×
25.08.2017
217.015.b0e2

АКУСТИЧЕСКИЙ МИКРОСКОП

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Использование: в ультразвуковой интроскопии веществ. Сущность изобретения заключается в том, что акустический микроскоп содержит генератор с формирователем зондирующих импульсов, пьезопреобразователь с акустической линзой, коммутатор зондирующих и отраженных сигналов, трехкоординатный привод для сканирования образца, формирователь потока жидкости, блок управления сканированием, блоки формирования, обработки и регистрации измерительной информации. Блок формирования измерительной информации включает последовательно соединенные регулируемый усилитель, квадратурный смеситель с квадратурным генератором, двухканальный фильтр низких частот, двухканальный аналого-цифровой преобразователь, сигнальный процессор, соединенный шиной обмена данных с ПЭВМ. Коммутатор зондирующих и отраженных сигналов выполнен на основе быстродействующих операционных усилителей по схеме циркулятора. Управляющая ПЭВМ подсоединена к управляющим входам генератора зондирующих импульсов, регулируемого усилителя, квадратурного генератора, формирователя потока жидкости и блока управления сканированием. Технический результат: расширение функциональных возможностей, повышение точности измерений, а также расширение динамического и частотного диапазона исследуемых акустических сигналов. 3 ил.
Реферат Свернуть Развернуть

Изобретение относится к устройствам для исследования неоднородности материалов и может быть использовано для ультразвуковой интроскопии веществ.

Известен акустический микроскоп [Патент RU №2011194 C1, G01N 29/04. Акустический микроскоп / Маслов К.И., Маев Р.Г., Левин В.М. - Опубл. 15.04.1994], содержащий генератор зондирующих импульсов с усилителем-формирователем, приемно-передающий пьезопреобразователь с акустической линзой, установленный на приводе с возможностью перемещения по трем координатам относительно исследуемого образца, устройство формирования потока жидкости, блоки синхронизации и управления сканированием и блок формирования и обработки измерительной информации, включающий последовательно соединенные усилитель-ограничитель, усилитель с регулируемым усилением, стробирующий ключ, детектор, видеоусилитель, устройство выборки-хранения, аналого-цифровой преобразователь, а также блоки отображения и регистрации информации, при этом выход генератора зондирующих импульсов соединен с входом усилителя-формирователя, выход которого подключен к входу-выходу пьезопреобразователя. Недостатками акустического микроскопа являются сложность устройства и недостаточная точность аналогового блока формирования и обработки акустических сигналов, а также наличие непосредственной электрической связи между выходом усилителя-формирователя и входом усилителя-ограничителя, что приводит к повышенному уровню шумов на входе блока формирования и обработки измерительной информации.

Известен малогабаритный акустический микроскоп [Патент RU №2112969, G01N 29/00, G01N 29/04, G01N 29/06. Малогабаритный акустический микроскоп / Денисов А.В., Левин В.М., Маев Р.Г., Маслов К.И., Пышный М.Ф., Соколов Д.Ю. - Опубл. 10.06.1998], являющийся усовершенствованием описанного в [Патент RU №2011194 C1, G01N 29/04. Акустический микроскоп / Маслов К.И., Маев Р.Г., Левин В.М. - Опубл. 15.04.1994], в котором исключен усилитель-ограничитель и введены два усилителя, соединенные последовательно, первый и второй ключи, вход первого ключа подключен к выходу усилителя-формирователя, выход второго - к входу усилителя блока формирования и обработки измерительной информации, а приемно-передающий пьезопреобразователь с акустической линзой соединен с выходом первого и входом второго ключей. Недостатками акустического микроскопа являются сложность и недостаточная точность аналогового блока формирования и обработки измерительной информации, сложность коммутации приемно-передающего пьезопреобразователя на возбуждение и прием акустических сигналов, возможность проникновения сигналов управления коммутирующими ключами на вход усилителя блока формирования и обработки измерительной информации.

Известны коммутирующие устройства, предназначенные для направленной передачи высокочастотных сигналов - циркуляторы, имеющие три входа-выхода (порта), в которых сигнал, поступающий в первый порт, перенаправляется на выход второго; сигнал, подключенный ко второму порту - передается на выход третьего, а сигнал, подключенный к третьему, - на первый, которые функционируют без управляющих сигналов. Такие устройства работают на различных физических принципах и имеют различные конструкции в зависимости от рабочего диапазона частот. Наиболее широкую полосу рабочих частот (от постоянного тока до сотни и более мегагерц), малую величину потерь при прямой передаче и большую при обратной, обеспечивают электронные циркуляторы, выполненные на основе высокочастотных операционных усилителей [Интернет-ресурс: URL: http://www.techlib.com/files/RFDesign3.pdf]. Недостатком этих циркуляторов является их низкая рабочая частота, связанная с подключением ко второму порту циркулятора пьезопреобразователя, емкость которого обуславливает резкое падение пропускной способности второго порта с увеличением частоты акустических сигналов.

Известна цифровая технология SDR (англ. Software Defined Radio) обработки высокочастотного сигнала [Kino G. «Acoustic waves: devices, imaging, and analog signal processing»], заключающаяся в формировании его квадратурных составляющих на низкой промежуточной частоте, преобразовании аналогового сигнала в цифровой с помощью высокоскоростных АЦП, дальнейшей цифровой фильтрации и детектирования программными средствами на ПЭВМ или высокоскоростным сигнальным процессором. Использование цифровой SDR технологии позволяет упростить процесс формирования и обработки измерительной информации за счет реализации наиболее сложных аналоговых (например, таких как фильтры) блоков акустического микроскопа программным способом, при этом обеспечиваются бесподстроечный прием и повышение точности обработки акустических сигналов в широком динамическом диапазоне.

Задачей изобретения является упрощение акустического микроскопа, расширение его функциональных возможностей, повышение точности измерений, а также расширение динамического и частотного диапазона исследуемых акустических сигналов.

Задача решается тем, что в устройство, содержащее генератор с формирователем зондирующих импульсов, пьезопреобразователь с акустической линзой, коммутатор зондирующих и отраженных сигналов, трехкоординатный привод для сканирования образца, формирователь потока жидкости, блок управления сканированием, блоки формирования, обработки и регистрации измерительной информации введены в блок формирования измерительной информации, последовательно соединенные регулируемый усилитель, квадратурный смеситель с квадратурным генератором, двухканальный фильтр низких частот, двухканальный аналого-цифровой преобразователь, сигнальный процессор, соединенный шиной обмена данных с ПЭВМ, коммутатор зондирующих и отраженных сигналов выполнен на основе быстродействующих операционных усилителей по схеме циркулятора, первый порт которого подключен к выходу формирователя зондирующих импульсов, второй порт через компенсирующую катушку индуктивности и согласующее сопротивление нагрузки подсоединен к пьезопреобразователю, третий порт подключен к входу регулируемого усилителя блока формирования измерительной информации, при этом точка соединения катушки индуктивности с согласующим сопротивлением нагрузки является новым вторым портом циркулятора, а управляющая ПЭВМ подсоединена к управляющим входам генератора зондирующих импульсов, регулируемого усилителя, квадратурного генератора, формирователя потока жидкости и блока управления сканированием.

Структурная схема акустического микроскопа приведена на фиг. 1. Акустический микроскоп содержит генератор зондирующих импульсов 1, усилитель-формирователь 2, циркулятор 3, пьезопреобразователь 4 с акустической линзой 5, исследуемый образец 6, формирователь потока жидкости 7, трехкоординатный привод перемещения 8, блок управления сканированием 9, блок формирования измерительной информации 10, включающий регулируемый усилитель 11, квадратурный преобразователь 12, квадратурный генератор 13, двухканальный фильтр низких частот 14, двухканальный аналого-цифровой преобразователь 15, сигнальный процессор 16, персональную ЭВМ 17, которая выполняет функции обработки и регистрации измерительной информации, а также синхронизации и управления работой блоков микроскопа.

Устройство работает следующим образом. Для зондирования исследуемого образца 6 используются пакеты высокочастотных импульсов, вырабатываемых генератором зондирующих импульсов 1 и усилителем-формирователем 2. Частота импульсов и длительность пакета зондирующих импульсов (или их количество в пакете) выбираются в зависимости от свойств исследуемого образца 6, параметров пьезопреобразователя 4 и акустической линзы 5 и могут задаваться в широком диапазоне частот и длительностей в ПЭВМ 17. Усиленные усилителем-формирователем 2 пакеты зондирующих импульсов поступают на вход первого порта циркулятора 3.

Циркулятор выполнен на основе трех быстродействующих операционных усилителей и имеет три порта, каждый из которых одновременно является входом и выходом. Принципиальная схема циркулятора представляет собой соединенную последовательно в кольцо цепь из трех дифференциальных усилителей с идентичными определенными коэффициентами усиления по их прямым и инверсным входам и с согласованной нагрузкой на выходах (фиг. 2). При подаче сигнала на вход первого порта циркулятора на выходе-входе второго порта формируется противофазный сигнал равной амплитуды, прошедший же на выход третьего порта циркулятора сигнал будет ослаблен на 40 и более децибел [Интернет-ресурс: URL: http://www.techlib.com/files/RFDesign3.pdf]. Подключение сигнала ко второму порту вызывает появление противофазного сигнала равной амплитуды на выходе третьего порта и сильно ослабленного на выходе первого. Аналогичные процессы происходят при подключении сигнала к третьему порту. Вход первого порта циркулятора подсоединен к выходу усилителя-формирователя 2, ко второму порту подключен пьезопреобразователь 4, а к третьему - регулируемый усилитель 11 ответного электрического эхо-сигнала. Поступающие на вход первого порта циркулятора зондирующие импульсы повторяются на входе-выходе его второго порта и подводятся к пьезопреобразователю 4, который генерирует акустические колебания.

Пьезопреобразователь изготовлен способом напыления пьезоэлектрика на плоский торец акустической линзы 5, которая имеет цилиндрическую форму и сферическую выемку на другом ее торце (фиг. 3). Пьезопреобразователь можно представить эквивалентной схемой плоского конденсатора, емкость Спп которого обуславливает резкое падение пропускной способности второго порта циркулятора с увеличением частоты акустических сигналов. Для уменьшения влияния этой емкости на работу циркулятора в него между вторым портом и входом пьезопреобразователя введена катушка индуктивности Lк (фиг. 2а, б), компенсирующая влияние емкостной составляющей пьезопреобразователя. При частоте резонанса последовательного RсLкCпп-контура (фиг. 2б) порт 2 имеет только активное сопротивление согласующего резистора Rс (которое согласует выходное сопротивление порта 2 с его нагрузкой), так как реактивные составляющие конденсатора Спп и катушки индуктивности Lк взаимно подавляются. В предложенном циркуляторе точка соединения катушки индуктивности Lк с согласующим резистором Rс является новым портом 2 циркулятора. В результате компенсации емкостной составляющей пьезопреобразователя расширяется частотный диапазон исследуемых акустических сигналов.

Возбуждаемые пьезопреобразователем 4 акустические волны, проходя через тело и торец сферической формы акустической линзы 5, фокусируются в точку на поверхности или внутри объема исследуемого образца 6. Появляющиеся одновременно с зондирующими на выходе третьего порта циркулятора импульсы сильно ослаблены, не перегружают высокочувствительный вход регулируемого усилителя 11 и могут использоваться для фиксации начала отсчета времени до момента появления отраженных от исследуемого образца эхо-сигналов.

Исследуемый образец 6 закрепляется на специальном столике-кювете, для лучшего акустического контакта образца с акустической линзой 5 пространство между ними заполняется иммерсионной жидкостью (например, водой), подаваемой формирователем потока жидкости 7. Отраженные от неоднородностей исследуемого образца 6 акустические волны преобразуются акустической линзой 5 в параллельный пучок плоских волн, которые, воздействуя на пьезопреобразователь 4, вызывают генерацию ответного электрического эхо-сигнала на входе второго и, соответственно, на выходе третьего портов циркулятора. Принцип действия циркулятора позволяет ему без внешних управляющих сигналов передавать зондирующие импульсы к пьезопреобразователю и формируемые им же ответные эхо-сигналы - к входу регулируемого усилителя 11 для усиления и дальнейшей обработки. Это позволяет отказаться от быстродействующих управляемых внешними сигналами ключевых схем, исключить коммутационные помехи и упростить коммутацию сигналов.

Пьезопреобразователь 4 с акустической линзой 5 установлен на подвижной каретке трехкоординатного привода перемещения 8. Управление приводами по осям X, Y, Z в процессе сканирования исследуемого образца 6 осуществляет блок управления сканированием 9 по командам ПЭВМ 17, с использованием которой можно задать нужный способ сканирования: построчное перемещение либо движение по спирали, по нормали к поверхности и др.

Для обработки полученного эхо-сигнала акустический микроскоп содержит регулируемый усилитель 11, квадратурный преобразователь (смеситель) 12, квадратурный генератор 13, двухканальный фильтр низких частот 14, двухканальный аналого-цифровой преобразователь 15, сигнальный процессор 16, ПЭВМ, выполняющую функции обработки и регистрации измерительной информации, а также синхронизации и управления работой блоков микроскопа.

Ответный высокочастотный эхо-сигнал с выхода третьего порта циркулятора усиливается регулируемым усилителем 11 (коэффициент усиления усилителя 11 задается ПЭВМ 17) и поступает на входы двух смесителей частоты квадратурного преобразователя 12. На гетеродинные входы смесителей поступают сдвинутые по фазе на 90° друг относительно друга высокочастотные напряжения равной амплитуды с выходов квадратурного генератора 13. Частота квадратурного генератора (как и частота генератора зондирующих импульсов) задается ПЭВМ 17. Полученные на выходах смесителей на разностной (пониженной) промежуточной частоте независимые синфазная I и квадратурная Q составляющие сигнала, со сдвигом по фазе на 0° и 90° градусов соответственно, после фильтрации в двухканальном фильтре низких частот высокочастотных составляющих (частот несущей и зеркального канала) содержат полную информацию об амплитуде и фазе огибающих как исходного зондирующего, так и отраженных от структуры исследуемого образца 6 сигналов.

Далее на промежуточной частоте квадратурные I и Q сигналы поступают на двухканальный аналого-цифровой преобразователь 15 и затем в оцифрованном виде подаются в сигнальный процессор. Функции сигнального процессора состоят в преобразовании информативного спектра частот зондирующего и отраженного от исследуемого образца 6 эхо-сигналов в область нулевых частот (их демодуляция), квадратурной фильтрации и децимации отсчетов сигналов в соответствии с шириной спектра. Реализация этих функций осуществляется двумя перемножителями, генератором отсчетов SIN и COS, идентичными НЧ децимирующими фильтрами с изменяемой частотой среза от сотен Гц до сотен кГц. Применение цифровой обработки из-за эффекта «процессорного усиления» обеспечивает улучшение отношения сигнал-шум на 20 и более дБ [Analog-Digital Conversion / Walt Kester, ADI Central Application Department, March 2004, Analog Devices, Inc]. Кроме перечисленных функций, на сигнальный процессор 16 можно возложить функцию мониторинга спектра входных сигналов с помощью БПФ.

Полная информация о параметрах зондирующих и эхо-сигналов поступает в ПЭВМ 17, которая обеспечивает дальнейшую обработку, визуализацию, запоминание и интерпретацию измерительной информации. Выполняются измерение и запоминание временных интервалов между зондирующими и эхо-сигналами, их амплитудных параметров для каждой сканируемой точки исследуемого образца 6 совместно с ее координатами X, Y и координатой фокуса Z акустической линзы 5. ПЭВМ 17 в процессе сканирования осуществляет формирование сигналов управления координатным приводом 8 для перемещения пьезопреобразователя 4 с акустической линзой 5 по заданной траектории относительно исследуемого образца 6, а также задает частоту зондирующих импульсов и квадратурного генератора 13.

Применение циркулятора на быстродействующих операционных усилителях с использованием согласующей катушки индуктивности упрощает коммутацию пьезопреобразователя, расширяет частотный диапазон исследуемых акустических сигналов, а применение цифровой обработки позволяет расширить динамический диапазон измеряемых акустических сигналов (улучшить соотношение сигнал-шум), расширить модернизационные и функциональные возможности акустического микроскопа за счет получения новой информации о свойствах исследуемого образца (например, учет спектрального состава, фазовых характеристик эхо-сигналов и др.).

Сканирующий акустический микроскоп, содержащий генератор с формирователем зондирующих импульсов, пьезопреобразователь с акустической линзой, коммутатор зондирующих и отраженных сигналов, трехкоординатный привод для сканирования образца, формирователь потока жидкости, блок управления сканированием, блоки формирования, обработки и регистрации измерительной информации, отличающийся тем, что введены в блок формирования измерительной информации последовательно соединенные регулируемый усилитель, квадратурный смеситель с квадратурным генератором, двухканальный фильтр низких частот, двухканальный аналого-цифровой преобразователь, сигнальный процессор, соединенный шиной обмена данных с ПЭВМ, коммутатор зондирующих и отраженных сигналов выполнен на основе быстродействующих операционных усилителей по схеме циркулятора, первый порт которого подключен к выходу формирователя зондирующих импульсов, второй порт через компенсирующую катушку индуктивности и согласующее сопротивление нагрузки подсоединен к пьезопреобразователю, третий порт подключен к входу регулируемого усилителя блока формирования измерительной информации, при этом точка соединения катушки индуктивности с согласующим сопротивлением нагрузки является новым вторым портом циркулятора, а управляющая ПЭВМ подсоединена к управляющим входам генератора зондирующих импульсов, регулируемого усилителя, квадратурного генератора, формирователя потока жидкости и блока управления сканированием.
АКУСТИЧЕСКИЙ МИКРОСКОП
АКУСТИЧЕСКИЙ МИКРОСКОП
АКУСТИЧЕСКИЙ МИКРОСКОП
АКУСТИЧЕСКИЙ МИКРОСКОП
Источник поступления информации: Роспатент

Showing 1-10 of 14 items.
27.04.2013
№216.012.391e

Способ определения микроциркуляторных повреждений при шоке и эффективности противошокового лечения

Изобретение относится к медицине, а именно медицине катастроф, медицине критических состояний, к анестезиологии и реаниматологии, и может быть использовано при шоке. Для этого пациента укладывают в горизонтальное положение лежа на спине, предварительно придав головному концу кровати угол...
Тип: Изобретение
Номер охранного документа: 0002480183
Дата охранного документа: 27.04.2013
27.07.2014
№216.012.e37e

Способ изготовления упругих элементов с использованием метода анизотропного ориентирования наноструктуры в материале

Изобретение относится к технологии машиностроения и может быть использовано в производстве пружин из закаливаемых марок стали. Для повышения качества пружин и снижения энергозатрат осуществляют скоростной нагрев прутка до температуры выше точки Ac фазовых превращений, пластическую деформацию...
Тип: Изобретение
Номер охранного документа: 0002524028
Дата охранного документа: 27.07.2014
10.01.2015
№216.013.1997

Способ изготовления биметаллических труб пайкой

Изобретение может быть использовано при изготовлении пайкой биметаллических труб из сталей и сплавов. Охватывающий элемент изготавливают с внутренним диаметром, который меньше наружного диаметра охватываемого элемента вместе с нанесенным на его поверхность припоем, но при этом больше наружного...
Тип: Изобретение
Номер охранного документа: 0002537979
Дата охранного документа: 10.01.2015
10.07.2015
№216.013.5d1e

Устройство для охлаждения

Изобретение относится к средствам лечения ишемии и гипоксии и может быть использовано для повышения эффективности и безопасности реанимации при геморрагическом шоке. Устройство выполнено из неэластичного материала, имеет форму дуги, включает датчики давления и содержит полость, заполненную...
Тип: Изобретение
Номер охранного документа: 0002555379
Дата охранного документа: 10.07.2015
27.08.2015
№216.013.7466

Способ обработки воды и/или масла для повышения их биологической активности и устройство для обработки

Изобретение относится к обработке воды, масел, смесей масел, воды, водных растворов, смесей масел с водой (эмульсий) для повышения их биологической активности и может быть использовано в медицине, косметологии, пищевой промышленность. Способ обработки воды и/или масла включает формирование в...
Тип: Изобретение
Номер охранного документа: 0002561373
Дата охранного документа: 27.08.2015
10.04.2016
№216.015.2ff9

Способ легирования поверхности отливок из железоуглеродистых сплавов

Изобретение относится к области литейного производства. Способ включает нанесение на поверхность модели из пенополистирола легирующей композиции, которую готовят путем смешивания сухой порошкообразной смеси, содержащей титан и аморфный бор, с отношением массы титана к массе аморфного бора от...
Тип: Изобретение
Номер охранного документа: 0002580584
Дата охранного документа: 10.04.2016
20.04.2016
№216.015.3530

Способ легирования поверхности отливок из железоуглеродистых сплавов

Изобретение относится к области литейного производства. Способ включает нанесение на поверхность модели из пенополистирола легирующей композиции, которую готовят путем смешивания сухой порошкообразной смеси, содержащей титан и карбид бора, с отношением массы титана к массе карбида бора от 0,66...
Тип: Изобретение
Номер охранного документа: 0002581336
Дата охранного документа: 20.04.2016
10.08.2016
№216.015.5215

Способ изготовления моделей из пенополистирола для получения композиционных отливок методом литья по газифицируемым моделям

Изобретение относится к области литейного производства. Модель изготавливают из пенополистирола, затем на ее поверхности посредством фиксирующих элементов устанавливают подложку, изготовленную из металлического материала. На подложку перед ее фиксированием на поверхности модели наносят...
Тип: Изобретение
Номер охранного документа: 0002594060
Дата охранного документа: 10.08.2016
25.08.2017
№217.015.a1b1

Способ изготовления кремниевой эпитаксиальной структуры

Изобретение относится к области изготовления полупроводниковых структур и может быть использовано при изготовлении кремниевых одно- или многослойных структур, используемых в технологии силовых приборов современной микроэлектроники. Сущность изобретения состоит в том, что при формировании...
Тип: Изобретение
Номер охранного документа: 0002606809
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.c2db

Способ изготовления насосно-компрессорной трубы

Изобретение относится к области металлургии и нефтяного машиностроения и может быть использовано для изготовления насосно-компрессорных труб из легированных конструкционных сталей. Для обеспечения повышенных механических свойств и точности геометрических размеров трубы способ включает нагрев...
Тип: Изобретение
Номер охранного документа: 0002617808
Дата охранного документа: 26.04.2017
Showing 1-10 of 19 items.
27.07.2014
№216.012.e37e

Способ изготовления упругих элементов с использованием метода анизотропного ориентирования наноструктуры в материале

Изобретение относится к технологии машиностроения и может быть использовано в производстве пружин из закаливаемых марок стали. Для повышения качества пружин и снижения энергозатрат осуществляют скоростной нагрев прутка до температуры выше точки Ac фазовых превращений, пластическую деформацию...
Тип: Изобретение
Номер охранного документа: 0002524028
Дата охранного документа: 27.07.2014
10.01.2015
№216.013.1997

Способ изготовления биметаллических труб пайкой

Изобретение может быть использовано при изготовлении пайкой биметаллических труб из сталей и сплавов. Охватывающий элемент изготавливают с внутренним диаметром, который меньше наружного диаметра охватываемого элемента вместе с нанесенным на его поверхность припоем, но при этом больше наружного...
Тип: Изобретение
Номер охранного документа: 0002537979
Дата охранного документа: 10.01.2015
10.07.2015
№216.013.5d1e

Устройство для охлаждения

Изобретение относится к средствам лечения ишемии и гипоксии и может быть использовано для повышения эффективности и безопасности реанимации при геморрагическом шоке. Устройство выполнено из неэластичного материала, имеет форму дуги, включает датчики давления и содержит полость, заполненную...
Тип: Изобретение
Номер охранного документа: 0002555379
Дата охранного документа: 10.07.2015
27.08.2015
№216.013.7466

Способ обработки воды и/или масла для повышения их биологической активности и устройство для обработки

Изобретение относится к обработке воды, масел, смесей масел, воды, водных растворов, смесей масел с водой (эмульсий) для повышения их биологической активности и может быть использовано в медицине, косметологии, пищевой промышленность. Способ обработки воды и/или масла включает формирование в...
Тип: Изобретение
Номер охранного документа: 0002561373
Дата охранного документа: 27.08.2015
10.04.2016
№216.015.2ff9

Способ легирования поверхности отливок из железоуглеродистых сплавов

Изобретение относится к области литейного производства. Способ включает нанесение на поверхность модели из пенополистирола легирующей композиции, которую готовят путем смешивания сухой порошкообразной смеси, содержащей титан и аморфный бор, с отношением массы титана к массе аморфного бора от...
Тип: Изобретение
Номер охранного документа: 0002580584
Дата охранного документа: 10.04.2016
20.04.2016
№216.015.3530

Способ легирования поверхности отливок из железоуглеродистых сплавов

Изобретение относится к области литейного производства. Способ включает нанесение на поверхность модели из пенополистирола легирующей композиции, которую готовят путем смешивания сухой порошкообразной смеси, содержащей титан и карбид бора, с отношением массы титана к массе карбида бора от 0,66...
Тип: Изобретение
Номер охранного документа: 0002581336
Дата охранного документа: 20.04.2016
10.08.2016
№216.015.5215

Способ изготовления моделей из пенополистирола для получения композиционных отливок методом литья по газифицируемым моделям

Изобретение относится к области литейного производства. Модель изготавливают из пенополистирола, затем на ее поверхности посредством фиксирующих элементов устанавливают подложку, изготовленную из металлического материала. На подложку перед ее фиксированием на поверхности модели наносят...
Тип: Изобретение
Номер охранного документа: 0002594060
Дата охранного документа: 10.08.2016
25.08.2017
№217.015.a1b1

Способ изготовления кремниевой эпитаксиальной структуры

Изобретение относится к области изготовления полупроводниковых структур и может быть использовано при изготовлении кремниевых одно- или многослойных структур, используемых в технологии силовых приборов современной микроэлектроники. Сущность изобретения состоит в том, что при формировании...
Тип: Изобретение
Номер охранного документа: 0002606809
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.c2db

Способ изготовления насосно-компрессорной трубы

Изобретение относится к области металлургии и нефтяного машиностроения и может быть использовано для изготовления насосно-компрессорных труб из легированных конструкционных сталей. Для обеспечения повышенных механических свойств и точности геометрических размеров трубы способ включает нагрев...
Тип: Изобретение
Номер охранного документа: 0002617808
Дата охранного документа: 26.04.2017
25.08.2017
№217.015.ccfb

Способ инфракрасной оценки устойчивости человека к кровопотере

Изобретение относится к медицине и может быть использовано для инфракрасной оценки устойчивости человека к кровопотере. Для этого предварительно определяют самый длинный палец кисти руки. Через 30 минут при нахождении исследуемого с оголенными кистями рук в помещении при температуре +25°C...
Тип: Изобретение
Номер охранного документа: 0002619789
Дата охранного документа: 18.05.2017
+ добавить свой РИД