×
25.08.2017
217.015.b568

Результат интеллектуальной деятельности: Когерентный супергетеродинный спектрометр электронного парамагнитного резонанса

Вид РИД

Изобретение

Аннотация: Изобретение относится к технической физике и может быть использовано при изготовлении спектрометров электронного парамагнитного резонанса (ЭПР). Устройство содержит сигнальный 1 и гетеродинный 2 генераторы СВЧ, измерительный аттенюатор 3, смеситель опорного 4 и сигнального 5 каналов, циркулятор 6, измерительный резонатор 7 с элементом перестройки его резонансной частоты 8, УПЧ опорного 9 и сигнального 10 каналов, фазочастотные дискриминаторы 11 и 12, делители частоты 13 и 14, опорный генератор 15, устройство синтеза частот 16, аналого-цифровой преобразователь 17, устройство селекции выборок 18, дециматоры синфазного 19 и квадратурного 20 каналов, цифро-аналоговый преобразователь 21, усилитель переменного тока 22, импульсный демодулятор 23 и трехпозиционный переключатель 24. Технический результат заключается в упрощении устройства и увеличении надежности. 1 ил.

Изобретение относится к технической физике и может быть использовано при изготовлении спектрометров электронного парамагнитного резонанса (ЭПР).

Известен спектрометр ЭПР (Патент на полезную модель РФ №136578, МПК G01N 24/10, опубликован 10.01.2014), содержащий сигнальный и гетеродинный генераторы СВЧ, смесители опорного и сигнального каналов, циркулятор с измерительным резонатором и элементом перестройки резонансной частоты измерительного резонатора, измерительный аттенюатор, усилители промежуточной частоты (УПЧ) опорного и сигнального каналов, два фазочастотных дискриминатора с фильтрами на выходах, два синхронных детектора, два делителя частоты, опорный генератор, устройство синтеза частот и переключатель режимов работ.

Недостатком устройства является невысокая точность взаимной стабилизации резонансной частоты измерительного резонатора и сигнального генератора, что связано с ограничением возможного усиления сигнала, пропорционального величине взаимной расстройки вследствие присутствия нежелательных напряжений смещения и шумов синхронного детектора и усилителя в видеополосе канала усиления.

Наиболее близким к изобретению является спектрометр ЭПР (Патент на полезную модель РФ №152736, МПК G01N 24/10, опубликован 20.06.2015), содержащий сигнальный и гетеродинный генераторы СВЧ, смесители опорного и сигнального каналов, циркулятор с измерительным резонатором и элементом перестройки резонансной частоты измерительного резонатора, измерительный аттенюатор, усилители промежуточной частоты (УПЧ) опорного и сигнального каналов, два фазочастотных дискриминатора с фильтрами на выходах, два синхронных детектора, два делителя частоты, опорный генератор, устройство синтеза частот и переключатель режимов работ, импульсный модулятор фазы (0/π), усилитель переменного тока, импульсный демодулятор с фильтром на выходе, при этом основной выход сигнального генератора соединен со входом измерительного аттенюатора, а его выход соединен с первым плечом циркулятора, и сигнальным входом смесителя опорного канала, выход гетеродинного генератора соединен с гетеродинным входом смесителя опорного канала и с гетеродинным входом смесителя сигнального канала, второе плечо циркулятора соединено с измерительным резонатором, снабженным элементом перестройки его резонансной частоты, третье плечо циркулятора соединено со входом смесителя сигнального канала, а его выход - со входом УПЧ сигнального канала, выход которого соединен с сигнальными входами первого и второго синхронных детекторов, опорный вход первого синхронного детектора соединен с выходом устройства синтеза частот, опорный вход первого фазочастотного дискриминатора соединен со вторым выходом устройства синтеза частот, причем величина частоты на нем равна частоте первого выхода, деленной на коэффициент деления первого делителя частоты, а фаза регулируется, выход смесителя опорного канала соединен со входом усилителя промежуточной частоты, выполненного в виде нормирующего усилителя формирователя напряжения, а его выход соединен со входом первого делителя частоты, выход которого соединен со вторым входом первого фазочастотного дискриминатора, вспомогательный выход сигнального генератора соединен с делителем частоты, выход которого соединен с одним из входов второго фазочастотного дискриминатора, второй вход которого соединен с выходом устройства синтеза частот, выход первого фазочастотного дискриминатора соединен с управляющим электродом гетеродинного генератора, выход второго фазочастотного дискриминатора соединен с двумя контактами первой группы трехпозиционного переключателя, общий контакт которой соединен с управляющим электродом сигнального генератора, общий контакт второй группы соединен с элементом перестройки резонансной частоты измерительного резонатора, а выход опорного генератора соединен со входом устройства синтеза частот, вход импульсного модулятора соединен с выходом устройства синтеза частот с частотой, равной частоте на опорном входе первого синхронного детектора и сдвигом фазы на π/2, выход модулятора соединен с опорным входом второго синхронного детектора, а управляющий вход с дополнительным выходом устройства синтеза частот, выход второго синхронного детектора соединен со входом усилителя переменного тока, выход которого соединен со входом импульсного демодулятора, управляющий вход которого соединен с дополнительным выходом устройства синтеза частот, а выход через фильтр соединен с контактами в обеих группах трехпозиционного переключателя.

Недостатком устройства является сложность как самого устройства, так, особенно, его настройки, что связано со значительным проникновением гетеродинного сигнала аналоговых смесителей на их выход, приводящего к необходимости применения сложных цепей компенсации и фильтрации нежелательных сигналов в канале усиления.

Задача изобретения - существенное упрощение устройства и исключение процедуры его настройки, увеличение возможного усиления в канале, что приводит к уменьшению остаточной расстройки измерительного резонатора и сигнального генератора, следовательно, к повышению чувствительности спектрометра.

Поставленная задача решается за счет того, что когерентный супергетеродинный спектрометр ЭПР, включающий сигнальный и гетеродинный генераторы СВЧ, смесители опорного и сигнального каналов, циркулятор с измерительным резонатором и элементом перестройки резонансной частоты измерительного резонатора, измерительный аттенюатор, усилители промежуточной частоты (УПЧ) опорного и сигнального каналов, два фазочастотных дискриминатора с фильтрами на выходах, два делителя частоты, опорный генератор, устройство синтеза частот, усилитель переменного тока, импульсный демодулятор с фильтром на выходе, и переключатель режимов работ, при этом основной выход сигнального генератора соединен со входом измерительного аттенюатора, а его выход соединен с первым плечом циркулятора, и сигнальным входом смесителя опорного канала, выход гетеродинного генератора соединен с гетеродинным входом смесителя опорного канала и с гетеродинным входом смесителя сигнального канала, второе плечо циркулятора соединено с измерительным резонатором, снабженным элементом перестройки его резонансной частоты, третье плечо циркулятора соединено со входом смесителя сигнального канала, а его выход - со входом УПЧ сигнального канала, опорный вход первого фазочастотного дискриминатора соединен с выходом устройства синтеза частот, причем величина частоты на нем равна требуемой промежуточной частоте, деленной на коэффициент деления первого делителя частоты, а фаза регулируется, выход смесителя опорного канала соединен со входом усилителя промежуточной частоты, выполненного в виде нормирующего усилителя формирователя напряжения, а его выход соединен со входом первого делителя частоты, выход которого соединен со вторым входом первого фазочастотного дискриминатора, вспомогательный выход сигнального генератора соединен с делителем частоты, выход которого соединен с одним из входов второго фазочастотного дискриминатора, второй вход которого соединен с выходом устройства синтеза частот, выход первого фазочастотного дискриминатора соединен с управляющим электродом гетеродинного генератора, выход второго фазочастотного дискриминатора соединен с двумя контактами первой группы трехпозиционного переключателя, общий контакт которой соединен с управляющим электродом сигнального генератора, общий контакт второй группы соединен с элементом перестройки резонансной частоты измерительного резонатора, выход опорного генератора соединен со входом устройства синтеза частот, выход усилителя переменного тока соединен со входом импульсного демодулятора, а выход через фильтр соединен с контактами в обеих группах трехпозиционного переключателя, согласно изобретению дополнительно содержит аналого-цифровой преобразователь (АЦП), устройство селекции выборок (УСВ), дециматор синфазного канала, дециматор квадратурного канала и цифро-аналоговый преобразователь (ЦАП), при этом вход АЦП соединен с выходом УПЧ сигнального канала, выход АЦП соединен со входом УСВ, один выход УСВ соединен со входом дециматора синфазного канала, второй - со входом дециматора квадратурного канала, его выход соединен со входом ЦАПа, а выход ЦАПа - со входом усилителя переменного тока, тактовый вход АЦП соединен с тактовым входом УСВ и с выходом устройства синтеза частот, частота которого равна учетверенному значению требуемой промежуточной частоты, а управляющий вход импульсного демодулятора соединен с выходом тактовой частоты УСВ.

На чертеже представлена блок-схема когерентного супергетеродинного спектрометра ЭПР.

Устройство содержит сигнальный 1 и гетеродинный 2 генераторы СВЧ, измерительный аттенюатор 3, смеситель опорного 4 и сигнального 5 каналов, циркулятор 6, измерительный резонатор 7 с элементом перестройки его резонансной частоты 8, УПЧ опорного 9 и сигнального 10 каналов, фазочастотные дискриминаторы 11 и 12, делители частоты 13 и 14, опорный генератор 15, устройство синтеза частот 16, аналого-цифровой преобразователь 17, устройство селекции выборок 18, дециматоры синфазного 19 и квадратурного 20 каналов, цифро-аналоговый преобразователь 21, усилитель переменного тока 22, импульсный демодулятор 23 и трехпозиционный переключатель 24.

Работа устройства поясняется следующим рассмотрением.

Сигнал ПЧ s(t) на выходе УПЧ сигнального канала 10 при соответствующем выборе начальной фазы пропорционален

s(t)=I(t)cos(ωt)-Q(t)sin(ωt),

где

ω - промежуточная частота.

Здесь I(t) (синфазный сигнал) несет информацию о сигнале поглощения ЭПР (измеряемый сигнал), a Q(t) (квадратурный сигнал) - о расстройке измерительного резонатора и сигнального генератора СВЧ, который может быть использован для автоматической подстройки частоты (АПЧ).

В устройстве-прототипе для разделения компонент применялось квадратурное детектирование с помощью двух, соединенных входами аналоговых демодуляторов, фазы опорных сигналов которых различаются на π/2, а начальная фаза выбрана соответствующим образом. Для устранения нежелательных смещений и дрейфов в канале постоянного тока усиление ведется на переменном токе, для чего квадратурный сигнал подвергается импульсной модуляции до усиления и синхронной демодуляции после. Импульсная модуляция в устройстве-прототипе осуществляется с помощью фазовой модуляции гетеродинного сигнала демодулятора квадратурного канала на частоте Ω прямоугольным сигналом со скважностью 2 (меандром), изменяющим фазу на π.

Тогда, если гетеродинный сигнал на промежуточной частоте до модуляции имеет вид sr(t)=sin(ωt), то после импульсной фазовой модуляции (0/π) меандром частоты Ω получим

,

где k нумерует боковые полосы в спектре фазомодулированного колебания.

Наиболее просто схема реализуется в случае, когда частота Ω получается делением ω на целую величину m (Ω=ω/m).

Приведенная формула показывает, что отличны от нуля боковые полосы с нечетными номерами k (частоты Ω (m±1), Ω (m±3), Ω (m±5), …, Ω (m±k)), а величина спектральных компонент слабо (линейно) спадает с ростом номера k. Любой аналоговый демодулятор, вследствие неидеальности, характеризуется уровнем проникновения сигнала гетеродина на выход. В тех случаях, когда гетеродинный и выходной сигналы имеют существенно различные частоты, такое проникновение не приводит к серьезным проблемам, поскольку выходной сигнал может быть подвергнут частотной фильтрации. В рассматриваемом случае в спектре гетеродинного сигнала присутствует значительная компонента непосредственно на частоте модуляции (k=m-1), которая, проникая на выход, существенно ограничивает чувствительность канала и сужает его динамический диапазон. Возможное решение проблемы путем компенсации проникающего сигнала на выходе демодулятора требует инжекции в выходную цепь сигнала на частоте модуляции с точно подобранными амплитудой и фазой, что сложно как схемотехнически, так и в процессе настройки. Кроме того, достижимый уровень компенсации ограничен нестабильностями, естественными для аналоговых цепей.

В предлагаемом техническом решении указанная проблема решается следующим образом.

Преобразуем аналоговый сигнал ПЧ s(t) на выходе УПЧ сигнального канала 10 в цифровой, производя при помощи АЦП выборки с временным интервалом , где ω - промежуточная частота, т.е. на частоте ωs=4ω.

Значения выборок аналогового выходного сигнала УПЧ будут иметь вид

Здесь n - порядковый номер выборки, а индекс a указывает, что помеченный сигнал - аналоговый.

Из формулы видно, что выборки с четными номерами будут содержать информацию только о синфазной компоненте, а с нечетными - только о квадратурной.

n - четный,

n - нечетный.

Таким образом, разделив выходной поток данных АЦП на два, для четных и нечетных порядковых номеров выборок, и поочередно меняя знак выборок в соответствии с приведенными формулами, получаем оцифрованный сигнал поглощения ЭПР (синфазный сигнал), который для сужения полосы пропускания и соответствующего увеличения чувствительности можно подвергнуть децимации, и оцифрованный квадратурный сигнал, необходимый для работы системы автоподстройки частоты (АПЧ). Импульсная модуляция, эквивалентная фазовой манипуляции в устройстве-прототипе, реализуется изменением знака выборок квадратурного сигнала каждые l выборок, тогда частота модуляции окажется равной , где ωs - частота потока данных квадратурного сигнала. В результате применения описанной схемы устраняются паразитные сигналы на частоте модуляции сигнала и необходимость применения каких-либо методов их компенсации.

Функции разделения потока данных АЦП на два, управление знаками выборок и цифровая модуляция реализуются в цифровом автомате-устройстве селекции выборок (УСВ).

Модулированный цифровой поток данных квадратурного сигнала при необходимости децимируется и подается на цифро-аналоговый преобразователь (ЦАП), частота преобразования которого выбирается существенно большей частоты модулирующего сигнала. Далее аналоговый выходной сигнал ЦАПа поступает на вход полосового усилителя переменного тока, усиливающего сигнал ошибки по частоте и, одновременно, устраняющего нежелательные спектральные компоненты выходного сигнала ЦАПа. Усиленный сигнал подается на вход импульсного демодулятора, на управляющий вход с УСВ которого поступает меандр на частоте Ω, приводя к формированию на выходе демодулятора необходимого сигнала ошибки.

Таким образом, предлагаемое техническое решение значительно упрощает аппаратную часть устройства за счет замены аналоговых устройств цифровыми алгоритмами, исключает необходимость настройки после изготовления, увеличивает надежность и снижает цену при одновременном уменьшении остаточной ошибки системы автоподстройки частоты, приводя к увеличению чувствительности спектрометра.

Когерентный супергетеродинный спектрометр электронного парамагнитного резонанса, включающий сигнальный и гетеродинный генераторы СВЧ, смесители опорного и сигнального каналов, циркулятор с измерительным резонатором и элементом перестройки резонансной частоты измерительного резонатора, измерительный аттенюатор, усилители промежуточной частоты (УПЧ) опорного и сигнального каналов, два фазочастотных дискриминатора с фильтрами на выходах, два делителя частоты, опорный генератор, устройство синтеза частот, усилитель переменного тока, импульсный демодулятор с фильтром на выходе, и переключатель режимов работ, при этом основной выход сигнального генератора соединен со входом измерительного аттенюатора, а его выход соединен с первым плечом циркулятора, и сигнальным входом смесителя опорного канала, выход гетеродинного генератора соединен с гетеродинным входом смесителя опорного канала и с гетеродинным входом смесителя сигнального канала, второе плечо циркулятора соединено с измерительным резонатором, снабженным элементом перестройки его резонансной частоты, третье плечо циркулятора соединено со входом смесителя сигнального канала, а его выход - со входом УПЧ сигнального канала, опорный вход первого фазочастотного дискриминатора соединен с выходом устройства синтеза частот, причем величина частоты на нем равна требуемой промежуточной частоте, деленной на коэффициент деления первого делителя частоты, а фаза регулируется, выход смесителя опорного канала соединен со входом усилителя промежуточной частоты, выполненного в виде нормирующего усилителя формирователя напряжения, а его выход соединен со входом первого делителя частоты, выход которого соединен со вторым входом первого фазочастотного дискриминатора, вспомогательный выход сигнального генератора соединен с делителем частоты, выход которого соединен с одним из входов второго фазочастотного дискриминатора, второй вход которого соединен с выходом устройства синтеза частот, выход первого фазочастотного дискриминатора соединен с управляющим электродом гетеродинного генератора, выход второго фазочастотного дискриминатора соединен с двумя контактами первой группы трехпозиционного переключателя, общий контакт которой соединен с управляющим электродом сигнального генератора, общий контакт второй группы соединен с элементом перестройки резонансной частоты измерительного резонатора, выход опорного генератора соединен со входом устройства синтеза частот, выход усилителя переменного тока соединен со входом импульсного демодулятора, а выход через фильтр соединен с контактами в обеих группах трехпозиционного переключателя, отличающийся тем, что он дополнительно содержит аналого-цифровой преобразователь (АЦП), устройство селекции выборок (УСВ), дециматор синфазного канала, дециматор квадратурного канала и цифро-аналоговый преобразователь (ЦАП), при этом вход АЦП соединен с выходом УПЧ сигнального канала, выход АЦП соединен со входом УСВ, один выход УСВ соединен со входом дециматора синфазного канала, второй - со входом дециматора квадратурного канала, его выход соединен со входом ЦАПа, а выход ЦАПа - со входом усилителя переменного тока, тактовый вход АЦП соединен с тактовым входом УСВ и с выходом устройства синтеза частот, частота которого равна учетверенному значению требуемой промежуточной частоты, а управляющий вход импульсного демодулятора соединен с выходом тактовой частоты УСВ.
Когерентный супергетеродинный спектрометр электронного парамагнитного резонанса
Когерентный супергетеродинный спектрометр электронного парамагнитного резонанса
Источник поступления информации: Роспатент

Showing 171-180 of 210 items.
12.04.2023
№223.018.4450

Способ получения субмикронных кристаллов нитрида алюминия

Изобретение относится к химической технологии субмикронных кристаллов нитрида алюминия в форме гексагональных призм и комбинации гексагональной призмы с дипирамидой и пинакоидом, которое может быть использовано при создании элементов нано-, микро- и оптоэлектроники, а также...
Тип: Изобретение
Номер охранного документа: 0002738328
Дата охранного документа: 11.12.2020
12.04.2023
№223.018.4478

Способ получения фотокатализатора на основе нанотубулярного диоксида титана

Изобретение относится к технологии получения нанотубулярного диоксида титана (TiO-НТ) с повышенной фотокаталитической активностью анодированием. Способ получения фотокатализатора на основе нанотубулярного диоксида титана включает процесс анодирования титана во фторсодержащем растворе...
Тип: Изобретение
Номер охранного документа: 0002732130
Дата охранного документа: 11.09.2020
12.04.2023
№223.018.447d

Способ получения промежуточных продуктов для синтеза каланолидов и их аналогов

Изобретение относится к области органической химии, а именно к способу получения соединения 5, соединение общей формулы (II) , соединение общей формулы (IV) , где R, в каждом случае независимо, представляет собой С алкил. Технический результат: получен улучшенный способ получения промежуточных...
Тип: Изобретение
Номер охранного документа: 0002733731
Дата охранного документа: 06.10.2020
12.04.2023
№223.018.4480

Способ получения сложнооксидных материалов

Изобретение относится к области получения неорганических материалов – оксидов и сложных оксидов металлов в виде порошков, керамики и покрытий. Описан способ получения сложнооксидных материалов, характеризующийся тем, что в качестве исходных веществ берут растворимые термически неустойчивые соли...
Тип: Изобретение
Номер охранного документа: 0002733966
Дата охранного документа: 08.10.2020
12.04.2023
№223.018.44ab

Способ и устройство для изготовления оребренной тонколистовой панели

Изобретение относится к способу и устройству для изготовления оребренной тонколистовой панели и может быть использовано в конструкциях рекуперативных теплообменников. Изготавливают оребренную тонколистовую панель, которая содержит выполненное из металлического листа основание (1) и приваренные...
Тип: Изобретение
Номер охранного документа: 0002774715
Дата охранного документа: 22.06.2022
12.04.2023
№223.018.4532

Элементарная ячейка литий-ионного аккумулятора и аккумулятор на ее основе

Изобретение относится к материалам литий-ионных аккумуляторов с высокой удельной энергией. Элементарная ячейка аккумулятора состоит из токосъемников, анода, катода, электролита и изолятора. В качестве электролитов используют тонкопленочные электролиты, в качестве катодов – катионпроводящие по...
Тип: Изобретение
Номер охранного документа: 0002759843
Дата охранного документа: 18.11.2021
12.04.2023
№223.018.4578

Терагерцовый кристалл

Изобретение относится к терагерцовым (ТГц) материалам прозрачным в видимом, инфракрасном (0,5 – 50,0 мкм), терагерцовом и миллиметровом диапазонах – 0,05 – 10,0 ТГц, что соответствует длинам волн 6000,0 – 30,0 мкм. Терагерцовый кристалл согласно изобретению характеризуется тем, что он выполнен...
Тип: Изобретение
Номер охранного документа: 0002756582
Дата охранного документа: 01.10.2021
12.04.2023
№223.018.457e

Терагерцовый кристалл

Изобретение относится к терагерцовым (ТГц) материалам, а именно к кристаллам востребованных для применения в медицине, фармацевтике, таможенном дистанционном контроле и в других областях. Терагерцовый кристалл согласно изобретению характеризуется тем, что выполнен на основе однофазных твердых...
Тип: Изобретение
Номер охранного документа: 0002756580
Дата охранного документа: 01.10.2021
12.04.2023
№223.018.4581

Терагерцовый кристалл

Изобретение относится к терагерцовым (ТГц) материалам, используемым в производстве терагерцовой оптики. Терагерцовый кристалл согласно изобретению характеризуется тем, что выполнен на основе однофазных твердых растворов системы AgCl – AgBr – TlI и содержит хлорид, бромид серебра и иодид...
Тип: Изобретение
Номер охранного документа: 0002756581
Дата охранного документа: 01.10.2021
12.04.2023
№223.018.48f7

Передача винт-гайка скольжения

Изобретение относится к области машиностроения и предназначено для использования в механизмах подачи. Передача винт-гайка скольжения состоит из гидробака, дросселей, гидронасоса с приводом и переливного клапана, соединенного с выходным каналом насоса и гидробаком. Также она содержит винт с...
Тип: Изобретение
Номер охранного документа: 0002793788
Дата охранного документа: 06.04.2023
Showing 71-71 of 71 items.
04.04.2018
№218.016.36c1

Способ определения вязкости металлических материалов

Изобретение относится к материаловедению, а именно к способам исследования образцов металлических материалов путем приложения к ним динамической (ударной) кратковременной нагрузки, и может быть использовано для определения вязкости металлических материалов. Сущность: осуществляют испытания на...
Тип: Изобретение
Номер охранного документа: 0002646548
Дата охранного документа: 05.03.2018
+ добавить свой РИД