для противометеоритной защиты
Свариваемый сплав на основе алюминия для противометеоритной защиты
Свариваемый сплав на основе алюминия для противометеоритной защиты
Свариваемый сплав на основе алюминия для противометеоритной защиты
Свариваемый сплав на основе алюминия для противометеоритной защиты
Свариваемый сплав на основе алюминия для противометеоритной защиты
Источник поступления информации: Роспатент

Showing 41-44 of 44 items.
29.12.2017
№217.015.f846

Способ гидростатического взвешивания твёрдых тел

Изобретение относится к способу гидростатического взвешивания твердого тела для определения его плотности, включающему в себя определение массы тела, погружение тела в емкость с рабочей жидкостью, уравновешивание тела до достижения гидростатического состояния, определение выталкивающей силы и...
Тип: Изобретение
Номер охранного документа: 0002629910
Дата охранного документа: 04.09.2017
29.03.2019
№219.016.f165

Жаропрочный титановый сплав

Изобретение относится к области металлургии титановых сплавов и может быть использовано для деталей и узлов ракетных и авиационных двигателей, работающих под высокими нагрузками при температурах до 750-800°С. Заявлен жаропрочный титановый сплав. Сплав содержит, мас.%: алюминий 5,0-7,5, цирконий...
Тип: Изобретение
Номер охранного документа: 0002396366
Дата охранного документа: 10.08.2010
18.05.2019
№219.017.5781

Электроизоляционный заливочный компаунд

Изобретение относится к области электротехники, в частности к эпоксидным электроизоляционным заливочным компаундам горячего отверждения, предназначенным для электроизоляции и упрочнения узлов и блоков высоковольтных устройств, дросселей, металлонагруженных трансформаторов, для герметизации и...
Тип: Изобретение
Номер охранного документа: 0002356116
Дата охранного документа: 20.05.2009
18.05.2019
№219.017.5a1f

Токопроводящая клеевая композиция

Изобретение относится к эпоксидным токопроводящим клеевым составам холодного отверждения. Составы предназначены для прочного соединения чувствительных элементов с обеспечением токопроводящего контакта при монтаже элементов радиоэлектронной аппаратуры и интегральных схем, особенно гибких...
Тип: Изобретение
Номер охранного документа: 0002408642
Дата охранного документа: 10.01.2011
Showing 41-49 of 49 items.
29.05.2018
№218.016.5430

Сплав на основе алюминия для противометеоритной защиты

Изобретение относится к деформируемым сплавам на основе алюминия и может быть использовано для защиты космических аппаратов от микрометеоритов и техногенных тел. Сплав на основе алюминия содержит, мас. %: цинк 5,8-11; магний 1,5-3,5; медь 0,1-3; марганец 0,1-0,5; по меньшей мере один элемент...
Тип: Изобретение
Номер охранного документа: 0002654224
Дата охранного документа: 17.05.2018
22.09.2018
№218.016.88bb

Система терморегулирования на базе двухфазного теплового контура

Изобретение относится к области теплотехники, в частности к системам терморегулирования на базе двухфазного теплопередающего контура в виде замкнутой испарительно-конденсационной системы с капиллярным насосом, и может быть использовано в различных теплопередающих устройствах, применяемых в...
Тип: Изобретение
Номер охранного документа: 0002667249
Дата охранного документа: 18.09.2018
04.10.2018
№218.016.8eef

Способ горячего прессования труднодеформируемых сплавов

Изобретение относится к области обработки металлов давлением и может быть использовано при горячем прессовании прутков из труднодеформируемых сплавов, в частности из порошковых алюминиевых труднодеформируемых сплавов. Способ включает прессование заготовки из труднодеформируемого сплава,...
Тип: Изобретение
Номер охранного документа: 0002668646
Дата охранного документа: 02.10.2018
01.03.2019
№219.016.cee1

Экран для защиты космического аппарата от высокоскоростного ударного воздействия метеороидов

Изобретение относится к космической технике, а именно к экранам для защиты космического аппарата от высокоскоростного ударного воздействия метеороидов. Экран содержит ячеистую конструкцию из металлической сетки. Экран выполнен сборным из ячеек, каждая из которых имеет форму правильного...
Тип: Изобретение
Номер охранного документа: 0002457160
Дата охранного документа: 27.07.2012
10.07.2019
№219.017.b13c

Криогенный экран

Криогенный экран относится к космической промышленности и предназначен для глубокого охлаждения испытуемых космических аппаратов или их узлов на испытательных стендах или в вакуумных камерах. Экран содержит металлический радиатор с каналами для циркуляции хладагентов, выполненный в виде плоской...
Тип: Изобретение
Номер охранного документа: 0002469927
Дата охранного документа: 20.12.2012
16.08.2019
№219.017.c090

Матрица для прессования материалов с малой технологической пластичностью

Изобретение относится к обработке металлов давлением, а именно к конструкции матриц для прессования труднодеформируемых материалов с малой технологической пластичностью, в частности алюминиевых сплавов. Матрица имеет трехмерную изогнутую рабочую поверхность, которая включает вогнутый входной...
Тип: Изобретение
Номер охранного документа: 0002697306
Дата охранного документа: 13.08.2019
14.03.2020
№220.018.0bb9

Деформируемый свариваемый алюминиево-кальциевый сплав

Изобретение относится к области металлургии, в частности к сплаву на основе алюминия, и может быть использовано для изготовления деформированных полуфабрикатов, предназначенных для получения деталей ответственного назначения, пригодных для аргонодуговой сварки и допускающих нагревы до 350°С....
Тип: Изобретение
Номер охранного документа: 0002716568
Дата охранного документа: 12.03.2020
04.07.2020
№220.018.2f12

Кристаллизатор для вертикального литья слитков

Изобретение относится непрерывной и полунепрерывной разливке металлов. Кристаллизатор содержит корпус с каналом подвода и отвода охлаждающей жидкости, распределительную камеру и камеру (9) первичного охлаждения слитка, разделенные, по меньшей мере, одной диафрагмой (6) и одной вертикальной...
Тип: Изобретение
Номер охранного документа: 0002725377
Дата охранного документа: 02.07.2020
17.06.2023
№223.018.8020

Способ изготовления пули

Изобретение относится к производству вооружения и может быть использовано при изготовлении снарядов, в частности пуль из вольфрамового сплава. Из вольфрамового сплава на заготовке нарезают две кольцевые канавки, на поверхность канавок наносят гальваническое никелевое покрытие. Из медного прутка...
Тип: Изобретение
Номер охранного документа: 0002760119
Дата охранного документа: 22.11.2021
+ добавить свой РИД