×
25.08.2017
217.015.afbb

Результат интеллектуальной деятельности: ЭЛЕКТРИЧЕСКАЯ МАШИНА

Вид РИД

Изобретение

№ охранного документа
0002611067
Дата охранного документа
21.02.2017
Аннотация: Изобретение относится к электротехнике, а именно к электрической машине с ротором из сверхпроводящего материала и способу управления. Электрическая машина (101), содержит статор (103), установленный с возможностью вращения ротор (105) с охлаждаемым, намагничиваемым роторным участком (107) из сверхпроводящего материала (417) и блок управления (109) с возможностью намагничивать током статора роторный участок (107) из сверхпроводящего материала (417). Блок управления (109) обеспечивает управление электрической машиной (101) в зависимости от температуры сверхпроводящего материала и магнитного поля ротора. Технический результат состоит в улучшении эксплуатационных показателей сверхпроводящих электрических машин. 2 н. и 7 з.п. ф-лы, 5 ил.

Изобретение относится к электрической машине, а также к способу эксплуатации электрической машины.

Применение катушек из сверхпроводящего материала в роторе электрической машины само по себе известно. Так, например, в выложенной заявке DE 10 2004 04 754 А1 приведено описание четырехугольной катушки из полосовых сверхпроводников для применения в электрической машине.

Как правило, сверхпроводящие катушки при работе электрической машины должны постоянно снабжаться электрическим током, для создания ими в роторе магнитного поля ротора. Когда электрический ток отключается, то исчезает также соответствующее магнитное поле ротора.

Поэтому положенная в основу изобретения задача состоит в создании электрической машины, которая обеспечивает возможность сохранения магнитного поля ротора также без снабжения электрическим током.

Положенная в основу изобретения задача состоит также в создании способа эксплуатации электрической машины.

Эта задача решена с помощью соответствующего предмета независимых пунктов формулы изобретения. Предпочтительные варианты выполнения являются предметом соответствующих зависимых пунктов формулы изобретения.

Согласно одному аспекту, предлагается электрическая машина. Электрическая машина содержит статор и установленный с возможностью вращения ротор. Ротор имеет охлаждаемый, намагничиваемый роторный участок из сверхпроводящего материала. Кроме того, предусмотрен блок управления, который предназначен для управления статорным током для индуцирования магнитного потока через сверхпроводящий материал, так что в сверхпроводящем материале образуется магнитный поток.

Согласно другому аспекту, предлагается способ эксплуатации электрической машины, при этом машина содержит статор и установленный с возможностью вращения ротор. Ротор имеет охлаждаемый, намагничиваемый роторный участок из сверхпроводящего материала. Создают магнитный поток в сверхпроводящем материале посредством управления статорным током для индуцирования магнитного потока в сверхпроводящем материале. Сверхпроводящий материал после образования магнитного потока охлаждают до температуры ниже критической температуры сверхпроводящего материала, с целью удерживания магнитного потока.

Таким образом, изобретение содержит идею применения статорного тока для намагничивания, т.е. для образования магнитного потока намагничиваемого роторного участка. После намагничивания роторного участка сверхпроводящий материал охлаждают до температуры ниже критической температуры. Это охлаждение предпочтительно приводит к удерживанию магнитного потока в сверхпроводящем материале. Магнитный поток как бы замораживается. Удерживание можно называть, в частности, также прикреплением. Таким образом, роторный участок может предпочтительно образовывать, в частности, полюс магнитного поля. Критическая температура может называться также температурой перехода и является, в частности, температурой, ниже которой электрическое сопротивление сверхпроводящего материала падает до нуля Ом.

Даже когда статорный ток выключается, удерживаемый магнитный поток в сверхпроводящем материале предпочтительно сохраняется. Таким образом, даже без снабжения током электрической машины предпочтительно сохраняется роторное магнитное поле.

Кроме того, для намагничивания не требуется предусмотрения дополнительных катушек, которые расположены, например, в роторе, например, намотаны вокруг роторного участка, поскольку, согласно изобретению, можно подавать ток в обычный и уже имеющийся в электрической машине статор, с целью индуцирования магнитного потока в сверхпроводящем материале. Таким образом, может быть предпочтительно предусмотрено, в частности, дооснащение известных электрических машин блоком управления. Кроме того, за счет экономии таких дополнительных катушек можно предпочтительно экономить материал и затраты на изготовление.

Ротор может называться, в частности, также бегунком. Статор можно называть, в частности, неподвижной частью. Сверхпроводящий материал может называться, в частности, также монолитным сверхпроводником. Участок может называться, в частности, также зоной и обозначать, в частности, пространственно непрерывную поверхность.

Согласно одному варианту выполнения, электрическая машина может быть выполнена, в частности, в виде синхронной машины.

В другом варианте выполнения статор содержит одну или несколько обмоток, в частности, три обмотки, которые могут содержать одну или несколько катушек, через которые может проходить статорный ток. Обмотки могут быть выполнены, в частности, также из другого сверхпроводящего материала, так что при соответствующем охлаждении обмоток ниже критической температуры обеспечивается возможность работы электрической машины с особенно небольшими потерями.

В другом варианте выполнения для снабжения током статора, в частности обмоток, может быть предусмотрен источник постоянного тока. Например, может быть также предусмотрено, что отдельные обмотки подключены каждая к собственному источнику постоянного тока. При соединении обмоток в форме звезды может быть предпочтительно предусмотрен общий источник постоянного тока для всех обмоток. В частности, статор может содержать инвертор, который применяется для подачи тока в статор, так что в этом варианте выполнения предпочтительно можно отказаться от другого источника постоянного тока. Управляющий блок предпочтительно управляет указанными выше источниками постоянного тока, соответственно, инвертором. Управляющий блок может быть, в частности, интегрирован в инвертор. Предпочтительно, обмотки при намагничивании получают ток совместно или, в частности, также независимо друг от друга. Таким образом, магнитный поток можно регулировать особенно точно.

Кроме того, согласно другому варианту выполнения, управляющий блок может быть предназначен для управления статорным током в зависимости от температуры сверхпроводящего материала. Например, может быть предусмотрено, что статорный ток выключается после охлаждения роторного участка ниже критической температуры сверхпроводящего материала. Поскольку ниже критической температуры больше невозможно дальнейшее проницание индуцированного статорным током магнитного потока, то дальнейшая подача тока в статор не приводит к воздействию на него. Тем самым за счет выключения предпочтительно происходит экономия энергии. Таким образом, статорный ток используется особенно эффективно. Для измерения температуры может быть предусмотрен, в частности, один или несколько датчиков температуры.

Согласно одному варианту выполнения может быть предусмотрено, что управляющий блок управляет статорным током в зависимости от измеряемого магнитного поля ротора. В частности, могут быть предусмотрены один или несколько датчиков магнитного поля, например датчиков Холла, для измерения роторного магнитного поля. Поскольку роторное магнитное поле создается, в частности, с помощью магнитного потока в, соответственно, через сверхпроводящий материал, который в основном индуцируется генераторным током в сверхпроводящем материале, то можно предпочтительно с помощью управления статорным током в зависимости от измеряемого роторного магнитного поля создавать определенное, пригодное для определенного применения, соответственно, машины магнитное поле ротора.

В еще одном варианте выполнения может быть предусмотрено, что ротор содержит охлаждаемый с помощью охлаждающей среды полюсный сердечник, на котором расположен роторный участок. Таким образом, с помощью полюсного сердечника можно предпочтительно осуществлять охлаждение роторного участка, так что обеспечивается, в частности, возможность охлаждения сверхпроводящего материала ниже его критической температуры. При этом применяемая охлаждающая среда зависит, в частности, от критической температуры сверхпроводящего материала. Например, можно применять жидкий азот, жидкий неон или жидкий гелий для охлаждения полюсного сердечника. Полюсный сердечник может быть предпочтительно выполнен из ферромагнитного материала, и тем самым он предпочтительно способствует образованию роторного магнитного поля. Охлаждающая среда в смысле данного изобретения может быть, в частности, охлаждающим газом или охлаждающей жидкостью.

Согласно одному варианту выполнения, между полюсным сердечником и роторным участком образован термический соединительный слой. Таким образом, предпочтительно обеспечивается возможность точно заданной термической связи сверхпроводящего материала с полюсным сердечником. Предпочтительно, термический соединительный слой имеет заданную теплопроводность, так что можно точно устанавливать перенос тепловой энергии между полюсным сердечником и роторным участком. Например, роторный участок может быть термически слабо связан с полюсным сердечником. Это означает, в частности, что нагревание сверхпроводящего материала не приводит или почти не приводит к нагреванию полюсного сердечника. Например, может быть предусмотрено, что термический соединительный слой содержит термический диод, который допускает перенос тепловой энергии по существу лишь в одном направлении. Такой термический диод может быть, например, алмазом.

Согласно другому варианту выполнения, на сверхпроводящем материале расположен нагреватель для нагревания сверхпроводящего материала выше критической температуры. Таким образом, предпочтительно обеспечивается, в частности, возможность достаточного нагревания снова уже охлажденного ниже критической температуры роторного участка настолько, что обеспечивается возможность прохождения магнитного потока через сверхпроводящий материал, так что в результате образуется соответствующее магнитное поле ротора. Так, например, предпочтительно также во время работы электрической машины можно обновлять или заменять магнитное поле ротора, при этом ротор не должен вращаться. В частности, можно ограничивать также длительность намагничивания ротора коротким промежутком времени, поскольку роторный участок уже холодный и остается также холодным. Предпочтительно, тем самым роторный участок сначала охлаждается ниже критической температуры и лишь затем намагничивается посредством включения нагревания. Например, на роторный участок воздействует лишь короткий нагревательный импульс, так что роторный участок нагревается до температуры выше критической температуры, при этом превышение составляет, согласно данному изобретению, обычно 30 К, в частности 20 К, например 10 К, предпочтительно 5 К над критической температурой. Лишь после этого индуцируется магнитный поток через роторный участок, посредством, в частности, подачи тока в статор. Затем нагреватель выключается. При этом длительность намагничивания, т.е. отрезок времени, который требуется для намагничивания роторного участка, существенно короче, чем при индуцировании магнитного поля в роторном участке при комнатной температуре и последующем охлаждении с комнатной температуры до температуры ниже критической. Следовательно, можно предпочтительно пропускать ток через статор в течение меньшего времени, что предпочтительно дополнительно исключает, соответственно, уменьшает нагрузку статора. Таким образом, предпочтительно обеспечивается, например, возможность работы статора для намагничивания короткое время на пределе своей нагрузки, соответственно, свыше неё, поскольку соответствующий промежуток времени, как правило, еще допустим.

Согласно одному варианту выполнения, нагреватель может быть выполнен в виде нагревательной фольги, которая, в частности, наклеивается на сверхпроводящий материал. Предусмотрение нагревательной фольги имеет, в частности, то преимущество, что за счет этого простым образом можно нагревать также большую поверхность сверхпроводящего материала.

Согласно одному варианту выполнения, сверхпроводящий материал может быть, например, высокотемпературным сверхпроводящим материалом (HTcS), где Tc обозначает критическую температуру. В последующем вместо HTcS применяется просто сокращение HTS. Сверхпроводящий материал может быть, например, YBa2Cu3O7, Bi2Sr2CaCuO8, (BiPb)2Sr2Ca2Cu3O10 или диборидом магния. Критическая температура материала HTS может составлять, например, 23 К или больше.

В еще одном варианте выполнения может быть предусмотрено, что роторный участок образован из одной или нескольких плиток из сверхпроводящего материала. Плитки могут быть, например, наклеены, в частности, с помощью эпоксидного клея. Предпочтительно, плитки выполнены одинаковыми или различными.

В другом варианте выполнения управление может быть реализовано в виде программного обеспечения или аппаратного обеспечения. Предпочтительно управление может быть реализовано в виде управляющего блока.

В еще одном варианте выполнения может быть также образовано несколько роторных участков из сверхпроводящего материала. Эти несколько роторных участков могут быть расположены парами противоположно друг другу, так что они предпочтительно образуют противоположные полюса магнитного поля. Количество роторных участков равно, в частности, четному числу, т.е., в частности, делится на два. Например, может быть образовано 4, 6, 8, 10 или 12 роторных участков, так что предпочтительно создается электрическая машина с соответствующим количеством полюсов. Например, роторные участки выполнены одинаковыми или различными. Согласно другому варианту выполнения может быть предусмотрено, что ротор расположен в криостате для тепловой изоляции. Тем самым предпочтительно обеспечивается особенно эффективное и экономное охлаждение ротора. В частности, криостат может быть эвакуирован. Предпочтительно, криостат выполнен в виде части ротора, соответственно, содержится в нем, так что он может вращаться вместе с ротором.

Указанные выше свойства, признаки и преимущества данного изобретения, а также способ их достижения, поясняются в приведенном ниже описании примеров выполнения изобретения со ссылками на прилагаемые чертежи, на которых изображено:

фиг. 1 - электрическая машина;

фиг. 2 – блок-схема способа эксплуатации электрической машины;

фиг. 3 – другая электрическая машина;

фиг. 4 – разрез другой электрической машины; и

фиг. 5 – блок-схема способа эксплуатации электрической машины, согласно фиг. 4.

В последующем для обозначения одинаковых признаков применяются одинаковые позиции.

На фиг. 1 показана электрическая машина 101. Машина 101 содержит статор 103 и установленный с возможностью вращения ротор 105. Ротор 105 содержит охлаждаемый намагничиваемый роторный участок 107 из сверхпроводящего материала. Кроме того, предусмотрен управляющий блок 109, который управляет подачей тока в статор 103, так что на основании статорного тока в роторном участке 107 индуцируется магнитный поток. Если температура сверхпроводящего материала лежит выше критической температуры, то в сверхпроводящем материале предпочтительно образуется магнитный поток. Таким образом, предпочтительно намагничивается роторный участок 107.

После намагничивания роторный участок 107 охлаждают до температуры ниже критической температуры, так что в сверхпроводящем материале предпочтительно удерживается магнитный поток, что приводит предпочтительно к образованию соответствующего магнитного поля ротора. Если теперь с помощью управляющего блока 109 выключить статорный ток или если он отсутствует вследствие неисправности или отсутствия тока, то намагничивание роторного участка 107 и тем самым магнитное поле ротора сохраняется, пока температура сверхпроводящего материала лежит ниже критической температуры, соответственно, температуры перехода.

На фиг. 2 показана блок-схема способа эксплуатации электрической машины. Машина может быть, например, показанной на фиг. 1 машиной 101.

На стадии 201 управляют статорным током, который индуцирует в сверхпроводящем материале магнитный поток, так что образуется магнитный поток через сверхпроводящий материал. На стадии 203 сверхпроводящий материал охлаждают до температуры ниже критической температуры, с целью удерживания магнитного потока в сверхпроводящем материале. Если сверхпроводящий материал уже имеет температуру ниже критической температуры, то может быть, в частности, предусмотрено, что перед подачей тока в статор сверхпроводящий материал нагревают до температуры выше критической температуры, так что предпочтительно обеспечивается возможность прохождения магнитного потока через сверхпроводящий материал.

На фиг. 3 показана другая электрическая машина 301, которая выполнена аналогично показанной на фиг. 1 электрической машине 101. Дополнительно к электрической машине 101 электрическая машина 301 имеет датчик 303 магнитного поля, который расположен в роторе 105. Датчик 303 магнитного поля может быть, например, датчиком Холла. С помощью датчика 303 магнитного поля предпочтительно обеспечивается возможность измерения магнитного поля ротора. Это измерительное значение передается в управляющий блок 109, который затем в зависимости от магнитного поля ротора может управлять подачей тока в статор 103.

В не изображенном варианте выполнения электрические машины 101 и 301 могут содержать один или несколько источников постоянного тока, которые поставляют ток в обмотки статора. Управление источниками постоянного тока предпочтительно осуществляется с помощью управляющего блока 109. При этом может быть, в частности, предусмотрено, что ток в обмотки подается совместно или независимо друг от друга.

На фиг. 4 показан разрез другой электрической машины 401. Электрическая машина 401 содержит статор 403 со статорными обмотками (не изображены). В статорные обмотки подается ток с помощью источника постоянного тока. Кроме того, электрическая машина 401 содержит расположенный в статоре 403 ротор 405, содержащий полюсный сердечник 407. Полюсный сердечник 407 можно охлаждать с помощью охлаждающей текучей среды, например жидким гелием, жидким азотом или жидким неоном. Кроме того, ротор 405 имеет четыре намагничиваемых роторных участка 407, 409, 411 и 413, которые выполнены одинаковыми. Роторные участки 407, 409, 411 и 413 расположены со смещением относительно друг друга на угол 90° на наружной поверхности 415 полюсного сердечника 407. Поскольку четыре роторных участка 407, 409, 411 и 413 выполнены одинаково, то в последующем приводится описание конструкции лишь роторного участка 409. Роторные участки 407, 411, 413 имеют аналогичную конструкцию.

Роторный участок 409 содержит сверхпроводящий материал 417, который с помощью термического соединительного слоя 419 соединен с наружной поверхностью 415 полюсного сердечника 407. Термический соединительный слой 419 имеет определенный коэффициент теплопроводности, так что при нагревании сверхпроводящего материала 417 полюсный сердечник почти или лишь незначительно нагревается. Таким образом, используется слабая тепловая связь.

На противоположной термическому соединительному слою 419 стороне сверхпроводящего материала 417 наклеена нагревательная фольга 421, например, с помощью эпоксидного клея, которая может нагревать сверхпроводящий материал 417 по меньшей мере до температуры выше критической температуры. Сверхпроводящий материал 419 предпочтительно выполнен в виде сверхпроводящей плитки, которая соединена с помощью соединительного слоя 419 с полюсным сердечником 407. Соединительный слой 419 может быть, например, термическим клеем.

Кроме того, предусмотрен криостат 423, при этом во внутреннем пространстве 425 криостата, которое может быть предпочтительно эвакуировано с целью тепловой изоляции, расположен ротор. При этом между наружной стенкой 427 криостата и статором 403 образован зазор 429, который, например, может быть также эвакуирован с целью тепловой изоляции.

В не изображенном варианте выполнения может быть также образовано больше или меньше четырех роторных участков, например два, шесть, восемь, десять или двенадцать роторных участков, которые расположены, в частности, попарно противоположно друг другу на наружной поверхности 415 полюсного сердечника 407. Отдельные роторные участки такой пары образуют, в частности, один полюс магнитного поля.

Кроме того, электрическая машина 401 содержит управляющий блок 431, который управляет источником 404 постоянного тока, так что предпочтительно обеспечивается возможность управления подачей тока в статорные обмотки. Хотя на фиг. 4 не изображено, может быть предусмотрено, что управляющий блок 431 управляет также электрическим током нагревательной фольги 421.

На фиг. 5 показана блок-схема способа эксплуатации электрической машины 401.

На стадии 501 охлаждают ротор 407 до температуры ниже критической температуры сверхпроводящего материала 417, так что, в частности, также сам сверхпроводящий материал 417 охлаждается ниже критической температуры. Затем на стадии 503 сверхпроводящий материал 417, если необходимо, нагревают до температуры выше критической температуры с помощью нагревательной фольги 421. На основании слабой тепловой связи полюсный сердечник 407 не нагревается или нагревается лишь пренебрежимо мало. В частности, время пребывания сверхпроводящего материала 417 при температуре выше критической температуры выбирают, соответственно, коротким, с целью предотвращения слишком сильного нагревания полюсного сердечника 407.

Затем на стадии 505 в статорные обмотки статора 403 подают ток с помощью источника 404 постоянного тока. Статорный ток индуцирует в сверхпроводящем материале 417 магнитный поток и тем самым намагничивает сверхпроводящий материал 417. После намагничивания на стадии 507 отключают электрический ток нагревательной фольги 421, так что сверхпроводящий материал снова охлаждается до температуры ниже критической температуры. Охлаждение предпочтительно приводит к замораживанию, соответственно, удерживанию магнитного потока в сверхпроводящем материале 417. Таким образом, как только температура падает ниже критической температуры сверхпроводящего материала 417, на стадии 509 отключают источник 404 постоянного тока, так что выключается подача тока в статорные обмотки.

Указанный в связи с электрической машиной 404 на фиг. 4 способ, содержащий стадии 501–509, может быть, в частности, также обобщен, в частности, тем, что для нагревания сверхпроводящего материала 417 не должна применяться нагревательная фольга 421. В не изображенном варианте выполнения могут быть также предусмотрены другие нагревательные средства, например нагревательные элементы. Согласно другому не изображенному варианту выполнения, статор 403 может содержать три обмотки, в которые предпочтительно подается ток с помощью собственного источника постоянного тока, при этом в качестве альтернативного решения может быть предусмотрен, в частности, также общий источник постоянного тока. Согласно другому не изображенному варианту выполнения, может быть также предусмотрено, что статор 403 имеет инвертор, при этом этот инвертор применяется для подачи тока в обмотки. В этом случае можно предпочтительно отказаться от дополнительного источника постоянного тока.

Таким образом, изобретение содержит, в частности, идею применения для намагничивания сверхпроводящего материала статора, в частности его статорных обмоток, посредством подачи соответствующего тока. Это обеспечивает, в частности, то преимущество, что для намагничивания не требуется дополнительная катушка или дополнительные катушки, которые могут быть выполнены, например, в виде катушки HTS.

За счет отказа от такой дополнительной катушки можно также отказаться от использования, как правило, очень дорогих полосовых проводников HTS. За счет этого предпочтительно уменьшается стоимость изготовления электрической машины. Одновременно уменьшаются также технические расходы и затраты времени на изготовление.

Кроме того, может быть повышена рабочая надежность, поскольку больше не требуется подача тока в дополнительные катушки и тем самым также подача тока без соприкосновения в катушки, соответственно, через контактные кольца. Тем самым отпадает также опасность неисправности, соответственно, затраты на техническое обслуживание дополнительных компонентов.

Кроме того, существенно упрощается охлаждение ротора, поскольку нет необходимости в охлаждении дополнительных катушек (с потенциальной опасностью резкого охлаждения). Отсутствуют также подводы тока, которые необходимо термически изолировать и охлаждать.

Кроме того, отсутствует также опасность перегрева, соответственно, резкого охлаждения и перегорания катушек HTS, поскольку в роторе нет катушек HTS. Таким образом, сверхпроводящий материал предпочтительно не может перегорать на роторе. Тем самым такой ротор является намного надежней и не может быть разрушен электрически.

Поскольку монтаж ротора происходит, как правило, при температуре выше критической температуры, то сверхпроводящий материал обычно еще не намагничен, что обеспечивает более простой монтаж по сравнению с машинами с возбуждением от постоянного тока.

Также демонтаж, т.е., в частности, удаление ротора из статора, также упрощается, поскольку ротор после отключения охлаждающей системы нагревается и за счет этого сверхпроводящий материал при выключенном токе статора теряет свое намагничивание, как только температура повышается выше критической температуры.

Для особенно быстрого демонтажа можно быстро размагничивать ротор посредством кратковременного нагревания с помощью нагревателя сверхпроводящего материала, в частности при выключенном токе статора, свыше критической температуры.

В случае неисправности, например, на основании нагревания сверхпроводящего материала за счет длительного отказа охлаждающей системы, можно ротор со сверхпроводящим материалом после повторного охлаждения без проблем снова намагничивать и вводить электрическую машину в эксплуатацию.

При намагничивании сверхпроводящего материала можно для снабжения током статорных обмоток, соответственно, статорных катушек применять также уже имеющийся инвертор. В частности, может быть предусмотрено, что управляющий блок интегрирован в такой инвертор, например, в виде программного обеспечения.

Хотя изобретение подробно иллюстрировано и пояснено с помощью предпочтительных примеров выполнения, изобретение не ограничивается раскрытыми примерами, и специалисты в данной области техники могут выводить из них другие варианты, без выхода из объема защиты изобретения.


ЭЛЕКТРИЧЕСКАЯ МАШИНА
ЭЛЕКТРИЧЕСКАЯ МАШИНА
ЭЛЕКТРИЧЕСКАЯ МАШИНА
Источник поступления информации: Роспатент

Showing 781-790 of 1,427 items.
26.08.2017
№217.015.e362

Способ эксплуатации газотурбинного двигателя, включающего в себя систему рециркуляции воздуха оболочки камер сгорания

Изобретение относится к энергетике. Способ эксплуатации газотурбинного двигателя, при котором во время работы газотурбинного двигателя при полной нагрузке клапанную систему поддерживают в закрытом положении для того, чтобы по существу предотвратить проход воздуха через систему трубопроводов...
Тип: Изобретение
Номер охранного документа: 0002626047
Дата охранного документа: 21.07.2017
26.08.2017
№217.015.e54c

Способ работы автоматической системы управления движением поездов и автоматическая система управления движением поездов

Изобретение относится к области автоматики и телемеханики на железнодорожном транспорте для управления движением поездов. Техническое решение включает в себя электронный пост централизации с подключенным радиомаяком и подключенным рельсовым электрическим частотным контуром, который выдает...
Тип: Изобретение
Номер охранного документа: 0002626430
Дата охранного документа: 27.07.2017
26.08.2017
№217.015.e63f

Система газовой турбины, уменьшающая напряжения на дисках турбины, и соответствующая газовая турбина

Турбинная система включает роторную лопатку с хвостовиком и турбинный диск, содержащий щель, в которой закреплен хвостовик роторной лопатки. Щель турбинного диска содержит множество противоположных пар выступов щели, множество противоположных пар углублений щели и дно щели. Дно щели содержит...
Тип: Изобретение
Номер охранного документа: 0002626913
Дата охранного документа: 02.08.2017
26.08.2017
№217.015.e652

Система управления температурой обоймы лопастей в газотурбинном двигателе

Система управления температурой обоймы лопастей для использования в газотурбинном двигателе. Система управления включает в себя первый источник охлаждающего воздуха, второй источник охлаждающего воздуха, а также систему управления температурой воздуха. Первый источник охлаждающего воздуха...
Тип: Изобретение
Номер охранного документа: 0002626923
Дата охранного документа: 02.08.2017
26.08.2017
№217.015.e6aa

Устройство дренажного патрубка и газотурбинный двигатель, содержащий такое устройство дренажного патрубка

Изобретение относится к устройству патрубка для турбомашины, содержащему патрубок для текучей среды для направления текучих сред и соединительный элемент для соединения патрубка для текучей среды с компонентом, подвергающимся воздействию температуры. Соединительный элемент выполнен с...
Тип: Изобретение
Номер охранного документа: 0002626894
Дата охранного документа: 02.08.2017
26.08.2017
№217.015.e6ed

Теплозащитная вставка для трубопровода топливной системы

Изобретение относится к области энергетики. Теплозащитная вставка (1) для трубопровода (2) топливной системы содержит первую часть (3) в виде трубы с поперечным сечением и примыкающую к первой части (3) вторую часть (4), которая проходит над поперечным сечением и для достижения эффекта сита...
Тип: Изобретение
Номер охранного документа: 0002626915
Дата охранного документа: 02.08.2017
26.08.2017
№217.015.e92b

Отклоняющая пластина и отклоняющее устройство для отклонения заряженных частиц

Изобретение относится к области электронной техники. Отклоняющая пластина (210) для отклонения заряженныхчастиц выполнена в виде печатной платы с металлическимпокрытием, причем отклоняющая пластина (210) имеет выемку (300),образованную в металлическом покрытии. Технический...
Тип: Изобретение
Номер охранного документа: 0002627732
Дата охранного документа: 11.08.2017
26.08.2017
№217.015.e98c

Устройство и способ добычи углеродосодержащих веществ из нефтеносного песка

Группа изобретений относится к устройству и способу для добычи углеродосодержащих веществ, в частности битума, из нефтяных песков. Устройство содержит по меньшей мере два отдельных паровых контура. Причем первый паровой контур содержит по меньшей мере один первый парогенератор и соединенную с...
Тип: Изобретение
Номер охранного документа: 0002627791
Дата охранного документа: 11.08.2017
26.08.2017
№217.015.e9ce

Газотурбинный двигатель

Изобретение относится к газотурбинному двигателю. Газотурбинный двигатель включает в себя множество лопаток, собранных в кольцеобразный ряд лопаток и частично образующих путь горячего газа и путь охлаждающей текучей среды, узел с ответвлениями, расположенный на стороне основания ряда лопаток, и...
Тип: Изобретение
Номер охранного документа: 0002628135
Дата охранного документа: 15.08.2017
26.08.2017
№217.015.e9e7

Турбина, включающая в себя устройство, предотвращающее вращение хомутового уплотнения

Турбина содержит множество ступеней, каждая из которых включает диск и расположенные на нем лопасти. Пара смежных дисков образует кольцевой зазор между ними и имеет противоположные пазы для приема уплотнительной ленты, обеспечивающей уплотнение кольцевого зазора. В уплотнительной ленте...
Тип: Изобретение
Номер охранного документа: 0002628141
Дата охранного документа: 15.08.2017
Showing 781-790 of 943 items.
25.08.2017
№217.015.d1c6

Уплотнительная втулка для паровой турбины и паровая турбина

Настоящее изобретение относится к уплотнительной втулке (1) для паровой турбины (40). Паровая турбина (40) содержит по меньшей мере ротор (41) турбины и корпус (43) турбины, при этом уплотнительная втулка (1) размещена между валом (42) ротора (41) и корпусом (43) и содержит по меньшей мере два...
Тип: Изобретение
Номер охранного документа: 0002621447
Дата охранного документа: 06.06.2017
25.08.2017
№217.015.d1e3

Отделитель для диоксида углерода, способ его эксплуатации и отделительный узел

Изобретение относится к отделителю для диоксида углерода. Описан отделитель диоксида углерода, содержащегося, в частности, в дымовом газе электростанции на ископаемом топливе, включающий в себя абсорбционный узел, приданный ему десорбционный узел и отделительный узел для отделения солей из...
Тип: Изобретение
Номер охранного документа: 0002621809
Дата охранного документа: 07.06.2017
26.08.2017
№217.015.d412

Система с газовым уплотнением

Изобретение относится к системе с газовым уплотнением (GS), статором (S) и проходящим вдоль оси (X) ротором (R) для уплотнения уплотнительного зазора (SGP) между ротором (R) и статором (S), включающее в себя вращающееся уплотнительное кольцо (RSR) ротора и неподвижное уплотнительное кольцо...
Тип: Изобретение
Номер охранного документа: 0002622445
Дата охранного документа: 15.06.2017
26.08.2017
№217.015.d711

Система щеточных уплотнений

Изобретение относится к системе щеточных уплотнений для уплотнения зазора (1) между ротором (2) и статором (3). Щеточное уплотнение (9) включает корпус (4) щетки и множество закрепленных в корпусе (4) щетки щетинок (5). Свободные концы щетинок (5) опираются по отношению к уплотнительной...
Тип: Изобретение
Номер охранного документа: 0002623322
Дата охранного документа: 23.06.2017
26.08.2017
№217.015.d745

Турбомашина и способ ее работы

Изобретение относится к турбомашине, в частности турбокомпрессору, содержащей по меньшей мере один ротор, который проходит вдоль оси (Х), по меньшей мере одно газовое уплотнение, которое с помощью защитного газа уплотняет зазор между ротором и статором турбомашины, подготовительный модуль,...
Тип: Изобретение
Номер охранного документа: 0002623323
Дата охранного документа: 23.06.2017
26.08.2017
№217.015.d7a7

Элемент теплозащитного экрана для обвода воздуха компрессора вокруг камеры сгорания

Изобретение относится к энергетике. Элемент (14) теплозащитного экрана, в частности, для облицовки стенки камеры сгорания, включающий в себя первую стенку (17) с горячей стороной (18), на которую может подаваться горячая среда, с противолежащей горячей стороне (18) холодной стороной (19) и с...
Тип: Изобретение
Номер охранного документа: 0002622590
Дата охранного документа: 16.06.2017
26.08.2017
№217.015.d868

Конденсаторное устройство для проводящего шлейфа устройства для добычи "на месте" тяжелой нефти и битумов из месторождений нефтеносного песка

Группа изобретений касается конденсаторного устройства для проводящего шлейфа устройства для добычи «на месте» тяжелой нефти и битумов из месторождений нефтеносного песка, проводящего шлейфа, включающего в себя множество проводящих элементов, и конденсаторного устройства и способа изготовления...
Тип: Изобретение
Номер охранного документа: 0002622556
Дата охранного документа: 16.06.2017
26.08.2017
№217.015.d8d4

Изоляционные системы с улучшенной устойчивостью к частичному разряду, способ их изготовления

Настоящее изобретение касается области изоляции электрических проводов от частичного разряда, в частности способа изготовления изоляционной системы с улучшенной устойчивостью к частичному разряду и изоляционной системы с улучшенной устойчивостью к частичному разряду. Изобретение впервые...
Тип: Изобретение
Номер охранного документа: 0002623493
Дата охранного документа: 27.06.2017
26.08.2017
№217.015.dc4b

Механически несущее и электрически изолирующее механическое соединение

Изобретение относится к механически несущему и электрически изолирующему механическому соединению (1) удлиненного полого тела (3), состоящего из электрически проводящего материала и проходящего вдоль оси (А), в частности полого цилиндра, с соединительным элементом (5), состоящим из электрически...
Тип: Изобретение
Номер охранного документа: 0002624257
Дата охранного документа: 03.07.2017
26.08.2017
№217.015.dc5a

Способ переключения рабочего тока

Изобретение относится к способу переключения рабочего тока в ячеистой сети постоянного напряжения. Для того чтобы иметь возможность переключать рабочие токи в сети постоянного напряжения в обоих направлениях экономичным образом, предложен способ переключения рабочего тока в ячеистой сети (1)...
Тип: Изобретение
Номер охранного документа: 0002624254
Дата охранного документа: 03.07.2017
+ добавить свой РИД