×
25.08.2017
217.015.b52b

Результат интеллектуальной деятельности: Электрохимический генератор

Вид РИД

Изобретение

№ охранного документа
0002614242
Дата охранного документа
24.03.2017
Аннотация: Изобретение относится к электрохимии, точнее к энергоустановкам с электрохимическими генераторами (ЭХГ). Электрохимический генератор включает батарею топливных элементов и ее систему охлаждения с контуром циркуляции жидкого теплоносителя, включающим охлаждающий теплообменник, установленный на выходе этой системы, и электрический насос. Электрический насос установлен на ее входе и электрически связан с батарей топливных элементов. В контур циркуляции жидкого теплоносителя дополнительно введены газовая турбина с электрогенератором, а также газожидкостный эжектор и подключенный к его выходу газожидкостный сепаратор, установленные на входе охлаждающего теплообменника. Жидкостная полость сепаратора соединена со входом этого теплообменника, а газовая полость сепаратора - со входом газовой турбины, выход которой подключен к газовому входу эжектора. Изобретение позволяет повысить эффективность ЭХГ, особенно, если его мощность значительна. 1 ил.

Предлагаемое техническое решение относится к электрохимии, точнее к энергоустановкам с электрохимическими генераторами (ЭХГ), и может использоваться при разработке систем электроснабжения космических аппаратов (КА) на основе ЭХГ.

Несмотря на сравнительно высокую стоимость, такие агрегаты находят применение (хотя и ограниченное) на транспорте и в сетях распределенного электроснабжения, работают вместе с возобновляемыми источниками энергии. Наиболее оправданным (и технически, и экономически) является, однако, использование ЭХГ в космосе. Здесь применяются низкотемпературные генераторы щелочного и твердополимерного типов с рабочей температурой около 100°С. Твердополимерный генератор использовался, например, на КА «Space Shuttle», щелочной ЭХГ был разработан для корабля «Буран», использовался ранее на борту «Ароllо» (С.А. Худяков «Космические энергоустановки», М.: Знание, 1984 г., стр. 15, серия «Космонавтика, астрономия»). Существует также перспектива использования ЭХГ для лунной базы (Глухих И.Н. и др. «Обеспечение лунной базы электроэнергией, теплом, водородом и кислородом на основе солнечных батарей и аккумулятора энергии с водородным циклом». Изв. РАН, журнал Энергетика, №3, 2007 г., стр. 35-56, а также Изв. РАН, журнал Энергетика, №1, 2009 г., стр. 19-26). Во всех этих случаях для охлаждения ЭХГ используется система охлаждения КА, которая в свою очередь сбрасывает это тепло в окружающее пространство.

В качестве аналога данному предложению может служить любой из бортовых ЭХГ, независимо от его типа. Их общим недостатком является необходимость сброса генерируемого ими тепла в бортовую систему охлаждения КА. При значительной мощности генератора этого тепла достаточно много, поскольку КПД существующих низкотемпературных ЭХГ не превышает 50%. Такая дополнительная тепловая нагрузка на систему охлаждения КА, особенно низкотемпературное тепло ЭХГ, требует существенного увеличения массогабаритных параметров ее тепловых панелей-излучателей.

Более близким к данному предложению является схема бортового ЭХГ с «самоохлаждением», принятого за прототип, и описанная в статье «Повышение эффективности кислородо-водородного ЭХГ космического назначения», авторы: Глухих И.Н., Челяев В.Ф., Щербаков А.Н., Изв. РАН, журнал «Энергетика» №5, 2014 г., с. 87-91. Электрохимический генератор содержит батарею топливных элементов и ее систему охлаждения с контуром циркуляции жидкого теплоносителя, включающим охлаждающий теплообменник (теплообменник - сублиматор), установленный на выходе этой системы охлаждения, и электрический насос, установленный на ее входе и электрически связанный с батарей топливных элементов. В данном устройстве значительная часть тепла сбрасывается не в систему охлаждения КА, а в окружающее пространство, что достигается за счет испарения в вакуум реакционной воды ЭХГ. В данной схеме эта вода сначала, как обычно, конденсируется с помощью системы охлаждения КА. Затем полученная жидкость начинает циркулировать по дополнительному собственному контуру охлаждения генератора, включающему сублиматор, «открытый» в вакуум. Здесь, при испарении воды (или льда) в вакуум, происходит охлаждение оставшейся жидкости, циркулирующей в контуре. В результате потребление «холода» от системы охлаждения КА сокращается. Циркуляция воды в собственном контуре охлаждения ЭХГ стимулируется при этом насосом, подключенным к самому генератору (точнее, к батарее топливных элементов); таким образом, генератор сам себя охлаждает. Это привносит в систему отрицательную обратную связь, что, как известно из теории управления, повышает устойчивость системы. Недостатком прототипа является потеря воды, что в условиях космического полета, особенно пилотируемого, нежелательно. Кроме того, при достигнутом в настоящее время КПД ЭХГ (до 50%), такая схема не обеспечивает полной утилизации тепла, выделяемого ЭХГ. В конечном счете тепло электрохимической реакции, как и прежде, не используется для выработки дополнительной электроэнергии.

Задачей настоящего предложения является повышение электрического КПД низкотемпературного ЭХГ за счет тепла, которое он вырабатывает. Следует отметить, что утилизировать низкопотенциальное тепло всегда сложнее, чем высокотемпературное.

Техническим результатом изобретения является повышение эффективности ЭХГ, особенно, если его мощность значительна (от нескольких киловатт до нескольких десятков киловатт).

Технический результат достигается за счет того, что в электрохимическом генераторе, включающем батарею топливных элементов и ее систему охлаждения с контуром циркуляции жидкого теплоносителя, в состав которого входит охлаждающий теплообменник, установленный на выходе этой системы, и электрический насос, установленный на ее входе и электрически связанный с батареей топливных элементов, в контур циркуляции жидкого теплоносителя дополнительно введены газовая турбина с электрогенератором, а также газожидкостный эжектор и подключенный к его выходу газожидкостный сепаратор, установленные на входе охлаждающего теплообменника, при этом жидкостная полость сепаратора соединена со входом этого теплообменника, а газовая полость сепаратора - со входом газовой турбины, выход которой подключен к газовому входу эжектора.

Суть предложения в том, что тепло электрохимической реакции утилизируется за счет электроэнергии, вырабатываемой в этой же реакции, т.е. работа системы охлаждения БТЭ поддерживается самой батареей. При этом количество электроэнергии, выработанной при утилизации тепла, будет больше, чем электроэнергии, затраченной на это. Основные энергозатраты идут в этом случае на работу побудителя расхода теплоносителя (насоса), который по сути дела является электромеханическим приводом собственной системы охлаждения БТЭ. Он же задает режим работы турбины, при этом часть электроэнергии, поступающей от БТЭ, расходуется также и на все другие нужды системы охлаждения батареи, включая потери энергии в ее элементах. Предлагаемое устройство является в сущности низкотемпературной гибридной энергоустановкой для преобразования химической энергии водорода в электроэнергию. При этом, несмотря на то, что КПД турбины при (низких) рабочих температурах твердополимерного или щелочного ЭХГ будет сравнительно небольшим, общая эффективность установки будет выше, чем у обычного ЭХГ, поскольку генерируемое им тепло не отводится из генератора полностью, а частично преобразуется в электричество в системе охлаждения БТЭ. При этом энергопотребление самой этой системы должно быть достаточно малым, т.е. КПД ее элементов - достаточно высоким. Несложные оценки позволяют показать, что электрический КПД предлагаемого ЭХГ будет больше КПД БТЭ, при условии, что насос системы охлаждения БТЭ будет потреблять часть (х) электроэнергии, производимой батареей, не более чем

при этом превышение к КПД ЭХГ над КПД БТЭ будет определяться выражением:

где kтэ - КПД БТЭ; kт - КПД турбины; kн - КПД насоса; kэг - КПД электрогенератора.

Здесь учитывается, что преобразование энергии, передаваемой из БТЭ в контур ее системы охлаждения, происходит по цепочкам:

тепловая энергия - «БТЭ - турбина - электрогенератор»;

электроэнергия - «БТЭ - насос - турбина - электрогенератор».

В частности, для типичных значений КПД агрегатов, входящих в схему генератора, а именно:

kтэ=0,5 (низкотемпературные ЭХГ);

kн=0,6 (поршневые насосы);

kт=0,3 (газовые турбины мощностью несколько киловатт);

kэг=0,8 (электрогенераторы примерно такой же мощности),

оценка по соотношению (2) дает величину около 7-10% при энергопотреблении насоса х=0,05-0,1 (т.е. 5-10%). Таким образом, КПД ЭХГ со «встроенной» газовой турбиной может сравниться с КПД лучших парогазовых установок (около 60%).

Конструкция предлагаемого устройства поясняется схемой на фиг. 1, где обозначено: 1 - батарея топливных элементов (БТЭ); 2 - система охлаждения БТЭ; 3 - насос; 4 - охлаждающий теплообменник; 5 - газожидкостный эжектор (ГЖЭ); 6 - газожидкостный сепаратор (ГЖС); 7 - газовая турбина; 8 - электрогенератор.

Система охлаждения (2) БТЭ (1) входит в замкнутый контур циркуляции жидкого теплоносителя, который включает в себя также охлаждающий теплообменник (4), вход которого гидравлически связан с жидкостной полостью ГЖС (6), а выход подключен ко входу насоса (3), электрически связанного с БТЭ (1) и подключенного к системе охлаждения (2). Вход ГЖС (6) подключен к выходу ГЖЭ (5). Вход последнего по жидкости соединен с выходом системы охлаждения (2), а вход по газу - с выходом турбины (7), которая своим входом соединяется с газовой полостью ГЖС (6). Турбина (7) приводит в действие электрогенератор (8), механически с ней связанный (например, размещенный на ее оси).

Работает устройство следующим образом. Тепло, выделяемое батареей топливных элементов (1), нагревает жидкий теплоноситель в системе охлаждения (2). При этом испарения жидкости не происходит - это не допускается технологией эксплуатации низкотемпературных ЭХГ. В частности, если теплоносителем служит вода, это условие обеспечивается автоматически, поскольку рабочие температуры низкотемпературных генераторов не превышают 100°С.

Из системы охлаждения (2) нагретая жидкость-теплоноситель направляется в ГЖЭ (5), где она распыляется в холодном газе, поступающем сюда из турбины (7). ГЖЭ (5) в данном случае работает как газокапельный теплообменник, в котором происходит передача тепла от капель жидкости к газу. Из ГЖЭ (5) газокапельная смесь попадает в ГЖС (6), где происходит разделение смеси по фазам. Нагретый жидкостью газ из ГЖС (6) направляется на вход газовой турбины (7), а предварительно охлажденная газом жидкость - в охлаждающий теплообменник (4), где она дополнительно охлаждается (например, с помощью внешней системы охлаждения), а затем поступает на вход насоса (3). Последний снова направляет жидкость в систему охлаждения (2) БТЭ (1), и рабочий цикл теплоносителя замыкается.

При использовании высокоэффективных агрегатов в системе охлаждения БТЭ (насос, турбина, генератор) предлагаемая схема ЭХГ (со «встроенной» турбиной) позволяет заметно повысить эффективность преобразования химической энергии в электрическую.

Электрохимический генератор, включающий батарею топливных элементов и ее систему охлаждения с контуром циркуляции жидкого теплоносителя, включающим охлаждающий теплообменник, установленный на выходе этой системы, и электрический насос, установленный на ее входе и электрически связанный с батарей топливных элементов, отличающийся тем, что в контур циркуляции жидкого теплоносителя дополнительно введены газовая турбина с электрогенератором, а также газожидкостный эжектор и подключенный к его выходу газожидкостный сепаратор, установленные на входе охлаждающего теплообменника, при этом жидкостная полость сепаратора соединена со входом этого теплообменника, а газовая полость сепаратора - со входом газовой турбины, выход которой подключен к газовому входу эжектора.
Электрохимический генератор
Электрохимический генератор
Источник поступления информации: Роспатент

Showing 171-180 of 370 items.
10.11.2015
№216.013.8f12

Способ управления движением космического объекта после отделения от другого космического объекта

Изобретение относится к управлению движением космического объекта (КО), например пилотируемого КО, после его отделения от другого КО, например ракеты-носителя (РН). Разворот КО в требуемую ориентацию начинают в момент Δt, отсчитываемый от момента его отделения от другого КО (далее - РН)....
Тип: Изобретение
Номер охранного документа: 0002568235
Дата охранного документа: 10.11.2015
20.11.2015
№216.013.8f53

Коммутатор напряжения с защитой от перегрузки по току

Использование: в области электротехники. Технический результат - повышение точности коммутации в условиях изменения температуры при снижении массы и габаритов коммутатора. Коммутатор напряжения с защитой от перегрузки по току содержит элемент И, последовательно соединенные электронный...
Тип: Изобретение
Номер охранного документа: 0002568307
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.8f6f

Способ измерения дальности до объектов по их изображениям преимущественно в космосе

Изобретение относится к способам измерения дальности и линейных размеров объектов по их изображениям. Согласно способу измеряют размеры и координаты центра изображения объекта до и после перемещения средства наблюдения под углом к оптической оси. Определение дальности производят в зависимости...
Тип: Изобретение
Номер охранного документа: 0002568335
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.8f86

Центробежное рабочее колесо

Изобретение может быть использовано в малорасходных насосах изделий ракетно-космической техники. Центробежное рабочее колесо содержит выполненный заодно со ступицей (1) ведущий диск (2) с лопатками (3) и покрывной диск (4) с центральным входным отверстием (5). Диск (4) контактирует с торцовыми...
Тип: Изобретение
Номер охранного документа: 0002568358
Дата охранного документа: 20.11.2015
20.01.2016
№216.013.a3cd

Способ эксплуатации электролизной системы, работающей при высоком давлении

Изобретение относится к «водородной» энергетике и может быть использовано на станциях заправки перспективного автотранспорта на топливных элементах. Способ эксплуатации электролизной системы, работающей при высоком давлении, включает процесс разложения воды электрическим током с раздельным...
Тип: Изобретение
Номер охранного документа: 0002573575
Дата охранного документа: 20.01.2016
27.01.2016
№216.014.bdc2

Многослойная трансформируемая герметичная оболочка

Изобретение относится к трансформируемым космическим структурам. Многослойная трансформируемая герметичная оболочка (МТГО) включает ЭВТИ с защитой от атомарного кислорода, противометеороидную защиту в виде защитных противометеороидных экранов с межэкранными разделителями, армирующий слой,...
Тип: Изобретение
Номер охранного документа: 0002573684
Дата охранного документа: 27.01.2016
20.06.2016
№217.015.042a

Устройство для определения параметров двухполюсника

Изобретение относится к электроизмерительной технике, а именно к измерению электрических параметров двухполюсников. Устройство содержит первый блок задания схемы замещения, преобразователь ток-напряжение, масштабный усилитель, аналогово-цифровой преобразователь, блок управления измерением,...
Тип: Изобретение
Номер охранного документа: 0002587647
Дата охранного документа: 20.06.2016
20.06.2016
№217.015.0500

Способ определения тензора инерции космического аппарата

Изобретение относится к определению массово-инерционных характеристик космических аппаратов (КА). Способ включает измерение острого угла между направлением на Солнце и плоскостью орбиты КА. При достижении этим углом максимального значения выставляют строительную ось КА, отвечающую максимальному...
Тип: Изобретение
Номер охранного документа: 0002587663
Дата охранного документа: 20.06.2016
10.05.2016
№216.015.2b0c

Способ тарировки датчика микроускорений в космическом полете

Изобретение относится к космической технике и может быть использовано при определении погрешности датчика микроускорений на космическом аппарате (КА). Технический результат - обеспечение тарировки датчика микроускорений в космическом полете. Способ тарировки датчика микроускорений в космическом...
Тип: Изобретение
Номер охранного документа: 0002583882
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.2b0d

Способ определения параметров двухполюсника

Изобретение относится к электроизмерительной технике, а конкретно к измерению электрических параметров двухполюсников, используемых в качестве датчиков физических процессов (температуры, давления, уровня жидких и сыпучих сред и др.) на промышленных объектах и транспортных средствах. Техническим...
Тип: Изобретение
Номер охранного документа: 0002583879
Дата охранного документа: 10.05.2016
Showing 171-180 of 295 items.
20.10.2015
№216.013.84fb

Ионный двигатель

Изобретение относится к области электроракетных двигателей. В крупногабаритном ионном двигателе, содержащем заключенную в корпус газоразрядную камеру, включающую узел подачи рабочего тела, ионно-оптическую систему, состоящую из плазменного и ускоряющего электродов, закрепленных на наружной...
Тип: Изобретение
Номер охранного документа: 0002565646
Дата охранного документа: 20.10.2015
27.10.2015
№216.013.87cf

Космический приемник-преобразователь лазерного излучения

Изобретение относится к области создания приемников-преобразователей на основе полупроводниковых фотоэлектрических преобразователей для преобразования электромагнитной энергии лазерного излучения высокой плотности. Заявлена конструкция космического приемника-преобразователя лазерного излучения...
Тип: Изобретение
Номер охранного документа: 0002566370
Дата охранного документа: 27.10.2015
27.10.2015
№216.013.87d8

Способ определения величины атмосферной рефракции в условиях космического полета

Заявляемое изобретение относится к навигационной технике, а именно к способу навигации космического аппарата (КА). Способ основан на измерении отклонения истинного и измеренного положения звезды, наблюдаемой сквозь земную атмосферу. Отклонение связано с атмосферной рефракцией. Для этого с...
Тип: Изобретение
Номер охранного документа: 0002566379
Дата охранного документа: 27.10.2015
10.11.2015
№216.013.8e25

Способ зондирования верхней атмосферы

Изобретение относится к космической технике и может быть использовано для зондирования верхней атмосферы. Способ зондирования верхней атмосферы основан на измерении и прогнозировании орбиты космического аппарата (КА) и измерении физических параметров атмосферы. Прогнозируется время...
Тип: Изобретение
Номер охранного документа: 0002567998
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8e49

Способ электролиза воды под давлением в электролизной системе

Изобретение относится к способу электролиза воды под давлением в электролизной системе, входящей в состав накопителей электроэнергии, работающих с замкнутым по воде рабочим циклом. Способ включает подачу постоянного напряжения от источника питания и воды, частичное разложение воды током в...
Тип: Изобретение
Номер охранного документа: 0002568034
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8ebf

Способ определения скорости движения фронтальной части ледника с космического аппарата

Изобретение относится к области дистанционного мониторинга опасных природных процессов и может быть использовано для определения скорости движения фронтальной части ледника. Сущность: определяют неподвижные характерные точки на склонах ледника. Осуществляют с космического аппарата съемку...
Тип: Изобретение
Номер охранного документа: 0002568152
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8f12

Способ управления движением космического объекта после отделения от другого космического объекта

Изобретение относится к управлению движением космического объекта (КО), например пилотируемого КО, после его отделения от другого КО, например ракеты-носителя (РН). Разворот КО в требуемую ориентацию начинают в момент Δt, отсчитываемый от момента его отделения от другого КО (далее - РН)....
Тип: Изобретение
Номер охранного документа: 0002568235
Дата охранного документа: 10.11.2015
20.11.2015
№216.013.8f53

Коммутатор напряжения с защитой от перегрузки по току

Использование: в области электротехники. Технический результат - повышение точности коммутации в условиях изменения температуры при снижении массы и габаритов коммутатора. Коммутатор напряжения с защитой от перегрузки по току содержит элемент И, последовательно соединенные электронный...
Тип: Изобретение
Номер охранного документа: 0002568307
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.8f6f

Способ измерения дальности до объектов по их изображениям преимущественно в космосе

Изобретение относится к способам измерения дальности и линейных размеров объектов по их изображениям. Согласно способу измеряют размеры и координаты центра изображения объекта до и после перемещения средства наблюдения под углом к оптической оси. Определение дальности производят в зависимости...
Тип: Изобретение
Номер охранного документа: 0002568335
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.8f86

Центробежное рабочее колесо

Изобретение может быть использовано в малорасходных насосах изделий ракетно-космической техники. Центробежное рабочее колесо содержит выполненный заодно со ступицей (1) ведущий диск (2) с лопатками (3) и покрывной диск (4) с центральным входным отверстием (5). Диск (4) контактирует с торцовыми...
Тип: Изобретение
Номер охранного документа: 0002568358
Дата охранного документа: 20.11.2015
+ добавить свой РИД