×
25.08.2017
217.015.b52b

Результат интеллектуальной деятельности: Электрохимический генератор

Вид РИД

Изобретение

№ охранного документа
0002614242
Дата охранного документа
24.03.2017
Аннотация: Изобретение относится к электрохимии, точнее к энергоустановкам с электрохимическими генераторами (ЭХГ). Электрохимический генератор включает батарею топливных элементов и ее систему охлаждения с контуром циркуляции жидкого теплоносителя, включающим охлаждающий теплообменник, установленный на выходе этой системы, и электрический насос. Электрический насос установлен на ее входе и электрически связан с батарей топливных элементов. В контур циркуляции жидкого теплоносителя дополнительно введены газовая турбина с электрогенератором, а также газожидкостный эжектор и подключенный к его выходу газожидкостный сепаратор, установленные на входе охлаждающего теплообменника. Жидкостная полость сепаратора соединена со входом этого теплообменника, а газовая полость сепаратора - со входом газовой турбины, выход которой подключен к газовому входу эжектора. Изобретение позволяет повысить эффективность ЭХГ, особенно, если его мощность значительна. 1 ил.

Предлагаемое техническое решение относится к электрохимии, точнее к энергоустановкам с электрохимическими генераторами (ЭХГ), и может использоваться при разработке систем электроснабжения космических аппаратов (КА) на основе ЭХГ.

Несмотря на сравнительно высокую стоимость, такие агрегаты находят применение (хотя и ограниченное) на транспорте и в сетях распределенного электроснабжения, работают вместе с возобновляемыми источниками энергии. Наиболее оправданным (и технически, и экономически) является, однако, использование ЭХГ в космосе. Здесь применяются низкотемпературные генераторы щелочного и твердополимерного типов с рабочей температурой около 100°С. Твердополимерный генератор использовался, например, на КА «Space Shuttle», щелочной ЭХГ был разработан для корабля «Буран», использовался ранее на борту «Ароllо» (С.А. Худяков «Космические энергоустановки», М.: Знание, 1984 г., стр. 15, серия «Космонавтика, астрономия»). Существует также перспектива использования ЭХГ для лунной базы (Глухих И.Н. и др. «Обеспечение лунной базы электроэнергией, теплом, водородом и кислородом на основе солнечных батарей и аккумулятора энергии с водородным циклом». Изв. РАН, журнал Энергетика, №3, 2007 г., стр. 35-56, а также Изв. РАН, журнал Энергетика, №1, 2009 г., стр. 19-26). Во всех этих случаях для охлаждения ЭХГ используется система охлаждения КА, которая в свою очередь сбрасывает это тепло в окружающее пространство.

В качестве аналога данному предложению может служить любой из бортовых ЭХГ, независимо от его типа. Их общим недостатком является необходимость сброса генерируемого ими тепла в бортовую систему охлаждения КА. При значительной мощности генератора этого тепла достаточно много, поскольку КПД существующих низкотемпературных ЭХГ не превышает 50%. Такая дополнительная тепловая нагрузка на систему охлаждения КА, особенно низкотемпературное тепло ЭХГ, требует существенного увеличения массогабаритных параметров ее тепловых панелей-излучателей.

Более близким к данному предложению является схема бортового ЭХГ с «самоохлаждением», принятого за прототип, и описанная в статье «Повышение эффективности кислородо-водородного ЭХГ космического назначения», авторы: Глухих И.Н., Челяев В.Ф., Щербаков А.Н., Изв. РАН, журнал «Энергетика» №5, 2014 г., с. 87-91. Электрохимический генератор содержит батарею топливных элементов и ее систему охлаждения с контуром циркуляции жидкого теплоносителя, включающим охлаждающий теплообменник (теплообменник - сублиматор), установленный на выходе этой системы охлаждения, и электрический насос, установленный на ее входе и электрически связанный с батарей топливных элементов. В данном устройстве значительная часть тепла сбрасывается не в систему охлаждения КА, а в окружающее пространство, что достигается за счет испарения в вакуум реакционной воды ЭХГ. В данной схеме эта вода сначала, как обычно, конденсируется с помощью системы охлаждения КА. Затем полученная жидкость начинает циркулировать по дополнительному собственному контуру охлаждения генератора, включающему сублиматор, «открытый» в вакуум. Здесь, при испарении воды (или льда) в вакуум, происходит охлаждение оставшейся жидкости, циркулирующей в контуре. В результате потребление «холода» от системы охлаждения КА сокращается. Циркуляция воды в собственном контуре охлаждения ЭХГ стимулируется при этом насосом, подключенным к самому генератору (точнее, к батарее топливных элементов); таким образом, генератор сам себя охлаждает. Это привносит в систему отрицательную обратную связь, что, как известно из теории управления, повышает устойчивость системы. Недостатком прототипа является потеря воды, что в условиях космического полета, особенно пилотируемого, нежелательно. Кроме того, при достигнутом в настоящее время КПД ЭХГ (до 50%), такая схема не обеспечивает полной утилизации тепла, выделяемого ЭХГ. В конечном счете тепло электрохимической реакции, как и прежде, не используется для выработки дополнительной электроэнергии.

Задачей настоящего предложения является повышение электрического КПД низкотемпературного ЭХГ за счет тепла, которое он вырабатывает. Следует отметить, что утилизировать низкопотенциальное тепло всегда сложнее, чем высокотемпературное.

Техническим результатом изобретения является повышение эффективности ЭХГ, особенно, если его мощность значительна (от нескольких киловатт до нескольких десятков киловатт).

Технический результат достигается за счет того, что в электрохимическом генераторе, включающем батарею топливных элементов и ее систему охлаждения с контуром циркуляции жидкого теплоносителя, в состав которого входит охлаждающий теплообменник, установленный на выходе этой системы, и электрический насос, установленный на ее входе и электрически связанный с батареей топливных элементов, в контур циркуляции жидкого теплоносителя дополнительно введены газовая турбина с электрогенератором, а также газожидкостный эжектор и подключенный к его выходу газожидкостный сепаратор, установленные на входе охлаждающего теплообменника, при этом жидкостная полость сепаратора соединена со входом этого теплообменника, а газовая полость сепаратора - со входом газовой турбины, выход которой подключен к газовому входу эжектора.

Суть предложения в том, что тепло электрохимической реакции утилизируется за счет электроэнергии, вырабатываемой в этой же реакции, т.е. работа системы охлаждения БТЭ поддерживается самой батареей. При этом количество электроэнергии, выработанной при утилизации тепла, будет больше, чем электроэнергии, затраченной на это. Основные энергозатраты идут в этом случае на работу побудителя расхода теплоносителя (насоса), который по сути дела является электромеханическим приводом собственной системы охлаждения БТЭ. Он же задает режим работы турбины, при этом часть электроэнергии, поступающей от БТЭ, расходуется также и на все другие нужды системы охлаждения батареи, включая потери энергии в ее элементах. Предлагаемое устройство является в сущности низкотемпературной гибридной энергоустановкой для преобразования химической энергии водорода в электроэнергию. При этом, несмотря на то, что КПД турбины при (низких) рабочих температурах твердополимерного или щелочного ЭХГ будет сравнительно небольшим, общая эффективность установки будет выше, чем у обычного ЭХГ, поскольку генерируемое им тепло не отводится из генератора полностью, а частично преобразуется в электричество в системе охлаждения БТЭ. При этом энергопотребление самой этой системы должно быть достаточно малым, т.е. КПД ее элементов - достаточно высоким. Несложные оценки позволяют показать, что электрический КПД предлагаемого ЭХГ будет больше КПД БТЭ, при условии, что насос системы охлаждения БТЭ будет потреблять часть (х) электроэнергии, производимой батареей, не более чем

при этом превышение к КПД ЭХГ над КПД БТЭ будет определяться выражением:

где kтэ - КПД БТЭ; kт - КПД турбины; kн - КПД насоса; kэг - КПД электрогенератора.

Здесь учитывается, что преобразование энергии, передаваемой из БТЭ в контур ее системы охлаждения, происходит по цепочкам:

тепловая энергия - «БТЭ - турбина - электрогенератор»;

электроэнергия - «БТЭ - насос - турбина - электрогенератор».

В частности, для типичных значений КПД агрегатов, входящих в схему генератора, а именно:

kтэ=0,5 (низкотемпературные ЭХГ);

kн=0,6 (поршневые насосы);

kт=0,3 (газовые турбины мощностью несколько киловатт);

kэг=0,8 (электрогенераторы примерно такой же мощности),

оценка по соотношению (2) дает величину около 7-10% при энергопотреблении насоса х=0,05-0,1 (т.е. 5-10%). Таким образом, КПД ЭХГ со «встроенной» газовой турбиной может сравниться с КПД лучших парогазовых установок (около 60%).

Конструкция предлагаемого устройства поясняется схемой на фиг. 1, где обозначено: 1 - батарея топливных элементов (БТЭ); 2 - система охлаждения БТЭ; 3 - насос; 4 - охлаждающий теплообменник; 5 - газожидкостный эжектор (ГЖЭ); 6 - газожидкостный сепаратор (ГЖС); 7 - газовая турбина; 8 - электрогенератор.

Система охлаждения (2) БТЭ (1) входит в замкнутый контур циркуляции жидкого теплоносителя, который включает в себя также охлаждающий теплообменник (4), вход которого гидравлически связан с жидкостной полостью ГЖС (6), а выход подключен ко входу насоса (3), электрически связанного с БТЭ (1) и подключенного к системе охлаждения (2). Вход ГЖС (6) подключен к выходу ГЖЭ (5). Вход последнего по жидкости соединен с выходом системы охлаждения (2), а вход по газу - с выходом турбины (7), которая своим входом соединяется с газовой полостью ГЖС (6). Турбина (7) приводит в действие электрогенератор (8), механически с ней связанный (например, размещенный на ее оси).

Работает устройство следующим образом. Тепло, выделяемое батареей топливных элементов (1), нагревает жидкий теплоноситель в системе охлаждения (2). При этом испарения жидкости не происходит - это не допускается технологией эксплуатации низкотемпературных ЭХГ. В частности, если теплоносителем служит вода, это условие обеспечивается автоматически, поскольку рабочие температуры низкотемпературных генераторов не превышают 100°С.

Из системы охлаждения (2) нагретая жидкость-теплоноситель направляется в ГЖЭ (5), где она распыляется в холодном газе, поступающем сюда из турбины (7). ГЖЭ (5) в данном случае работает как газокапельный теплообменник, в котором происходит передача тепла от капель жидкости к газу. Из ГЖЭ (5) газокапельная смесь попадает в ГЖС (6), где происходит разделение смеси по фазам. Нагретый жидкостью газ из ГЖС (6) направляется на вход газовой турбины (7), а предварительно охлажденная газом жидкость - в охлаждающий теплообменник (4), где она дополнительно охлаждается (например, с помощью внешней системы охлаждения), а затем поступает на вход насоса (3). Последний снова направляет жидкость в систему охлаждения (2) БТЭ (1), и рабочий цикл теплоносителя замыкается.

При использовании высокоэффективных агрегатов в системе охлаждения БТЭ (насос, турбина, генератор) предлагаемая схема ЭХГ (со «встроенной» турбиной) позволяет заметно повысить эффективность преобразования химической энергии в электрическую.

Электрохимический генератор, включающий батарею топливных элементов и ее систему охлаждения с контуром циркуляции жидкого теплоносителя, включающим охлаждающий теплообменник, установленный на выходе этой системы, и электрический насос, установленный на ее входе и электрически связанный с батарей топливных элементов, отличающийся тем, что в контур циркуляции жидкого теплоносителя дополнительно введены газовая турбина с электрогенератором, а также газожидкостный эжектор и подключенный к его выходу газожидкостный сепаратор, установленные на входе охлаждающего теплообменника, при этом жидкостная полость сепаратора соединена со входом этого теплообменника, а газовая полость сепаратора - со входом газовой турбины, выход которой подключен к газовому входу эжектора.
Электрохимический генератор
Электрохимический генератор
Источник поступления информации: Роспатент

Showing 161-170 of 370 items.
20.10.2015
№216.013.8485

Счетчик

Изобретение относится к области электронной техники и может быть использовано при создании различных устройств контроля и управления, например для формирования шины адреса в многоканальных устройствах. Технический результат заключается в повышении быстродействия. В счетчике выход (n+2)-го...
Тип: Изобретение
Номер охранного документа: 0002565528
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.8488

Селектор импульсов по длительности

Изобретение относится к области электронной техники. Технический результат - возможность одновременного контроля напряжения от нескольких источников и времени, в течение которого измеряемое напряжение превышает заданный уровень, что в свою очередь, при использовании селектора импульсов по...
Тип: Изобретение
Номер охранного документа: 0002565531
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.8489

Селектор импульсов по длительности

Изобретение относится к области электронной техники и может быть использовано в многоканальных источниках питания с защитой от перегрузки по току для защиты нагрузок, ключей коммутатора и источника напряжения. Техническим результатом является обеспечение защиты от перегрузок по току и по...
Тип: Изобретение
Номер охранного документа: 0002565532
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.84d4

Коммутатор цепи питания (варианты)

Изобретение относится к области автоматики и может быть использовано в устройствах коммутации нагрузки с импульсным потреблением тока от источника постоянного напряжения. Технический результат - увеличение надежности аппаратуры управления, ресурса его работы, снижение уровня помех по цепям...
Тип: Изобретение
Номер охранного документа: 0002565607
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.84fb

Ионный двигатель

Изобретение относится к области электроракетных двигателей. В крупногабаритном ионном двигателе, содержащем заключенную в корпус газоразрядную камеру, включающую узел подачи рабочего тела, ионно-оптическую систему, состоящую из плазменного и ускоряющего электродов, закрепленных на наружной...
Тип: Изобретение
Номер охранного документа: 0002565646
Дата охранного документа: 20.10.2015
27.10.2015
№216.013.87cf

Космический приемник-преобразователь лазерного излучения

Изобретение относится к области создания приемников-преобразователей на основе полупроводниковых фотоэлектрических преобразователей для преобразования электромагнитной энергии лазерного излучения высокой плотности. Заявлена конструкция космического приемника-преобразователя лазерного излучения...
Тип: Изобретение
Номер охранного документа: 0002566370
Дата охранного документа: 27.10.2015
27.10.2015
№216.013.87d8

Способ определения величины атмосферной рефракции в условиях космического полета

Заявляемое изобретение относится к навигационной технике, а именно к способу навигации космического аппарата (КА). Способ основан на измерении отклонения истинного и измеренного положения звезды, наблюдаемой сквозь земную атмосферу. Отклонение связано с атмосферной рефракцией. Для этого с...
Тип: Изобретение
Номер охранного документа: 0002566379
Дата охранного документа: 27.10.2015
10.11.2015
№216.013.8e25

Способ зондирования верхней атмосферы

Изобретение относится к космической технике и может быть использовано для зондирования верхней атмосферы. Способ зондирования верхней атмосферы основан на измерении и прогнозировании орбиты космического аппарата (КА) и измерении физических параметров атмосферы. Прогнозируется время...
Тип: Изобретение
Номер охранного документа: 0002567998
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8e49

Способ электролиза воды под давлением в электролизной системе

Изобретение относится к способу электролиза воды под давлением в электролизной системе, входящей в состав накопителей электроэнергии, работающих с замкнутым по воде рабочим циклом. Способ включает подачу постоянного напряжения от источника питания и воды, частичное разложение воды током в...
Тип: Изобретение
Номер охранного документа: 0002568034
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8ebf

Способ определения скорости движения фронтальной части ледника с космического аппарата

Изобретение относится к области дистанционного мониторинга опасных природных процессов и может быть использовано для определения скорости движения фронтальной части ледника. Сущность: определяют неподвижные характерные точки на склонах ледника. Осуществляют с космического аппарата съемку...
Тип: Изобретение
Номер охранного документа: 0002568152
Дата охранного документа: 10.11.2015
Showing 161-170 of 295 items.
10.09.2015
№216.013.7985

Коммутатор измерительного прибора для контроля качества цепей питания электротехнических систем изделия при их сборке

Изобретение относится к области технологических устройств и может быть использовано совместно с измерительным прибором (омметром) при контроле цепей питания электротехнической системы изделия в процессе ее сборки на соответствие требованиям технической документации - отсутствие обрывов,...
Тип: Изобретение
Номер охранного документа: 0002562698
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.7a51

Способ управления движением стыкуемых космических объектов

Изобретение относится к космической технике и может быть использовано в управлении движением стыкуемых космических объектов (КО). Выводят КО на целевые орбиты со стартовых позиций одного космодрома со сдвигом по времени и с разницей в наклонениях целевых орбит для совмещения восходящих узлов...
Тип: Изобретение
Номер охранного документа: 0002562902
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.7a52

Способ управления ориентацией космического аппарата с неподвижными панелями солнечных батарей при выполнении экспериментов на орбитах с максимальной длительностью теневого участка

Изобретение относится к космической технике. Способ управления ориентацией космического аппарата (КА) с неподвижными панелями солнечных батарей (СБ) при выполнении экспериментов на орбитах с максимальной длительностью теневого участка включает гравитационную ориентацию КА продольной осью вдоль...
Тип: Изобретение
Номер охранного документа: 0002562903
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.7a53

Способ управления ориентацией космического аппарата с неподвижными панелями солнечных батарей при выполнении экспериментов

Изобретение относится к космической технике. Способ управления ориентацией космического аппарата (КА) с неподвижными панелями солнечных батарей (СБ) при выполнении экспериментов включает гравитационную ориентацию КА продольной осью вдоль местной вертикали и закрутку вокруг продольной оси,...
Тип: Изобретение
Номер охранного документа: 0002562904
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.7a57

Способ управления движением активного космического объекта, стыкуемого с пассивным космическим объектом

Изобретение относится к космической технике и может быть использовано при сближении и последующей стыковке двух космических объектов. Способ включает определение величины и места приложения отлетного импульса перед переводом активного космического аппарата (АКО) на траекторию полета к другому...
Тип: Изобретение
Номер охранного документа: 0002562908
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.7a68

Устройство для крепления пиротехнических узлов с остаточной деформацией после их срабатывания

Изобретение относится к ракетно-космической технике и предназначено для крепления пиротехнических узлов с остаточной деформацией после их срабатывания, преимущественно пироножей. Устройство содержит опору, на которой установлен пиротехнический узел при помощи крепежных элементов, причем в...
Тип: Изобретение
Номер охранного документа: 0002562925
Дата охранного документа: 10.09.2015
20.10.2015
№216.013.8485

Счетчик

Изобретение относится к области электронной техники и может быть использовано при создании различных устройств контроля и управления, например для формирования шины адреса в многоканальных устройствах. Технический результат заключается в повышении быстродействия. В счетчике выход (n+2)-го...
Тип: Изобретение
Номер охранного документа: 0002565528
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.8488

Селектор импульсов по длительности

Изобретение относится к области электронной техники. Технический результат - возможность одновременного контроля напряжения от нескольких источников и времени, в течение которого измеряемое напряжение превышает заданный уровень, что в свою очередь, при использовании селектора импульсов по...
Тип: Изобретение
Номер охранного документа: 0002565531
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.8489

Селектор импульсов по длительности

Изобретение относится к области электронной техники и может быть использовано в многоканальных источниках питания с защитой от перегрузки по току для защиты нагрузок, ключей коммутатора и источника напряжения. Техническим результатом является обеспечение защиты от перегрузок по току и по...
Тип: Изобретение
Номер охранного документа: 0002565532
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.84d4

Коммутатор цепи питания (варианты)

Изобретение относится к области автоматики и может быть использовано в устройствах коммутации нагрузки с импульсным потреблением тока от источника постоянного напряжения. Технический результат - увеличение надежности аппаратуры управления, ресурса его работы, снижение уровня помех по цепям...
Тип: Изобретение
Номер охранного документа: 0002565607
Дата охранного документа: 20.10.2015
+ добавить свой РИД