×
25.08.2017
217.015.ac57

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ МАТЕРИАЛА НА ОСНОВЕ НАНОВОЛОКОН ИЗ АРОМАТИЧЕСКОГО ПОЛИИМИДА

Вид РИД

Изобретение

Аннотация: Изобретение относится к химии высокомолекулярных соединений и может найти применение в качестве материалов для фильтрации горячих жидких и газообразных технологических сред, разделительных мембран, а также для получения углеродных нановолокон. Описан способ получения материала на основе нановолокон из полиимида, включающий электроформование раствора полиамидокислоты в растворителе, в котором из раствора, содержащего не более 12 мас. % полиамидокислоты в апротонном растворителе, получают пленку методом формования через щелевую фильеру на подложку, которую снимают с подложки и в количестве, обеспечивающем содержание полиамидокислоты в растворе 12-20 мас. %, растворяют в смеси апротонный растворитель: бензоидный растворитель, при содержании бензоидного растворителя 20-70 об. %, раствор при комнатной температуре подают через электрод-фильеру в электрическое поле с напряжением 15-35 кВ, материал, осажденный на аноде, термообрабатывают при температуре 370-420°С в течение 60 мин, целевой продукт состоит из нановолокон ароматического полиимида диаметром 50-700 нм, имеющий температуру разложения в инертной среде выше 500°С в смеси. Технический результат: получение материала на основе нановолокон из ароматического полиимида методом электроформования полиамидокислоты при комнатной температуре. 6 ил., 5 пр.

Изобретение относится к процессам получения нановолокон методом электроформования, в частности нановолокон с диаметром d=50-4500 нм из ароматических полиимидов.

Метод электроформования позволяет получать полимерные волокна с диаметром десятки-сотни нанометров. Раствор или расплав полимера, попадая через электрод-фильеру в поле высокого напряжения, распадается на микроструи, которые осаждаются на приемном электроде в виде нановолокон.

Известно получение нановолокон из поливинилового спирта, полиэтиленоксида, поливинилпирролидона, алифатических сополиамидов, производных целлюлозы и других полимеров. Материалы из таких волокон характеризуются низкой плотностью, высокой пористостью, влаго- и газопроницаемостью. Известны способы получения нановолокон из водорастворимых полимеров, такие волокна обладают низкой водостойкостью, высоким набуханием или растворимостью в водных средах. Нановолокна, при получении которых использовали спиртоводные смеси, обладают низкой термостойкостью, температура их терморазложения не превышает 220°С. [Schiffinan J.D., Schauer С.L. Review: Electrospinning of biopolymer Nanofibers and their Applications, Polymer Reviews, v. 48, p. 317-352, 2008].

Наиболее термостойкими полимерами являются ароматические полиимиды (ПИ), волокна и пленки из которых обладают высокой термической, радиационной и химической стойкостью, высокими диэлектрическими характеристиками. Материалы из ПИ используют в качестве конструкционных материалов, в электротехнике и электронике, а также как прекурсоры для получения углеродных нановолокон [Ch. Nah, S.H. Han, M-H Lee, J.S. Kim, Characteristics of polyimide ultrafine fibers. Polym Int., v. 52, p. 429-432, 2003].

Ароматические полиимиды получают поликонденсацией ароматических диаминов и ароматических диангидридов в апротонных растворителях (АР) или смесях АР с бензоидными растворителями, в результате чего образуется полиамидокислота (ПАК), с ее последующей термической или химическая обработкой.

Приводится описание процесса получения электродов на основе углеродных нановолокон, полученных карбонизацией ПИ нановолокон. Методом синтеза пиромеллитового диангидрида и оксидианилина в присутствии катализатора триэтиленамина в среде ДМФА получали ПАК, из раствора ПАК формовали нановолокна, термообработка которых приводила к образованию нановолокон ПИ [US 40581421 12/230,699. Sept 3, 2008].

Известен способ получения многослойного материала на основе нановолокон из полностью ароматического полиимида. Материал получали методом электроформования, в камеру подавался газ со скоростью 5 м/мин при температуре Т=69°С [US 44143305. 12/899, 801. Oct. 2010].

Для повышения барьерных свойств и эффективности разделительных мембран литий-ионных батарей использовали модификацию поверхности нановолоконных материалов на основе ароматических полиимидов. При получении нановолокон из раствора ПАК применялась продувка газом при Т=55°С [US 46199999 12/963, 927. Dec. 2010].

Типичными недостатками указанных аналогов является использование продувки горячим газом в процессе формования ПАК нановолокон, что необходимо для удаления апротонного растворителя с высокой температурой кипения.

Наиболее близким по технической сущности способом электроформования нановолокон из растворов полимеров ароматического строения в высококипящих растворителях является мультизонный дутьевой способ. Для формования волокон на основе полиимидов, полиарамидов, полибензимидазолов используют двузонную камеру. В первую зону через фильерное отверстие подают раствор полимера и формируют струю. Во второй зоне происходит испарение растворителя, температура в этой зоне определяется типом растворителя, его температурой кипения и составляет до 200°C [US 2014/0048982].

Существенным недостатком прототипа, описывающего способ получения материала на основе нановолокон из ароматического полиимида, является использование камеры с повышенной температурой и обдувом горячим газом. Это требует энергетических затрат, несет экологическую нагрузку, так как в процессе электроформования ароматических полиимидных, полиарамидных, полибензимидальных волокон выделяется большое количество горячих паров высококипящих растворителей.

Технической задачей и положительным результатом предлагаемого способа является возможность получения материала на основе нановолокон из полиимида при комнатной температуре осуществления операций процесса.

Это достигается за счет того, что способ получения материала на основе нановолокон из полиимида включает электроформование раствора полиамидокислоты в растворителе, при этом из раствора, содержащего не более 12 мас. % полиамидокислоты в апротонном растворителе, получают пленку методом формования через щелевую фильеру на подложку, которую снимают с подложки и в количестве, обеспечивающем содержание полиамидокислоты в растворе 12-20 мас. %, растворяют в смеси апротонный растворитель: бензоидный растворитель, при содержании бензоидного растворителя 20-70 об. %, раствор при комнатной температуре подают через электрод-фильеру в электрическое поле с напряжением 15-35 кВ, материал, осажденный на аноде, термообрабатывают при температуре 370-420°С в течение 60 мин, целевой продукт состоит из нановолокон ароматического полиимида диаметром 50-700 нм, имеющий температуру разложения в инертной среде выше 500°С в смеси.

Описываемый способ включает полную совокупность существенных признаков, позволяющих достичь указанный технический эффект за счет того, что ПАК получают поликонденсацией ароматического диангидрида и ароматического диамина в смеси апротонного и бензоидного растворителей, где в качестве диангидрида используют пиромиллитовый диангидрид или диангидрид 3,3', 4,4'-дифенил тетракарбоновой кислоты, в качестве диамина используют оксидианилин или о-толидин, в качестве апротонного растворителя используют диметилацетамид (ДМАА), диметилсульфоксид (ДМСО), диметилформамид (ДМФА), в качестве бензоидного растворителя используют бензол, толуол ксилол или их смесь. Содержание ПАК в растворе не более 12 мас. %, содержание бензоидного растворителя в растворителе не более 20 об. %. Пленку получают методом формования раствора ПАК через щелевую фильеру на подложку и сушки при температуре Т=60°С в течение 5 часов. Порошок получают осаждением ПАК путем добавления в раствор ПАК смеси апротонного растворителя с тетрагидрофураном в соотношении 1:1 до концентрации ПАК в растворе около 2 мас. %. Пленку или порошок растворяют в смеси апротонного и бензоидного растворителя при содержании бензоидного растворителя в смеси не менее 30 об. % и содержании ПАК в растворе не менее 12 мас. %. Раствор при комнатной температуре подают через электрод-фильеру в электрическое поле с напряжением около 20 кВ. Материал, осажденный на приемном электроде, термообрабатывают при температуре около 400°С в течение 60 мин. На основе данных сканирующей электронной микроскопии целевой продукт состоит из нановолокон ароматического полиимида диаметром 50-700 нм. Исследование термических свойств материала методом термогравимерии показало, что материал на основе нановолокон из ароматического полиимида характеризуется температурой разложения в инертной среде выше 500°С.

Способ более полно раскрывается примерами его осуществления.

Пример 1. Раствор ПАК получают методом поликонденсации диангидрид 3,3', 4,4'- дифенил тетракарбоновой кислоты и о-толидина в среде ДМАА, содержание ПАК составляет 10 мас. %. Пленку получают формованием ПАК через щелевую фильеру на подложку и сушкой при Т=60°С в течение 5 часов. Пленку снимают с подложки и в количестве, обеспечивающем содержание ПАК в растворе 15 мас. %, растворяют в смеси ДМАА: бензол с соотношением компонентов 50:50, раствор перемешивают в течение 6 часов, обезвоздушивают при давлении 0,1 атм. в течение 2 часов.

Полученный раствор помещают в шприцевой дозатор, оснащенный металлической фильерой длиной 15 мм и диаметром 0,6 мм, подают при комнатной температуре со скоростью 1,5 мл/ч, в электрическое поле с напряжением 25 кВ, осаждение волокон происходит на аноде, расстояние между катодом и анодом l=12 см. Исследование структуры материала проводили с помощью метода сканирующей электронной микроскопии. Как показали исследования, материал характеризуется средним диаметром волокон около 300 нм (фиг. 1). Для оценки термостойкости использовали метод термогравиметрического анализа, с помощью которого определяли температуру потери 5% массы образца в среде аргона, которая составляет Т=120°С (фиг. 2).

Полученный материала обрабатывают при Т=420°С в течение 60 мин. Материал на основе нановолокон из ароматического полиимида характеризуется средним диаметром волокон 300 нм (фиг. 3) и температурой начала разложения в среде аргона Т=537°С (фиг. 4).

Пример 2. Раствор ПАК, полученный способом, описанным в примере 1, помещают в шприцевой дозатор, при комнатной температуре подают со скоростью 2,0 мл/час в элетрическое поле с напряжением 35 кВ, осаждение материала происходит на аноде, расстояние между катодом и анодом l=10 см. Полученный материал содержит дефекты в виде капель размером 1-5 мкм (фиг. 5).

Пример 3. Раствор ПАК, полученный способом, описанным в примере 1, в среде ДМАА: бензол с соотношением компонентов 80:20 обезвоздушивают при давлении 0,1 атм в течение 2 часов, помещают в шприцевой дозатор и при комнатной температуре и подают со скоростью 0,1 мл/час в электрическое поле с напряжением 25 кВ, осаждение материала происходит на аноде, расстояние между катодом и анодом l=20 см. Полученный материал содержит дефекты в виде капель размером 1-5 мкм (фиг. 6).

Пример 4. Раствор ПАК получают способом, описанным в примере 1, при содержании ПАК в растворе 12 мас. %, формуют пленку, которую растворяют в смеси ДМАА: бензол с соотношением компонентов 40:60, содержание ПАК в растворе 20 мас. %. Раствор помещают в шприцевой дозатор, и при комнатной температуре со скоростью 1,5 мл/ч подается в поле с напряжением 15 кВ, осаждение материала происходит на аноде, расстояние между катодом и анодом l=30 см. Материал снимают с металлической подложки и обрабатывают в инертной среде при температуре 420°С в течение 60 мин. Волокна полиимида имеют средний диаметр 700 нм, материал характеризуется температурой начала терморазложения в инертной среде Т=530°С.

Пример 5. ПАК получают методом поликонденсации пиромиллитового диангидрида и оксидианилин в среде ДМФА, содержание ПАК составляет 8 мас. %. Пленку растворяют в смеси ДМФА: бензол с соотношением компонентов смеси 30:70, содержание ПАК в растворе 12 мас. %. Полученный раствор помещают в шприцевой дозатор, оснащенный металлической фильерой длиной 15 мм и диаметром 0,6 мм, и со скоростью 1,5 мл/ч при комнатной температуре подается в электрическое поле с напряжение 20 кВ. Осаждение материала происходит на аноде, расстояние между катодом и анодом l=30 см. Материал состоит из волокон, средний диаметр которых 50 нм. Материал снимают с металлической подложки и обрабатывают в инертной среде при температуре Т=370°С в течение 60 мин. Волокна имеют средний диаметр 150 нм, температура начала терморазложения в инертной среде Т=510°С.

Данные, приведенные в примерах №1, 4, 5, свидетельствуют о том, что в результате реализации заявляемого изобретения, методом электроформования при комнатной температуре получены материалы на основе волокон диаметром 50-700 нм из ароматических полиимидов. Эти материалы характеризуются температурой потери 5% массы в инертной среде выше 500°С. Выход за рамки параметров, приведенных в заявляемом изобретении, примеры №2 и 3, приводит к получению материалов, которые не содержат нановолокон ароматического полиимида или характеризуются наличием большого количество дефектов в виде капель различного размера. Заявляемый метод менее энергозатратен, не несет экологической нагрузки, что является положительным эффектом и существенным отличием от способов получения нановолокон из ароматических полиимидов, используемых в настоящее время.

Способ получения материала на основе нановолокон из полиимида, включающий электроформование раствора полиамидокислоты в растворителе, отличающийся тем, что из раствора, содержащего не более 12 мас. % полиамидокислоты в апротонном растворителе, получают пленку методом формования через щелевую фильеру на подложку, которую снимают с подложки и в количестве, обеспечивающем содержание полиамидокислоты в растворе 12-20 мас. %, растворяют в смеси апротонный растворитель : бензоидный растворитель при содержании бензоидного растворителя 20-70 об. %, раствор при комнатной температуре подают через электрод-фильеру в электрическое поле с напряжением 15-35 кВ, материал, осажденный на аноде, термообрабатывают при температуре 370-420°С в течение 60 мин, целевой продукт состоит из нановолокон ароматического полиимида диаметром 50-700 нм, имеющий температуру разложения в инертной среде выше 500°С в смеси.
СПОСОБ ПОЛУЧЕНИЯ МАТЕРИАЛА НА ОСНОВЕ НАНОВОЛОКОН ИЗ АРОМАТИЧЕСКОГО ПОЛИИМИДА
Источник поступления информации: Роспатент

Showing 21-30 of 53 items.
10.06.2015
№216.013.526b

Полимерные кетиминовые производные антибиотика доксициклина

Изобретение относится к химии биологически активных полимеров, конкретно к полимерным кетиминовым производным доксициклина, которые получают путем конденсации гидрохлорида доксициклина с катионными сополимерами акриламида с 2-амимноэтилметакрилатом (ММ=16-20 кДа), при молярном соотношении...
Тип: Изобретение
Номер охранного документа: 0002552620
Дата охранного документа: 10.06.2015
20.10.2015
№216.013.8398

Концентрированный состав для обработки семян и посадочного материала растений против бактериальных и грибковых болезней

Изобретение относится к концентрированным составам для защиты растений от бактериальных и грибковых болезней путем предпосевной обработки семян и посадочного материала растений. Состав содержит компоненты в следующих соотношениях, мас.%: фурацилин - 0,45-0,9, катапол - 0,45-0,9,...
Тип: Изобретение
Номер охранного документа: 0002565291
Дата охранного документа: 20.10.2015
20.11.2015
№216.013.9170

Трубчатый имплантат органов человека и животных и способ его получения

Группа изобретений относится к медицинской технике и может быть использована в области трансплантологии для замены в организме трубчатых органов. Описан трубчатый имплантат органов человека и животных, выполненный из нетканого пористого полимерного материала, сформированного из нано- и/или...
Тип: Изобретение
Номер охранного документа: 0002568848
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.91b7

Способ получения биосовместимого биодеградируемого пористого композиционного материала

Изобретение относится к химии высокомолекулярных соединений и предназначено для использования в медицине в качестве раневых покрытий, гемостатических материалов, тампонирующих материалов, объемозамещающих медицинских материалов, матриц для клеточных технологий и тканевой инженерии. Способ...
Тип: Изобретение
Номер охранного документа: 0002568919
Дата охранного документа: 20.11.2015
10.12.2015
№216.013.965e

Способ получения водорастворимых полимерных комплексов радиоизотопов

Изобретение относится к способу получения водорастворимых полимерных комплексов радиоизотопов и может быть использовано в области высокомолекулярных соединений и медицине. Способ получения водорастворимых полимерных комплексов радиоизотопов заключается в том, что вначале получают полимер...
Тип: Изобретение
Номер охранного документа: 0002570114
Дата охранного документа: 10.12.2015
10.05.2016
№216.015.3ab5

Способ получения микрокапсулированной формы терапевтического белка супероксиддисмутазы для перорального применения

Изобретение относится к области высокомолекулярной химии и фармакологии и предназначено для использования в качестве пероральной формы терапевтического белка супероксиддисмутазы (СОД). Изобретение заключается во введении СОД в пористые кальций карбонатные (CaCO) ядра методом соосаждения...
Тип: Изобретение
Номер охранного документа: 0002583923
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3ae5

Способ получения биосовместимого органо-неорганического композита на основе целлюлозы gluconacetobacter xylinus и гидроксиапатита

Изобретение относится к медицине, конкретно к области биотехнологических материалов медицинского и технического применения, и может найти использование прежде всего в качестве прекурсора костной ткани, косметики или при создании керамических изделий. Описан способ, который характеризуется тем,...
Тип: Изобретение
Номер охранного документа: 0002583925
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3cea

Фотолюминесцентный полимерный композиционный материал для светоизлучающих систем

Изобретение относится к новым композиционным полимерным материалам для светоизлучающих систем. Предложен фотолюминесцентный полимерный композиционный материал, включающий 1,6 мас.% полифенилхинолина (ПФХ) - поли[2,2′-(9-додецилкарбазол-3,6-диил)-6,6′-(окси)бис(4-фенилхинолина)] или...
Тип: Изобретение
Номер охранного документа: 0002583267
Дата охранного документа: 10.05.2016
10.06.2016
№216.015.4855

Способ получения антистатического полипропиленового волокна с улучшенными механическими свойствами

Изобретение относится к способу получения антистатического полипропиленового волокна с улучшенными механическими свойствами, которое может быть использовано в машиностроении, химической, электротехнической и легкой промышленности. Сущность способа заключается в том, что экструдированные из...
Тип: Изобретение
Номер охранного документа: 0002585667
Дата охранного документа: 10.06.2016
10.08.2016
№216.015.526a

Способ получения водорастворимых сополимеров n-виниламидов, содержащих альдегидные группы

Изобретение относится к способу получения водорастворимых сополимеров N-виниламидов, содержащих альдегидные группы, путем радикальной сополимеризации N-винилпирролидона или N-метил-N-винилацетамида с непредельным мономером, содержащим защищенную альдегидную группу, с последующим удалением...
Тип: Изобретение
Номер охранного документа: 0002594253
Дата охранного документа: 10.08.2016
Showing 21-30 of 51 items.
20.05.2015
№216.013.4d5b

Способ иммобилизации химотрипсина на наночастицах селена или серебра

Изобретение относится к области биотехнологии, биохимии и медицины. Предложен способ иммобилизации химотрипсина на наночастицах селена или серебра. К раствору химотрипсина с концентрацией от 1·10 до 1 мас.% добавляют раствор селенистой кислоты в интервале концентраций 1,3·10 - 1,5 мас.% или...
Тип: Изобретение
Номер охранного документа: 0002551317
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4d5d

Способ деструкции рибонуклеиновых кислот

Изобретение относится к области биотехнологии. Предложен способ деструкции рибонуклеиновых кислот. Раствор, содержащий рибонуклеиновую кислоту, пропускают через макропористый полиметакрилатный сорбент монолитного типа, содержащий иммобилизованную рибонуклеазу А, а затем через макропористый...
Тип: Изобретение
Номер охранного документа: 0002551319
Дата охранного документа: 20.05.2015
10.06.2015
№216.013.526b

Полимерные кетиминовые производные антибиотика доксициклина

Изобретение относится к химии биологически активных полимеров, конкретно к полимерным кетиминовым производным доксициклина, которые получают путем конденсации гидрохлорида доксициклина с катионными сополимерами акриламида с 2-амимноэтилметакрилатом (ММ=16-20 кДа), при молярном соотношении...
Тип: Изобретение
Номер охранного документа: 0002552620
Дата охранного документа: 10.06.2015
20.10.2015
№216.013.8398

Концентрированный состав для обработки семян и посадочного материала растений против бактериальных и грибковых болезней

Изобретение относится к концентрированным составам для защиты растений от бактериальных и грибковых болезней путем предпосевной обработки семян и посадочного материала растений. Состав содержит компоненты в следующих соотношениях, мас.%: фурацилин - 0,45-0,9, катапол - 0,45-0,9,...
Тип: Изобретение
Номер охранного документа: 0002565291
Дата охранного документа: 20.10.2015
20.11.2015
№216.013.9170

Трубчатый имплантат органов человека и животных и способ его получения

Группа изобретений относится к медицинской технике и может быть использована в области трансплантологии для замены в организме трубчатых органов. Описан трубчатый имплантат органов человека и животных, выполненный из нетканого пористого полимерного материала, сформированного из нано- и/или...
Тип: Изобретение
Номер охранного документа: 0002568848
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.91b7

Способ получения биосовместимого биодеградируемого пористого композиционного материала

Изобретение относится к химии высокомолекулярных соединений и предназначено для использования в медицине в качестве раневых покрытий, гемостатических материалов, тампонирующих материалов, объемозамещающих медицинских материалов, матриц для клеточных технологий и тканевой инженерии. Способ...
Тип: Изобретение
Номер охранного документа: 0002568919
Дата охранного документа: 20.11.2015
10.12.2015
№216.013.965e

Способ получения водорастворимых полимерных комплексов радиоизотопов

Изобретение относится к способу получения водорастворимых полимерных комплексов радиоизотопов и может быть использовано в области высокомолекулярных соединений и медицине. Способ получения водорастворимых полимерных комплексов радиоизотопов заключается в том, что вначале получают полимер...
Тип: Изобретение
Номер охранного документа: 0002570114
Дата охранного документа: 10.12.2015
10.05.2016
№216.015.3ab5

Способ получения микрокапсулированной формы терапевтического белка супероксиддисмутазы для перорального применения

Изобретение относится к области высокомолекулярной химии и фармакологии и предназначено для использования в качестве пероральной формы терапевтического белка супероксиддисмутазы (СОД). Изобретение заключается во введении СОД в пористые кальций карбонатные (CaCO) ядра методом соосаждения...
Тип: Изобретение
Номер охранного документа: 0002583923
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3ae5

Способ получения биосовместимого органо-неорганического композита на основе целлюлозы gluconacetobacter xylinus и гидроксиапатита

Изобретение относится к медицине, конкретно к области биотехнологических материалов медицинского и технического применения, и может найти использование прежде всего в качестве прекурсора костной ткани, косметики или при создании керамических изделий. Описан способ, который характеризуется тем,...
Тип: Изобретение
Номер охранного документа: 0002583925
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3cea

Фотолюминесцентный полимерный композиционный материал для светоизлучающих систем

Изобретение относится к новым композиционным полимерным материалам для светоизлучающих систем. Предложен фотолюминесцентный полимерный композиционный материал, включающий 1,6 мас.% полифенилхинолина (ПФХ) - поли[2,2′-(9-додецилкарбазол-3,6-диил)-6,6′-(окси)бис(4-фенилхинолина)] или...
Тип: Изобретение
Номер охранного документа: 0002583267
Дата охранного документа: 10.05.2016
+ добавить свой РИД