×
25.08.2017
217.015.b52b

Результат интеллектуальной деятельности: Электрохимический генератор

Вид РИД

Изобретение

№ охранного документа
0002614242
Дата охранного документа
24.03.2017
Аннотация: Изобретение относится к электрохимии, точнее к энергоустановкам с электрохимическими генераторами (ЭХГ). Электрохимический генератор включает батарею топливных элементов и ее систему охлаждения с контуром циркуляции жидкого теплоносителя, включающим охлаждающий теплообменник, установленный на выходе этой системы, и электрический насос. Электрический насос установлен на ее входе и электрически связан с батарей топливных элементов. В контур циркуляции жидкого теплоносителя дополнительно введены газовая турбина с электрогенератором, а также газожидкостный эжектор и подключенный к его выходу газожидкостный сепаратор, установленные на входе охлаждающего теплообменника. Жидкостная полость сепаратора соединена со входом этого теплообменника, а газовая полость сепаратора - со входом газовой турбины, выход которой подключен к газовому входу эжектора. Изобретение позволяет повысить эффективность ЭХГ, особенно, если его мощность значительна. 1 ил.

Предлагаемое техническое решение относится к электрохимии, точнее к энергоустановкам с электрохимическими генераторами (ЭХГ), и может использоваться при разработке систем электроснабжения космических аппаратов (КА) на основе ЭХГ.

Несмотря на сравнительно высокую стоимость, такие агрегаты находят применение (хотя и ограниченное) на транспорте и в сетях распределенного электроснабжения, работают вместе с возобновляемыми источниками энергии. Наиболее оправданным (и технически, и экономически) является, однако, использование ЭХГ в космосе. Здесь применяются низкотемпературные генераторы щелочного и твердополимерного типов с рабочей температурой около 100°С. Твердополимерный генератор использовался, например, на КА «Space Shuttle», щелочной ЭХГ был разработан для корабля «Буран», использовался ранее на борту «Ароllо» (С.А. Худяков «Космические энергоустановки», М.: Знание, 1984 г., стр. 15, серия «Космонавтика, астрономия»). Существует также перспектива использования ЭХГ для лунной базы (Глухих И.Н. и др. «Обеспечение лунной базы электроэнергией, теплом, водородом и кислородом на основе солнечных батарей и аккумулятора энергии с водородным циклом». Изв. РАН, журнал Энергетика, №3, 2007 г., стр. 35-56, а также Изв. РАН, журнал Энергетика, №1, 2009 г., стр. 19-26). Во всех этих случаях для охлаждения ЭХГ используется система охлаждения КА, которая в свою очередь сбрасывает это тепло в окружающее пространство.

В качестве аналога данному предложению может служить любой из бортовых ЭХГ, независимо от его типа. Их общим недостатком является необходимость сброса генерируемого ими тепла в бортовую систему охлаждения КА. При значительной мощности генератора этого тепла достаточно много, поскольку КПД существующих низкотемпературных ЭХГ не превышает 50%. Такая дополнительная тепловая нагрузка на систему охлаждения КА, особенно низкотемпературное тепло ЭХГ, требует существенного увеличения массогабаритных параметров ее тепловых панелей-излучателей.

Более близким к данному предложению является схема бортового ЭХГ с «самоохлаждением», принятого за прототип, и описанная в статье «Повышение эффективности кислородо-водородного ЭХГ космического назначения», авторы: Глухих И.Н., Челяев В.Ф., Щербаков А.Н., Изв. РАН, журнал «Энергетика» №5, 2014 г., с. 87-91. Электрохимический генератор содержит батарею топливных элементов и ее систему охлаждения с контуром циркуляции жидкого теплоносителя, включающим охлаждающий теплообменник (теплообменник - сублиматор), установленный на выходе этой системы охлаждения, и электрический насос, установленный на ее входе и электрически связанный с батарей топливных элементов. В данном устройстве значительная часть тепла сбрасывается не в систему охлаждения КА, а в окружающее пространство, что достигается за счет испарения в вакуум реакционной воды ЭХГ. В данной схеме эта вода сначала, как обычно, конденсируется с помощью системы охлаждения КА. Затем полученная жидкость начинает циркулировать по дополнительному собственному контуру охлаждения генератора, включающему сублиматор, «открытый» в вакуум. Здесь, при испарении воды (или льда) в вакуум, происходит охлаждение оставшейся жидкости, циркулирующей в контуре. В результате потребление «холода» от системы охлаждения КА сокращается. Циркуляция воды в собственном контуре охлаждения ЭХГ стимулируется при этом насосом, подключенным к самому генератору (точнее, к батарее топливных элементов); таким образом, генератор сам себя охлаждает. Это привносит в систему отрицательную обратную связь, что, как известно из теории управления, повышает устойчивость системы. Недостатком прототипа является потеря воды, что в условиях космического полета, особенно пилотируемого, нежелательно. Кроме того, при достигнутом в настоящее время КПД ЭХГ (до 50%), такая схема не обеспечивает полной утилизации тепла, выделяемого ЭХГ. В конечном счете тепло электрохимической реакции, как и прежде, не используется для выработки дополнительной электроэнергии.

Задачей настоящего предложения является повышение электрического КПД низкотемпературного ЭХГ за счет тепла, которое он вырабатывает. Следует отметить, что утилизировать низкопотенциальное тепло всегда сложнее, чем высокотемпературное.

Техническим результатом изобретения является повышение эффективности ЭХГ, особенно, если его мощность значительна (от нескольких киловатт до нескольких десятков киловатт).

Технический результат достигается за счет того, что в электрохимическом генераторе, включающем батарею топливных элементов и ее систему охлаждения с контуром циркуляции жидкого теплоносителя, в состав которого входит охлаждающий теплообменник, установленный на выходе этой системы, и электрический насос, установленный на ее входе и электрически связанный с батареей топливных элементов, в контур циркуляции жидкого теплоносителя дополнительно введены газовая турбина с электрогенератором, а также газожидкостный эжектор и подключенный к его выходу газожидкостный сепаратор, установленные на входе охлаждающего теплообменника, при этом жидкостная полость сепаратора соединена со входом этого теплообменника, а газовая полость сепаратора - со входом газовой турбины, выход которой подключен к газовому входу эжектора.

Суть предложения в том, что тепло электрохимической реакции утилизируется за счет электроэнергии, вырабатываемой в этой же реакции, т.е. работа системы охлаждения БТЭ поддерживается самой батареей. При этом количество электроэнергии, выработанной при утилизации тепла, будет больше, чем электроэнергии, затраченной на это. Основные энергозатраты идут в этом случае на работу побудителя расхода теплоносителя (насоса), который по сути дела является электромеханическим приводом собственной системы охлаждения БТЭ. Он же задает режим работы турбины, при этом часть электроэнергии, поступающей от БТЭ, расходуется также и на все другие нужды системы охлаждения батареи, включая потери энергии в ее элементах. Предлагаемое устройство является в сущности низкотемпературной гибридной энергоустановкой для преобразования химической энергии водорода в электроэнергию. При этом, несмотря на то, что КПД турбины при (низких) рабочих температурах твердополимерного или щелочного ЭХГ будет сравнительно небольшим, общая эффективность установки будет выше, чем у обычного ЭХГ, поскольку генерируемое им тепло не отводится из генератора полностью, а частично преобразуется в электричество в системе охлаждения БТЭ. При этом энергопотребление самой этой системы должно быть достаточно малым, т.е. КПД ее элементов - достаточно высоким. Несложные оценки позволяют показать, что электрический КПД предлагаемого ЭХГ будет больше КПД БТЭ, при условии, что насос системы охлаждения БТЭ будет потреблять часть (х) электроэнергии, производимой батареей, не более чем

при этом превышение к КПД ЭХГ над КПД БТЭ будет определяться выражением:

где kтэ - КПД БТЭ; kт - КПД турбины; kн - КПД насоса; kэг - КПД электрогенератора.

Здесь учитывается, что преобразование энергии, передаваемой из БТЭ в контур ее системы охлаждения, происходит по цепочкам:

тепловая энергия - «БТЭ - турбина - электрогенератор»;

электроэнергия - «БТЭ - насос - турбина - электрогенератор».

В частности, для типичных значений КПД агрегатов, входящих в схему генератора, а именно:

kтэ=0,5 (низкотемпературные ЭХГ);

kн=0,6 (поршневые насосы);

kт=0,3 (газовые турбины мощностью несколько киловатт);

kэг=0,8 (электрогенераторы примерно такой же мощности),

оценка по соотношению (2) дает величину около 7-10% при энергопотреблении насоса х=0,05-0,1 (т.е. 5-10%). Таким образом, КПД ЭХГ со «встроенной» газовой турбиной может сравниться с КПД лучших парогазовых установок (около 60%).

Конструкция предлагаемого устройства поясняется схемой на фиг. 1, где обозначено: 1 - батарея топливных элементов (БТЭ); 2 - система охлаждения БТЭ; 3 - насос; 4 - охлаждающий теплообменник; 5 - газожидкостный эжектор (ГЖЭ); 6 - газожидкостный сепаратор (ГЖС); 7 - газовая турбина; 8 - электрогенератор.

Система охлаждения (2) БТЭ (1) входит в замкнутый контур циркуляции жидкого теплоносителя, который включает в себя также охлаждающий теплообменник (4), вход которого гидравлически связан с жидкостной полостью ГЖС (6), а выход подключен ко входу насоса (3), электрически связанного с БТЭ (1) и подключенного к системе охлаждения (2). Вход ГЖС (6) подключен к выходу ГЖЭ (5). Вход последнего по жидкости соединен с выходом системы охлаждения (2), а вход по газу - с выходом турбины (7), которая своим входом соединяется с газовой полостью ГЖС (6). Турбина (7) приводит в действие электрогенератор (8), механически с ней связанный (например, размещенный на ее оси).

Работает устройство следующим образом. Тепло, выделяемое батареей топливных элементов (1), нагревает жидкий теплоноситель в системе охлаждения (2). При этом испарения жидкости не происходит - это не допускается технологией эксплуатации низкотемпературных ЭХГ. В частности, если теплоносителем служит вода, это условие обеспечивается автоматически, поскольку рабочие температуры низкотемпературных генераторов не превышают 100°С.

Из системы охлаждения (2) нагретая жидкость-теплоноситель направляется в ГЖЭ (5), где она распыляется в холодном газе, поступающем сюда из турбины (7). ГЖЭ (5) в данном случае работает как газокапельный теплообменник, в котором происходит передача тепла от капель жидкости к газу. Из ГЖЭ (5) газокапельная смесь попадает в ГЖС (6), где происходит разделение смеси по фазам. Нагретый жидкостью газ из ГЖС (6) направляется на вход газовой турбины (7), а предварительно охлажденная газом жидкость - в охлаждающий теплообменник (4), где она дополнительно охлаждается (например, с помощью внешней системы охлаждения), а затем поступает на вход насоса (3). Последний снова направляет жидкость в систему охлаждения (2) БТЭ (1), и рабочий цикл теплоносителя замыкается.

При использовании высокоэффективных агрегатов в системе охлаждения БТЭ (насос, турбина, генератор) предлагаемая схема ЭХГ (со «встроенной» турбиной) позволяет заметно повысить эффективность преобразования химической энергии в электрическую.

Электрохимический генератор, включающий батарею топливных элементов и ее систему охлаждения с контуром циркуляции жидкого теплоносителя, включающим охлаждающий теплообменник, установленный на выходе этой системы, и электрический насос, установленный на ее входе и электрически связанный с батарей топливных элементов, отличающийся тем, что в контур циркуляции жидкого теплоносителя дополнительно введены газовая турбина с электрогенератором, а также газожидкостный эжектор и подключенный к его выходу газожидкостный сепаратор, установленные на входе охлаждающего теплообменника, при этом жидкостная полость сепаратора соединена со входом этого теплообменника, а газовая полость сепаратора - со входом газовой турбины, выход которой подключен к газовому входу эжектора.
Электрохимический генератор
Электрохимический генератор
Источник поступления информации: Роспатент

Showing 21-30 of 370 items.
27.06.2013
№216.012.5285

Установка для плазменно-дуговой плавки

Изобретение относится к области вакуумных установок для плазменной дуговой плавки металлов и сплавов в космосе и предназначена для проведения экспериментов преимущественно по плавке наиболее перспективных металлов (вольфрам, ниобий) и композитов на металлической основе в условиях...
Тип: Изобретение
Номер охранного документа: 0002486718
Дата охранного документа: 27.06.2013
10.07.2013
№216.012.54e0

Способ определения местоположения негерметичного участка замкнутой гидравлической магистрали, снабженной побудителем расхода и гидропневматическим компенсатором температурного изменения объема рабочего тела

Изобретение относится к области испытательной техники и направлено на создание простого и безопасного для операторов, работающих в герметично изолированных от внешних сред обитаемых помещениях, оперативного способа определения местонахождения негерметичного участка гидравлической магистрали...
Тип: Изобретение
Номер охранного документа: 0002487331
Дата охранного документа: 10.07.2013
10.07.2013
№216.012.554b

Фотоэлемент приемника-преобразователя лазерного излучения в космосе

Изобретение относится к области беспроводной передачи электрической энергии между космическими аппаратами (КА) на основе направленного электромагнитного излучения с одного КА на приемник-преобразователь, на основе фотоэлектрического преобразователя (ФЭП), второго КА. Фотоэлемент...
Тип: Изобретение
Номер охранного документа: 0002487438
Дата охранного документа: 10.07.2013
20.07.2013
№216.012.57c5

Устройство для выбора астрономических объектов наблюдения с орбитального космического аппарата

Устройство для выбора астрономических объектов наблюдения с орбитального космического аппарата (КА) относится к космической технике. Устройство для выбора астрономических объектов наблюдения с орбитального КА, включает глобус с нанесенной на него картой звездного неба, два охватывающих глобус...
Тип: Изобретение
Номер охранного документа: 0002488077
Дата охранного документа: 20.07.2013
27.07.2013
№216.012.597a

Орбитальная космическая система

Изобретение относится к системам космических объектов (КО) с передачей между ними энергии и импульса посредством лазерного излучения и может быть использовано для КО, на борту которых создаются условия микрогравитации на уровне ~10…10 ускорения на поверхности Земли. Система включает в себя...
Тип: Изобретение
Номер охранного документа: 0002488527
Дата охранного документа: 27.07.2013
27.07.2013
№216.012.5a4d

Термокомпрессионное устройство

Изобретение относится к холодильной технике, а точнее к области проектирования и эксплуатации компрессионных термических устройств (термокомпрессоров). Термокомпрессионное устройство содержит источник газа высокого давления с подключенным к нему баллоном-компрессором, устройство для...
Тип: Изобретение
Номер охранного документа: 0002488738
Дата охранного документа: 27.07.2013
27.07.2013
№216.012.5a7a

Способ определения уровня диэлектрического вещества

Изобретение относится к электроизмерительной технике, в частности к системам измерения уровня заправки ракетно-космической техники. Сущность: формируют синусоидальное напряжение на емкостном датчике уровня, измеряют комплексный ток через сухой емкостной датчик уровня и измеряют комплексный ток...
Тип: Изобретение
Номер охранного документа: 0002488783
Дата охранного документа: 27.07.2013
27.07.2013
№216.012.5a80

Герметизированное устройство и способ подвода текучей среды в полость герметизированного устройства с ее герметизацией

Группа изобретений относится к области испытательной техники и направлена на повышение технологичности и увеличение ресурса использования, что обеспечивается за счет того, что герметизированное устройство содержит корпус с расточкой, сообщенной с внутренней полостью корпуса, установленный в...
Тип: Изобретение
Номер охранного документа: 0002488789
Дата охранного документа: 27.07.2013
20.08.2013
№216.012.5fe5

Способ управления движением активного космического объекта, стыкуемого с пассивным космическим объектом

Изобретение относится к космической технике и может быть использовано для стыковки двух космических объектов, один из которых активный, а другой - пассивный. На опорную орбиту выводят активный космический объект (АКО), определяют характеристики импульсов сближения (ХИС) по номинальным...
Тип: Изобретение
Номер охранного документа: 0002490181
Дата охранного документа: 20.08.2013
20.09.2013
№216.012.6bf9

Устройство для электролиза воды и способ его эксплуатации

Группа изобретений относится к энергетике, и может использоваться в автономных энергоустановках. Устройство для электролиза воды содержит электролизер с пневматически изолированными полостями для водорода и кислорода, подключенный к блоку питания, который электрически связан с системой контроля...
Тип: Изобретение
Номер охранного документа: 0002493292
Дата охранного документа: 20.09.2013
Showing 21-30 of 295 items.
27.06.2013
№216.012.5027

Устройство контроля ориентации пассивных космических аппаратов

Изобретение относится к космической технике и может быть использовано при выполнении в космосе операций сближения, облета, зависания, причаливания со стыковкой космических аппаратов (КА), в авиации для обеспечения посадки летательных аппаратов в условиях ограниченной видимости, а также для...
Тип: Изобретение
Номер охранного документа: 0002486112
Дата охранного документа: 27.06.2013
27.06.2013
№216.012.5028

Система запуска криогенного жидкостного ракетного двигателя космического объекта

Изобретение относится к ракетным двигательным установкам на криогенном топливе. Система запуска относится к жидкостному ракетному двигателю, включающему в себя криогенный топливный бак (1), турбонасосные агрегаты (ТНА) (2, 6), газогенератор (7), сообщенный с турбиной (18) ТНА (6), камеру...
Тип: Изобретение
Номер охранного документа: 0002486113
Дата охранного документа: 27.06.2013
27.06.2013
№216.012.50b1

Способ качественной оценки биокоррозионных поражений тонкостенных герметичных оболочек из алюминиево-магниевых сплавов при эксплуатации космических аппаратов и суспензия споровых материалов для его реализации

Группа изобретений относится к микробиологии. Предложены способ качественной оценки биокоррозионных поражений тонкостенных герметичных оболочек из алюминиево-магниевых сплавов при эксплуатации космических аппаратов и суспензия споровых материалов грибов для осуществления указанного способа....
Тип: Изобретение
Номер охранного документа: 0002486250
Дата охранного документа: 27.06.2013
27.06.2013
№216.012.5285

Установка для плазменно-дуговой плавки

Изобретение относится к области вакуумных установок для плазменной дуговой плавки металлов и сплавов в космосе и предназначена для проведения экспериментов преимущественно по плавке наиболее перспективных металлов (вольфрам, ниобий) и композитов на металлической основе в условиях...
Тип: Изобретение
Номер охранного документа: 0002486718
Дата охранного документа: 27.06.2013
10.07.2013
№216.012.54b8

Термокомпрессивное устройство

Изобретение относится к холодильной технике, а точнее к области проектирования и эксплуатации компрессионных термических устройств. Термокомпрессионное устройство содержит источник газа высокого давления с подключенным к нему баллоном-компрессором, устройство для термоциклирования...
Тип: Изобретение
Номер охранного документа: 0002487291
Дата охранного документа: 10.07.2013
10.07.2013
№216.012.54e0

Способ определения местоположения негерметичного участка замкнутой гидравлической магистрали, снабженной побудителем расхода и гидропневматическим компенсатором температурного изменения объема рабочего тела

Изобретение относится к области испытательной техники и направлено на создание простого и безопасного для операторов, работающих в герметично изолированных от внешних сред обитаемых помещениях, оперативного способа определения местонахождения негерметичного участка гидравлической магистрали...
Тип: Изобретение
Номер охранного документа: 0002487331
Дата охранного документа: 10.07.2013
10.07.2013
№216.012.554b

Фотоэлемент приемника-преобразователя лазерного излучения в космосе

Изобретение относится к области беспроводной передачи электрической энергии между космическими аппаратами (КА) на основе направленного электромагнитного излучения с одного КА на приемник-преобразователь, на основе фотоэлектрического преобразователя (ФЭП), второго КА. Фотоэлемент...
Тип: Изобретение
Номер охранного документа: 0002487438
Дата охранного документа: 10.07.2013
20.07.2013
№216.012.57c5

Устройство для выбора астрономических объектов наблюдения с орбитального космического аппарата

Устройство для выбора астрономических объектов наблюдения с орбитального космического аппарата (КА) относится к космической технике. Устройство для выбора астрономических объектов наблюдения с орбитального КА, включает глобус с нанесенной на него картой звездного неба, два охватывающих глобус...
Тип: Изобретение
Номер охранного документа: 0002488077
Дата охранного документа: 20.07.2013
27.07.2013
№216.012.597a

Орбитальная космическая система

Изобретение относится к системам космических объектов (КО) с передачей между ними энергии и импульса посредством лазерного излучения и может быть использовано для КО, на борту которых создаются условия микрогравитации на уровне ~10…10 ускорения на поверхности Земли. Система включает в себя...
Тип: Изобретение
Номер охранного документа: 0002488527
Дата охранного документа: 27.07.2013
27.07.2013
№216.012.5a4d

Термокомпрессионное устройство

Изобретение относится к холодильной технике, а точнее к области проектирования и эксплуатации компрессионных термических устройств (термокомпрессоров). Термокомпрессионное устройство содержит источник газа высокого давления с подключенным к нему баллоном-компрессором, устройство для...
Тип: Изобретение
Номер охранного документа: 0002488738
Дата охранного документа: 27.07.2013
+ добавить свой РИД