×
25.08.2017
217.015.b164

Результат интеллектуальной деятельности: Способ получения заготовок вольфрамо-титанового твердого сплава

Вид РИД

Изобретение

Аннотация: Изобретение относится к получению заготовок вольфрамо-титанового твердого сплава. Способ включает горячее прессование порошка в вакууме с пропусканием высокоамперного тока через пресс-форму и прессуемый порошок при температуре 1320°С в течение 3 минут. Используют порошок, полученный электроэрозионным диспергированием отходов твердых сплавов Т15К6. Обеспечивается повышение эксплуатационной стойкости. 10 табл., 2 пр.

Предлагаемое изобретение относится к области порошковой металлургии, а именно к получению твердых сплавов.

Известен способ получения твердых сплавов, согласно которому спекание прессованных заготовок осуществляют в восстановительной атмосфере или в вакууме [1]. При применении восстановительной атмосферы спекание проводят в горизонтальных печах трубчатого или муфельного типа, нагревательный элемент которых расположен с внешней стороны. В некоторых случаях нагревателем является графитовая труба, служащая одновременно и рабочим пространством печи. При применении вакуума спекание проводят либо в вертикальных печах периодического действия, либо в горизонтальных непрерывного действия.

Недостаток данного способа – наличие градиента температур как по длине, так и по сечению трубы или муфеля, что снижает качество спеченных изделий и, следовательно, выход в годное.

Ближайшим техническим решением является способ получения сплавов, включающий прессование шихты и спекание в псевдоожиженном слое предварительно спеченного оксида алюминия при температуре 1250-1360°С в окислительной или восстановительной атмосфере [2].

Недостаток известного способа – низкая прочность получаемых изделий, снижающая их эксплуатационные свойства.

Задача изобретения - разработка технологии, обеспечивающей высокий выход в годное, получение высококачественных твердосплавных изделий, отличающихся высокой эксплуатационной стойкостью.

На экспериментальной установке для получения порошков из токопроводящих материалов диспергировали твердый сплав марки Т15К6. В качестве рабочих жидкостей использовались: вода дистиллированная и керосин осветительный.

Процесс проводили при следующих электрических параметрах: емкость разрядных конденсаторов 35 мкФ, напряжение 200…220 В, частота следования импульсов 28…33 Гц.

В результате локального воздействия кратковременных электрических разрядов между электродами произошло разрушение материала отходов с образованием дисперсных частиц порошка.

Из порошков, полученных из отходов твердых сплавов марки Т15К6 в воде дистиллированной и керосине осветительном, получили спеченные заготовки. Изостатическое прессование порошка проводили на прессе «EPSI» при давлении 300 МПа, а спекание - в высокотемпературной печи «Nabertherm» в вакууме при температуре 1500°С.

Так же твердосплавные заготовки получали методом горячего прессования с пропусканием высокоамперного тока в вакууме при температуре 1320°С в течение 3 минут, из порошка, полученного электроэрозионным диспергированием отходов твердых сплавов Т15К6. В основе процесса лежит модифицированный метод горячего прессования, при котором электрический ток пропускается: непосредственно через пресс-форму и прессуемую заготовку, а не через внешний нагреватель. С помощью импульсного электротока и так называемого «эффекта плазмы искрового разряда» («spark plasma effect») достигается очень быстрый нагрев и исключительно малая продолжительность рабочего цикла. Это позволяет подавить рост зерна и получить равновесное состояние, что открывает возможности для создания новых материалов с ранее недоступными композициями и свойствами, материалов с субмикронным или наномасштабным зерном, а также композитных.

Пример 1

Из порошков, полученных из отходов твердых сплавов марки Т15К6 в воде дистиллированной и керосине осветительном, получили спеченные заготовки. Изостатическое прессование порошка проводили на прессе «EPSI» при давлении 300 МПа, а спекание − в высокотемпературной печи «Nabertherm» в вакууме при температуре 1500°С.

Далее представлены результаты экспериментальных исследований заготовок вольфрамо-титанового твердого сплава, изготовленных холодным изостатическим прессованием при давлении 300 МПа и спеканием в вакууме в течение 2 часов при температуре 1500°С из порошка, полученного электроэрозионным диспергированием отходов твердых сплавов Т15К6, от состава и свойств исходной шихты.

Результаты исследования пористости вольфрамо-титановых твердосплавных изделий представлены в табл.1.

Отмечена более высокая пористость заготовок вольфрамо-титанового твердого сплава, изготовленных холодным изостатическим прессованием при давлении 300 МПа и спеканием в вакууме в течение 2 часов из порошка, полученного электроэрозионным диспергированием отходов твердых сплавов Т15К6, по сравнению с твердосплавными изделиями, полученными из стандартного порошка по стандартной технологии в 4,22…9,92 раза, что, несомненно, отразится на их механических свойствах.

Таблица 1

Исследование пористости заготовок вольфрамо-титанового твердого сплава

Параметр Твердый сплав, полученный из порошка
в воде в керосине стандартного
Число полей
зрения
5 5
Площадь
анализа, мкм
317356,4 317225,8
Пористость, % 9,92 4,22 до 1

Механические свойства вольфрамо-титанового твердого сплава (прочность при поперечном изгибе, ударная вязкость, предел усталости) понижаются с увеличением пористости. Такое снижение объясняется концентрацией напряжений в порах, являющихся местами зарождения и распространения трещины при нагружении.

Результаты исследования размера зерна заготовок вольфрамо-титанового твердого сплава представлены в табл.2.

Отмечен меньший размер зерна заготовок вольфрамо-титанового твердого сплава, изготовленных холодным изостатическим прессованием при давлении 300 МПа и спеканием в вакууме в течение 2 часов из порошка, полученного электроэрозионным диспергированием отходов твердых сплавов Т15К6, по сравнению с твердосплавными изделиями, полученными из стандартного порошка по стандартной технологии в 1,5…3 раза. С уменьшением размера зерен карбида вольфрама возрастает твердость сплава, а прочность понижается.

Таблица 2

Исследование размера зерна заготовок вольфрамо-титанового твердого сплава

Параметр Твердый сплав, полученный из порошка
в воде в керосине стандартного
Количество
измерений
26 26
Минимальная
длина, мкм
0,17 0,11
Максимальная
длина, мкм
2,92 1,53
Средняя длина, мкм 1,26 0,94 1,5…3,0

Результаты исследования плотности заготовок вольфрамо-титанового твердого сплава представлены в табл.3.

Таблица 3

Исследование плотности заготовок вольфрамо-титанового твердого сплава, г/см3

Параметр Твердый сплав, полученный из порошка
в воде в керосине стандартного
После прессования 7,8 8,16
После спекания 11,2 12,05 11,5

Отмечена большая плотность заготовок вольфрамо-титанового твердого сплава, изготовленных холодным изостатическим прессованием при давлении 300 МПа и спеканием в вакууме в течение 2 часов из порошка, полученного электроэрозионным диспергированием отходов твердых сплавов Т15К6 в керосине, по сравнению с твердосплавными изделиями, полученными из стандартного порошка по стандартной технологии на 7%.

Результаты исследования предела прочности при сжатии заготовок вольфрамо-титанового твердого сплава представлены в табл.4.

Таблица 4

Исследование предела прочности при сжатии заготовок вольфрамо-титанового твердого сплава, МПа

Параметр Твердый сплав, полученный из порошка
в воде в керосине стандартного
Значение 188,46287 470,36894 600

Отмечен меньший предел прочности вольфрамо-титановых твердосплавных изделий, изготовленных холодным изостатическим прессованием при давлении 300 МПа и спеканием в вакууме в течение 2 часов из порошка, полученного электроэрозионным диспергированием отходов твердых сплавов Т15К6, по сравнению с твердосплавными изделиями, полученными из стандартного порошка по стандартной технологии в 3,2…1,2 раза. Прочность полученных твердосплавных изделий является недостаточной для резания металлов и бурения горных пород, но вполне достаточной для обработки дерева.

Результаты исследования микротвердости заготовок вольфрамо-титанового твердого сплава представлены в табл.5.

Отмечена большая микротвердость заготовок вольфрамо-титанового твердого сплава, изготовленных холодным изостатическим прессованием при давлении 300 МПа и спеканием в вакууме в течение 2 часов из порошка, полученного электроэрозионным диспергированием отходов твердых сплавов Т15К6 в керосине осветительном, по сравнению с твердым сплавом, полученным из стандартного порошка по стандартной технологии в 1,2 раза, что связано с их меньшей зернистостью.

Таблица 5

Микротвердость заготовок вольфрамо-титанового твердого сплава, HV при нагрузке 30 Н, МПа

Испытуемый материал Среднее
значение
Твердый сплав из порошка, полученного методом ЭЭД в воде дистиллированной 292,91
Твердый сплав из порошка, полученного методом ЭЭД в керосине осветительном 542,45
Исходный твердый сплав Т15К6 470,44

Результаты исследования микроструктуры заготовок вольфрамо-титанового твердого сплава, изготовленных холодным изостатическим прессованием при давлении 300 МПа и спеканием в вакууме в течение 2 часов из порошка, полученного электроэрозионным диспергированием отходов твердых сплавов Т15К6, представлены на фигуре 1.

Отмечено, что заготовки вольфрамо-титанового твердого сплава, изготовленные из порошка, полученного электроэрозионным диспергированием отходов твердых сплавов Т15К6 в керосине осветительном имеют меньший размер зерна, по сравнению с твердосплавными изделиями, полученными из порошка, полученного электроэрозионным диспергированием отходов твердых сплавов Т15К6 в воде дистиллированной.

Установлено, что вольфрамо-титановые твердосплавные пластины, полученные методом горячего прессования с пропусканием высокоамперного тока при температуре 1320°С в течение 3 минут, из порошка, полученного электроэрозионным диспергированием отходов спеченных твердых сплавов марки Т15К6 в керосине осветительном, по сравнению с твердосплавными пластинами, полученными из стандартного порошка, по промышленной технологии обладают более высокими характеристиками.

Пример 2

Вольфрамо-титановые твердосплавные заготовки получали методом горячего прессования с пропусканием высокоамперного тока в вакууме при температурах 1300, 1320 и 1340°С в течение 2, 3 и 4 минут, из порошка, полученного электроэрозионным диспергированием отходов твердых сплавов Т15К6. Наилучшие результаты, с точки зрения физико-механических свойств, получены при температуре 1320°С в течение 3 минут.

Далее представлены результаты экспериментальных исследований заготовок вольфрамо-титанового твердого сплава, изготовленных методом горячего прессования с пропусканием высокоамперного тока в вакууме при температуре 1320°С в течение 3 минут из порошка, полученного электроэрозионным диспергированием отходов твердых сплавов Т15К6, от состава и свойств исходной шихты.

Результаты исследования пористости вольфрамо-титанового твердого сплава представлены в табл.6.

Таблица 6

Исследование пористости вольфрамо-титанового твердого сплава

Параметр Твердый сплав, полученный из порошка
в керосине стандартного
Число полей
зрения
5
Площадь анализа, мкм 317295,4
Пористость, % не установлена до 1

Отмечено, что вольфрамо-титановый твердый сплав, изготовленный методом горячего прессования с пропусканием высокоамперного тока, из порошка, полученного электроэрозионным диспергированием отходов твердых сплавов Т15К6, не имеет пористости.

Результаты исследования размера зерна вольфрамо-титанового твердого сплава представлены в табл.7.

Таблица 7

Исследование размера зерна вольфрамо-титанового твердого сплава

Параметр Твердый сплав, полученный из порошка
в керосине стандартного
Количество
измерений
26
Минимальная
длина, мкм
0,12
Максимальная
длина, мкм
1,27
Средняя длина, мкм 0,71 1,5…3,0

Отмечен меньший размер зерна вольфрамо-титанового твердого сплава, изготовленного методом горячего прессования с пропусканием высокоамперного тока, из порошка, полученного электроэрозионным диспергированием отходов твердых сплавов Т15К6, по сравнению с твердым сплавом, полученным из стандартного порошка по промышленной технологии в 2…3 раза. С уменьшением размера зерен карбида вольфрама возрастает твердость сплава, а прочность понижается.

Результаты исследования плотности вольфрамо-титанового твердого сплава представлены в табл.8.

Таблица 8

Исследование плотности вольфрамо-титанового твердого сплава, г/см3

Параметр Твердый сплав, полученный из порошка
в керосине стандартного
После прессования 8,16
После спекания 12,35 11,5

Отмечена большая плотность вольфрамо-титанового твердого сплава, изготовленного методом горячего прессования с пропусканием высокоамперного тока из порошка, полученного электроэрозионным диспергированием отходов твердых сплавов Т15К6, по сравнению с твердым сплавом, полученным из стандартного порошка по промышленной технологии на 7,4%.

Результаты исследования предела прочности при изгибе вольфрамо-титанового твердого сплава представлены в табл.9.

Таблица 9

Исследование предела прочности при изгибе вольфрамо-титанового твердого сплава, МПа

Параметр Твердый сплав, полученный из порошка
в керосине стандартного
Значение 1876,27991 1127…1180

Отмечено, что вольфрамо-титановый твердый сплав, изготовленный методом горячего прессования с пропусканием высокоамперного тока при температуре 1320°С в течение 3 минут, из порошка, полученного электроэрозионным диспергированием отходов спеченных твердых сплавов марки Т15К6 в керосине осветительном, по сравнению с твердосплавными изделиями, полученными из стандартного порошка, по промышленной технологии имеют в 1,7 раза больше предел прочности при изгибе, поскольку имеют более мелкое зерно.

Результаты исследования твердости вольфрамо-титанового твердого сплава представлены в табл.10.

Таблица 10

Твердость вольфрамо-титанового твердого сплава, HV при нагрузке 50 Н

Испытуемый материал Среднее
значение
Твердый сплав из порошка, полученного методом ЭЭД в керосине осветительном 1729
Исходный твердый сплав Т15К6 1141

Отмечено, что вольфрамо-титановый твердый сплав, изготовленный методом горячего прессования с пропусканием высокоамперного тока, из порошка, полученного электроэрозионным диспергированием отходов твердых сплавов Т15К6, имеют твердость в 1,5…3,0 раза меньше, чем твердый сплав, полученный из стандартного порошка по промышленной технологии.

Источники информации

1. Третьяков В. И. Основы металловедения и технологии производства спеченных твердых сплавов. М.: Металлургия, 1976, с. 382.

2. Косолапова Т.Я. Карбиды. М.: Металлургия, 1968.

Способ получения заготовок вольфрамо-титанового твердого сплава, включающий горячее прессование порошка в пресс-форме, отличающийся тем, что используют порошок, полученный электроэрозионным диспергированием отходов твердых сплавов Т15К6, при этом горячее прессование ведут в вакууме с пропусканием высокоамперного тока через пресс-форму и прессуемый порошок при температуре 1320°С в течение 3 минут.
Способ получения заготовок вольфрамо-титанового твердого сплава
Источник поступления информации: Роспатент

Showing 221-230 of 323 items.
02.10.2019
№219.017.cda8

Триггерный сумматор по модулю два

Изобретение относится к области цифровой схемотехники, автоматики и промышленной электроники и может быть использовано в блоках вычислительной техники, сумматорах, арифметико-логических устройствах. Техническим результатом является упрощение устройства. Устройство содержит шесть транзисторов,...
Тип: Изобретение
Номер охранного документа: 0002700195
Дата охранного документа: 13.09.2019
02.10.2019
№219.017.cdf2

Устройство для пневматического транспортирования сыпучего материала

Изобретение относится к пневматическому транспортированию сыпучего материала и может быть использовано в строительной, металлургической, химической и других отраслях промышленности. Устройство для пневматического транспортирования сыпучего материала содержит расходный бункер с аэрирующим...
Тип: Изобретение
Номер охранного документа: 0002700648
Дата охранного документа: 18.09.2019
02.10.2019
№219.017.cf5d

Теплотрубная матрешка

Изобретение относится к энергомашиностроению и может быть использовано для транспортировки тепловой энергии по тепловым трубам. Теплотрубная матрешка включает в себя n тепловых труб, вставленных друг в друга, каждая из которых состоит из цилиндрического корпуса, заглушенного с одного торца...
Тип: Изобретение
Номер охранного документа: 0002700811
Дата охранного документа: 23.09.2019
02.10.2019
№219.017.d090

Система оборотного водоснабжения

Изобретение относится к области энергетики. Система оборотного водоснабжения содержит теплообменники, подключаемые прямой и обратной магистралями воды к бассейну-смесителю, снабженному охладителем, подключенным к прямой магистрали соединительным трубопроводом с регулятором расхода и эжектором,...
Тип: Изобретение
Номер охранного документа: 0002700988
Дата охранного документа: 24.09.2019
02.10.2019
№219.017.d13c

Газораспределительная станция

Изобретение относится к газовой технике, в частности к газораспределительным станциям для снижения давления газа в газопроводе. Технической задачей предлагаемого изобретения является обеспечение эффективной эксплуатации газораспределительной станции при поддержании нормированных параметров по...
Тип: Изобретение
Номер охранного документа: 0002700842
Дата охранного документа: 23.09.2019
02.10.2019
№219.017.d154

Способ утилизации полимерных компонентов коммунальных и промышленных отходов и устройство для его осуществления

Изобретение относится к охране окружающей среды и может быть использовано для переработки и утилизации полимерных компонентов коммунальных и промышленных отходов, а именно производства элементов строительных конструкций. Техническим результатом является повышение надежности и эффективности...
Тип: Изобретение
Номер охранного документа: 0002700862
Дата охранного документа: 23.09.2019
03.10.2019
№219.017.d1c6

Устройство для акустического контроля за состоянием пчелиной семьи

Изобретение относится к области пчеловодства и может найти применение при практической работе на индивидуальных и коллективных пасеках. Устройство для акустического контроля за состоянием пчелиной семьи содержит внешний съёмный конденсаторный микрофон с электропитанием, источник питания,...
Тип: Изобретение
Номер охранного документа: 0002701812
Дата охранного документа: 01.10.2019
03.10.2019
№219.017.d1cd

Трубчатые наноструктуры оксида меди (ii) и электрохимический способ их получения

Использование: для производства наноструктурированных порошков трубчатых наночастиц оксида меди (II), применяемых в качестве катализаторов горения углеродных топливных (энергонасыщенных) составов. Сущность изобретения заключается в том, что трубчатые наноструктуры оксида меди (II) имеют форму и...
Тип: Изобретение
Номер охранного документа: 0002701786
Дата охранного документа: 01.10.2019
04.10.2019
№219.017.d271

Слоевой пластинчатый термоэлектрогенератор

Изобретение относится к области теплоэнергетики. Изобретение представляет собой слоевой пластинчатый термоэлектрогенератор, содержащий термоэлектрическую секцию, состоящую из термоэлектрических преобразователей, выполненных из соединенных между собой у кромок пластин металлов М1 и М2, крайние...
Тип: Изобретение
Номер охранного документа: 0002701883
Дата охранного документа: 02.10.2019
05.10.2019
№219.017.d298

Санитарная приставка для теплогенераторов систем автономного теплоснабжения

Изобретение относится к теплоэнергетике и может быть использовано для очистки дымовых газов теплогенераторов крышных котельных и систем квартирного отопления от вредных примесей. Технический результат: повышение надежности и эффективности санитарной приставки. Санитарная приставка для...
Тип: Изобретение
Номер охранного документа: 0002702043
Дата охранного документа: 03.10.2019
Showing 131-140 of 140 items.
08.03.2019
№219.016.d39a

Способ получения спеченных изделий из электроэрозионных вольфрамосодержащих нанокомпозиционных порошков

Изобретение относится к получению спеченных изделий из электроэрозионных вольфрамсодержащих нанокомпозиционных порошков. Ведут электроэрозионное диспергирование отходов стали Р6М5 и твердого сплава ВК8 в керосине осветительном. Отходы быстрорежущей стали марки Р6М5 диспергируют при напряжении...
Тип: Изобретение
Номер охранного документа: 0002681238
Дата охранного документа: 05.03.2019
29.03.2019
№219.016.edec

Способ получения порошка псевдосплава w-ni-fe методом электроэрозионного диспергирования в дистиллированной воде

Изобретение относится к получению порошка псевдосплава W-Ni-Fe из отходов. Проводят электроэрозионное диспергирование отходов псевдосплава W-Ni-Fe в виде стружки в дистилированной воде при частоте следования импульсов 156 Гц, напряжении на электродах 100 В и емкости разрядных конденсаторов 65,5...
Тип: Изобретение
Номер охранного документа: 0002683162
Дата охранного документа: 26.03.2019
20.05.2019
№219.017.5d14

Порошковый материал для газодинамического напыления дефектных головок блоков цилиндров

Изобретение относится к порошковым материалам для получения покрытий методом сверхзвукового холодного газодинамического напыления. Порошковый материал для газодинамического напыления дефектных головок блоков цилиндров получен электроэрозионным диспергированием отходов алюминия в...
Тип: Изобретение
Номер охранного документа: 0002688025
Дата охранного документа: 17.05.2019
07.09.2019
№219.017.c87c

Способ получения нихромовых порошков электроэрозионным диспергированием в воде дистиллированной

Изобретение относится к получению нихромовых порошков электроэрозионным диспергированием. Диспергирование сплава Х15Р60 проводят в дистиллированной воде при напряжении на электродах 90-110 В, емкости разрядных конденсаторов 58 мкФ и частоте следования импульсов 110-120 Гц. Обеспечивается...
Тип: Изобретение
Номер охранного документа: 0002699479
Дата охранного документа: 05.09.2019
14.11.2019
№219.017.e1ce

Состав шихты для производства аддитивных изделий

Изобретение относится к порошковой металлургии. Может быть использовано для производства изделий аддитивными технологиями из кобальтохромовых порошковых материалов в условиях массового, серийного и единичного производства. Порошок кобальтохромового сплава для производства аддитивных изделий...
Тип: Изобретение
Номер охранного документа: 0002705837
Дата охранного документа: 12.11.2019
21.12.2019
№219.017.f000

Способ получения вольфрамотитанокобальтовых порошков из отходов сплава т30к4 в спирте

Изобретение относится к получению вольфрамотитанокобальтовых порошков из отходов сплава Т30К4. Ведут электроэрозионное диспергирование отходов сплава Т30К4 в спирте при напряжении на электродах 110…120 В, ёмкости разрядных конденсаторов 48 мкФ и частоте следования импульсов 130...140 Гц....
Тип: Изобретение
Номер охранного документа: 0002709561
Дата охранного документа: 18.12.2019
13.01.2020
№220.017.f4b9

Способ получения металлического нанопорошка из отходов свинцовой бронзы в дистиллированной воде

Изобретение относится к получению нанопорошков из отходов свинцовой бронзы, которые могут быть использованы для нанесения износостойких, антифрикционных, коррозионностойких и противозадирных покрытий. Отходы свинцовой бронзы подвергают электроэрозионному диспергированию в дистиллированной воде...
Тип: Изобретение
Номер охранного документа: 0002710707
Дата охранного документа: 09.01.2020
12.02.2020
№220.018.0183

Способ получения спеченных изделий из изостатически спресованных электроэрозионных нанокомпозиционных порошков свинцовой бронзы

Изобретение относится к получению спеченных изделий из порошков свинцовой бронзы. Проводят электроэрозионное диспергирование отходов свинцовой бронзы в дистиллированной воде на установке электроэрозионного диспергирования при частоте следования импульсов 95…105 Гц, напряжении на электродах...
Тип: Изобретение
Номер охранного документа: 0002713900
Дата охранного документа: 10.02.2020
10.05.2023
№223.018.5368

Способ получения свинцово-латунных порошков из отходов сплава лс58-3 в дистиллированной воде

Изобретение относится к порошковой металлургии, в частности к производству металлических свинцово-латунных порошков. Может использоваться для изготовления деталей, работающих на трение, для мелких деталей в микротехнике, для напыления декоративных покрытий. Свинцово-латунный порошок получают...
Тип: Изобретение
Номер охранного документа: 0002795306
Дата охранного документа: 02.05.2023
10.05.2023
№223.018.537e

Способ получения свинцово-сурьмянистого сплава из порошков, полученных электроэрозионным диспергированием отходов сплава ссу-3 в воде

Изобретение относится к порошковой металлургии, в частности к получению сплавов методом искрового плазменного сплавления. Может использоваться при получении свинцовых сплавов для решеток свинцовых аккумуляторов. Свинцово-сурьмянистый сплав получают путем искрового плазменного сплавления...
Тип: Изобретение
Номер охранного документа: 0002795311
Дата охранного документа: 02.05.2023
+ добавить свой РИД