×
25.08.2017
217.015.ac06

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ ПОЛНОГО ВЕКТОРА СКОРОСТИ В ГИДРОПОТОКАХ С ПОМОЩЬЮ ЛАЗЕРНОГО ДОПЛЕРОВСКОГО АНЕМОМЕТРА (ЛДА)

Вид РИД

Изобретение

Аннотация: Изобретение относится к контрольно-измерительной технике и позволяет исследовать кинематические характеристики гидропотоков. В заявленном способе измерения полного вектора скорости в гидропотоках с помощью лазерного доплеровского анемометра (далее - ЛДА) ЛДА и иммерсионный оптический контейнер располагают относительно друг друга так, что оптическая ось прибора ЛДА расположена под углом 90 градусов к фронтальной стенке иммерсионного оптического контейнера, согласно изобретению применяют несколько приборов ЛДА, излучающих суммарно 6 лазерных пучков с одинаковыми длинами волн. При этом используют иммерсионный оптический контейнер, фронтальная стенка которого имеет количество граней, равное количеству приборов ЛДА. Технический результат - обеспечение возможности измерения одновременно трех компонент вектора скорости (полного вектора скорости) в одной и той же точке гидропотока. 1 ил.

Изобретение относится к контрольно-измерительной технике и позволяет исследовать кинематические характеристики гидропотоков. Изобретение может использоваться в фундаментальных и прикладных исследованиях в экспериментальной гидродинамике. Возможно применение в технологических процессах (с химическими и каталитическими реакциями), океанологии, изучении атмосферных явлений, а также ряде других областей науки и промышленных технологий, связанных с необходимостью прецизионных невозмущающих измерений кинематических характеристик гидросреды.

Применение оптических бесконтактных методов для исследований сложных гидродинамических и аэродинамических течений все больше входит в современную экспериментальную практику. Такие исследования позволяют получать высокоточные данные о параметрах течений, которые сложно получить контактными методами. Методы ЛДА диагностики являются особенно перспективными, так как обладают низкой погрешностью измерений, высоким пространственным и временным разрешением и не вносят искажений в исследуемый поток.

Наибольшее распространение в современных ЛДА получила дифференциальная схема (Albrecht Н.-Е., Borys М., Damascke N., Tropea С. Laser Doppler and Phase Doppler Measurement Techniques. Berlin: Springer. 2003. 738 p.) построения оптической системы с двумя лазерными зондирующими пучками, в которой результат измерения доплеровского сдвига частоты определяется геометрией лазерных пучков и не зависит от приемной апертуры. Исходящие из объектива пары гауссовых лазерных пучков пересекаются в области с максимальной плотностью оптической мощности. При этом ширина лазерных пучков в данной области минимальна (перетяжка), что позволяет получать высокое пространственное разрешения в измеряемом потоке.

Одной из проблем при применении ЛДА в гидродинамических исследованиях является расхождение перетяжек лазерных пучков вдоль оптической оси прибора (биссектриса лазерных пучков) из-за углового отклонения оптической оси прибора относительно вектора нормали границ раздела сред с разными показателя преломления света. Значительное расхождение перетяжек ведет к исчезновению доплеровского сигнала и невозможности проведения исследований.

Лазерные зондирующие пучки проходят границы раздела воздух-стекло-воздух или воздух-стекло-жидкость, в зависимости от экспериментальных условий. Так как показатели преломления света для воздуха, стекла и жидкости различны, то данные переходы создают оптическую систему, в которой работа сложной лазерной доплеровской системы может быть затруднена. Это особенно актуально для случаев, когда оптическая ось ЛДА расположена под углом к вектору нормали поверхности раздела воздух-стекло. И чем больше этот угол, тем значительней зависимость расхождения перетяжек лазерных пучков от заглубления в измеряемый поток. Кроме того, модели объектов могут выполняться из стекол неудовлетворительного качества, с небольшими кавернами, изгибами и шероховатой поверхностью, что вносит дополнительные непредвиденные отклонения в оптическую схему измерительной установки. Это приводит к увеличению погрешности измерения или становится причиной невозможности измерения скорости исследуемого объекта.

Данные проблемы могут быть решены при помощи оптической иммерсии. Первые упоминания метода оптической иммерсии RIM (Refracting-index matching) в сочетании с ЛДА методикой были в работе Rojas, Yianneskis и Whitelaw в 1983 г. по изучению течения в сигмовидных диффузорах (Rojas, J.; Whitelaw, J.H.; Yianneskis, M. (1983) Flow in sigmoid diffusers of moderate curvature. Symposium on Turbulent Shear Flows, 4th, Karlsruhe, West Germany, September 12-14, 1983, Proceedings (A85-14326 04-34). University Park, PA, Pennsylvania State University, 1984, p. 6.26-6.31. NASA-supported research). В настоящий момент данный метод широко применяется в мировой практике для измерений скорости потоков в различных частях энергетических установок. Но в связи с развитием трехкомпонентных лазерных доплеровских анемометров и применением их для диагностики полного вектора скорости потока в различных видах экспериментальных установок необходимы новые методики применения оптической иммерсии для измерений параметров течения.

Известен способ (LDA measurements in a Kaplan spiral casing model. / Gererkiden, Berhanu Mulu; Cervantes, Michel //13th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery 2010 (ISROMAC-13): Honolulu, Hawaii, USA, 4-7 April 2010. Red Hook, NY : Curran, 2010. p. 85-92.), при котором прибор ЛДА и иммерсионный оптический контейнер располагают относительно друг друга так, что оптическая ось прибора ЛДА расположена под углом 90 градусов к фронтальной плоской стенке иммерсионного оптического контейнера. Лазерные пучки, выходящие из объектива прибора ЛДА, проходят границу раздела воздух-стекло-вода кубического иммерсионного оптического контейнера с плоскими стенками, затем границу раздела плексиглас-вода круглой трубы на входе в спиральную камеру гидротурбины и пересекаются в воде в расчетной точке, отраженное светорассеивающими частицами лазерное излучение проходит обратный путь и фиксируется объективом прибора ЛДА. В данной работе проводились измерения одновременно только одной компоненты вектора скорости потока в шести различных сечениях на входе в спиральную камеру модели гидротурбины Каплана. Без использования иммерсионного контейнера удалось измерить скорость течения потока на расстоянии не более одной трети от диаметра трубы. Для получения результативных данных в условиях осесимметричного потока необходимы измерения при заглублении минимум до половины диаметра трубы. Применение внешнего иммерсионного контейнера с водой в качестве иммерсионной жидкости позволило провести измерения до двух третей диаметра подводящей трубы.

Недостатки способа:

1) нет возможности измерять одновременно более одной компоненты вектора скорости потока.

Известен способ (Becker S., Stoots C., Lienhart Н., McEligot D.M., Durst F. Refractive index matched LDA technique for investigations of laminar to turbulent boundary layer transition / 2nd International Symposium on Turbulence and Shear Flow Phenomena, Stockholm, 2001, Vol. 2, p. 69-74), при котором прибор ЛДА располагают относительно измерительной части гидродинамического канала так, что оптическая ось прибора ЛДА расположена под углом 90 градусов к фронтальной плоской стенке канала. Две пары лазерных пучков с длинами волн 515 нм (зеленый) и 488,0 нм (синий), лежащие в ортогональных плоскостях, выходящие из одного объектива излучающей оптической головки прибора ЛДА, проходят границы раздела воздух-стекло-иммерсионная жидкость измерительной части гидродинамического канала прямоугольного сечения с плоскими стенками и пересекаются в расчетной точке, отраженное светорассеивающими частицами лазерное излучение проходит обратный путь и попадает в приемную оптическую головку прибора ЛДА в схеме с обратным светорассеиванием, либо лазерное излучение проходит прямо (по отношению к излучающей оптической головке прибора ЛДА) и попадает в приемную оптическую головку ЛДА в схеме с прямым светорассеиванием. В данной работе проводились измерения одновременно двух компонент вектора скорости потока в пограничном слое при переходе от ламинарного к турбулентному режиму течения жидкости как в режиме прямого, так и в режиме обратного светорассеивания. В качестве рабочей среды в канале использовалась иммерсионная жидкость с показателем преломления света, равным 1,4585, что соответствует материалу стенок канала (кварцевое стекло). Так как длины волн лазерных пучков неодинаковые, то в результате оптических аберраций на границе раздела сред измерения двух компонент вектора скорости проводились одновременно, но в разных точках потока.

В результате применения метода оптической иммерсии удалось провести измерения скорости потока в пограничном слое жидкости при переходе от ламинарного к турбулентному режиму течения.

Недостатки способа:

1) нет возможности измерять одновременно более одной компоненты вектора скорости в одной и той же точке;

2) необходим тщательный контроль и стабилизация температуры иммерсионной жидкости, так как вязкость и коэффициент преломления света для данной жидкости зависят от температуры.

Наиболее близким к заявляемому способу является способ (O.M.H. Rodriguez, R.V.A. Oliemans Experimental study on oil-water flow in horizontal and slightly inclined pipes, International Journal of Multiphase Flow, Volume 32, Issue 3, March 2006, Pages 323-343, ISSN 0301-9322), при котором прибор ЛДА и иммерсионный оптический контейнер располагают относительно друг друга так, что оптическая ось прибора ЛДА расположена под углом 90 градусов к фронтальной плоской стенке иммерсионного оптического контейнера. Две пары лазерных пучков с длинами волн 514,5 нм (зеленый) и 488,0 нм (синий), выходящие из объектива прибора ЛДА, лежащие в ортогональных плоскостях, проходят границы раздела воздух-стекло-иммерсионная жидкость кубического иммерсионного оптического контейнера с плоскими стенками, затем границы раздела стекло-смесь воды и масла круглой трубы и пересекаются в расчетной точке. Отраженное светорассеивающими частицами лазерное излучение проходит обратный путь и фиксируется объективом ЛДА. Так как длины волн лазерных пучков неодинаковые, то в результате оптических аберраций на границе раздела сред измерения двух компонент вектора скорости проводились одновременно, но в разных точках потока в двух ортогональных центральных сечениях.

Используя данную методику, авторам удалось измерить профили средней скорости и турбулентную составляющую скорости двухфазного потока вдоль всего диаметра трубы.

Недостатки способа:

1) нет возможности измерять одновременно более одной компоненты вектора скорости в одной и той же точке.

Задачей предлагаемого изобретения является обеспечение возможности измерения одновременно трех компонент вектора скорости (полного вектора скорости) в одной и той же точке гидропотока.

Поставленная задача решается тем, что в способе измерения полного вектора скорости в гидропотоках с помощью лазерного доплеровского анемометра (ЛДА), при котором прибор ЛДА и иммерсионный оптический контейнер располагают относительно друг друга так, что оптическая ось прибора ЛДА расположена под углом 90 градусов к фронтальной стенке иммерсионного оптического контейнера, согласно изобретению применяют несколько приборов ЛДА, излучающих суммарно 6 лазерных пучков с одинаковыми длинами волн, а также используют иммерсионный оптический контейнер, фронтальная стенка которого имеет количество граней, равное количеству приборов ЛДА.

Данный способ применения оптической иммерсии позволяет оптическим осям приборов располагаться по нормали к поверхности раздела воздух-стекло-иммерсионная жидкость, что важно для трехкомпонентного ЛДА. Идея заключается в том, что лазерные пучки, выходящие из объективов приборов ЛДА, проходят одинаковый путь как в воздухе, так и в измеряемой среде и пересекаются в расчетной точке (в области перетяжек лучей), что позволяет провести диагностику всех трех компонент вектора скорости в одной и той же точке гидропотока.

На фигуре 1 показано геометрическое расположение двух приборов ЛДА относительно иммерсионного оптического контейнера, где:

1 - однокомпонентный прибор ЛДА;

2 - двухкомпонентный прибор ЛДА;

3 - лазерные пучки;

4 - оптические оси приборов ЛДА;

5 - иммерсионный оптический контейнер;

6 - иммерсионная жидкость;

7 - грань фронтальной стенки иммерсионного оптического контейнера;

8 - иллюминатор;

9 - гидропоток.

Способ осуществляется следующим образом.

Приборы ЛДА 1, 2 и иммерсионный оптический контейнер 5 располагают относительно друг друга так, что оптические оси приборов ЛДА 4 расположены под углом 90 градусов к граням фронтальной стенки 7 иммерсионного оптического контейнера. Лазерные пучки 3, выходящие из объективов приборов ЛДА, проходят границу раздела воздух-стекло-иммерсионная жидкость 6 иммерсионного оптического контейнера, затем сквозь иллюминатор 8 и пересекаются в расчетной точке гидропотока 9, отраженное светорассеивающими частицами лазерное излучение проходит обратный путь и фиксируется объективами приборов ЛДА.

При использовании двух приборов ЛДА (однокомпонентного и двухкомпонентного) для реализации данного способа иммерсионный оптический контейнер представляет собой две стеклянные пластины (грани), соединенные при помощи металлической оправы симметрично под определенным углом (угол между оптическими осями приборов ЛДА) к стеклу иллюминатора. Пространство между стеклянными пластинами и иллюминатором заполняется иммерсионной жидкостью.

Обоснование промышленной применимости.

Были проведены измерения полного вектора скорости гидропотока в конусе отсасывающей трубы крупномасштабной модели поворотно-лопастной гидротурбины ПЛ 40-46 на стенде ОАО «Силовые машины», г. Санкт-Петербург. Диаметр отсасывающей трубы в месте измерения скорости потока был равен 506.8 мм. Доплеровский сигнал был получен от естественных светорассеивателей (частиц ржавчины и пузырьков воздуха) при помощи трехкомпонентного ЛДА ЛАД-056 (Россия), состоящего из двух приборов ЛАД-05 и ЛАД-06, установленных на координатно-перемещающем устройстве. Оптические оси приборов располагались под углом 16 градусов друг к другу. Каждый из приборов является двухкомпонентным ЛДА с длиной волны лазерного излучения 655 нм и фокусным расстоянием 500 мм.

Для реализации способа измерения лазерным доплеровским анемометром полного вектора скорости в гидропотоке был реализован специальный иммерсионный оптический контейнер. Он позволил оптический осям обоих приборов располагаться по нормали к поверхности раздела воздух-стекло-вода в горизонтальной и вертикальной плоскости (что важно для двухкомпонентных ЛДА). Данный контейнер представляет собой две стеклянные пластины, соединенные при помощи металлической оправы симметрично под углом в восемь градусов к стеклу иллюминатора. Пространство между стеклянными пластинами и иллюминатором заполняется водой.

Применение данного способа позволило провести диагностику полного вектора скорости гидропотока в конусе отсасывающей трубы.

Способ измерения полного вектора скорости в гидропотоках с помощью лазерного доплеровского анемометра (ЛДА), при котором прибор ЛДА и иммерсионный оптический контейнер располагают относительно друг друга так, что оптическая ось прибора ЛДА расположена под углом 90 градусов к фронтальной стенке иммерсионного оптического контейнера, отличающийся тем, что применяют несколько приборов ЛДА, излучающих суммарно 6 лазерных пучков с одинаковыми длинами волн, а также используют иммерсионный оптический контейнер, фронтальная стенка которого имеет количество граней, равное количеству приборов ЛДА.
СПОСОБ ИЗМЕРЕНИЯ ПОЛНОГО ВЕКТОРА СКОРОСТИ В ГИДРОПОТОКАХ С ПОМОЩЬЮ ЛАЗЕРНОГО ДОПЛЕРОВСКОГО АНЕМОМЕТРА (ЛДА)
СПОСОБ ИЗМЕРЕНИЯ ПОЛНОГО ВЕКТОРА СКОРОСТИ В ГИДРОПОТОКАХ С ПОМОЩЬЮ ЛАЗЕРНОГО ДОПЛЕРОВСКОГО АНЕМОМЕТРА (ЛДА)
Источник поступления информации: Роспатент

Showing 41-50 of 96 items.
25.08.2017
№217.015.ab29

Способ ввода пучка электронов в среду с повышенным давлением

Изобретение относится к способу ввода пучка электронов в среду с повышенным давлением, при котором подачу газа осуществляют через систему напуска в сопловой блок, состоящий из двух кольцевых сопел (внутреннего и внешнего, по оси внутреннего кольцевого сопла имеется отверстие для прохождения...
Тип: Изобретение
Номер охранного документа: 0002612267
Дата охранного документа: 03.03.2017
25.08.2017
№217.015.abc0

Оппозитный ветротеплогенератор

Изобретение относится к агрегатированию ветродвигателей с теплогенератором. Оппозитный ветротеплогенератор, в котором теплогенератор расположен между двумя однотипными роторными ветродвигателями, валы которых сочленены с осями верхнего и нижнего однотипных соосных многоцилиндровых роторов...
Тип: Изобретение
Номер охранного документа: 0002612237
Дата охранного документа: 03.03.2017
25.08.2017
№217.015.b75b

Конденсатор-сепаратор для двухкомпонентных двухфазных систем

Изобретение относится к области мини- и микросистем, которые используются в энергетике и на транспорте и могут применяться в устройствах для охлаждения электроники. В конденсаторе-сепараторе для двухкомпонентных двухфазных систем, содержащем конденсатор, сепаратор, согласно изобретению...
Тип: Изобретение
Номер охранного документа: 0002614897
Дата охранного документа: 30.03.2017
25.08.2017
№217.015.bc43

Способ и устройство для плазменной газификации твёрдого углеродсодержащего материала и получения синтез-газа

Изобретение относится к способу и устройству для получения синтез-газа из твердых углеродсодержащих топлив и может быть применено в энергетике, химической промышленности, металлургии, коммунальном хозяйстве, экологии. Способ получения синтез-газа включает шлюзовую загрузку материала,...
Тип: Изобретение
Номер охранного документа: 0002616079
Дата охранного документа: 12.04.2017
25.08.2017
№217.015.c5a1

Способ эксплуатации алюминий-воздушного гальванического элемента

Изобретение относится к области электротехники, а более конкретно к металл-воздушным химическим источникам тока с анодами из алюминиевого сплава. Задачей изобретения является увеличение удельной емкости алюминий-воздушных элементов и повышение степени использования анодов. Поставленная задача...
Тип: Изобретение
Номер охранного документа: 0002618440
Дата охранного документа: 05.05.2017
25.08.2017
№217.015.c6fc

Способ получения гелия на основе сжигания природного газа с полезным использованием тепловой энергии

Изобретение относится к области получения гелия из природного газа и может использоваться в газовой, нефтяной, химической и других отраслях промышленности и науке. Способ включает получение обогащенного до 90-95 об. % гелием газа путем сжигания природного газа, последующим пропусканием...
Тип: Изобретение
Номер охранного документа: 0002618818
Дата охранного документа: 11.05.2017
25.08.2017
№217.015.ca16

Мельница-сушилка для дробления, селективного помола и сушки полиминеральных отходов

Изобретение относится к горно-обогатительной технике и предназначено для дробления, селективного помола и сушки отходов обогащения углей, углистых аргиллитов, а также других полиминеральных отходов, в частности отходов флотационного обогащения железных руд, каолинов, песков и др....
Тип: Изобретение
Номер охранного документа: 0002619905
Дата охранного документа: 19.05.2017
25.08.2017
№217.015.ce03

Способ одновременного определения расходов жидкой и газовой фаз потока газожидкостной смеси

Изобретение относится к контрольно-измерительной технике и может быть использовано для определения величин расходов фаз в двухфазных потоках, например, при добыче или переработке углеводородного топлива. Способ одновременного определения расходов жидкой и газовой фаз потока газожидкостной смеси...
Тип: Изобретение
Номер охранного документа: 0002620776
Дата охранного документа: 29.05.2017
25.08.2017
№217.015.cec6

Устройство формирования пристенных капельных течений жидкости в микро- и мини-каналах

Изобретение относится к области электроники, в частности к микромасштабным охлаждающим устройствам таким, как микроканальные теплообменники, которые обеспечивают высокие значения коэффициента теплопередачи при течении жидкостей в относительно небольших объемах. В устройстве, включающем плоский...
Тип: Изобретение
Номер охранного документа: 0002620732
Дата охранного документа: 29.05.2017
25.08.2017
№217.015.d090

Интенсифицированная система охлаждения одиночного мощного светодиода

Изобретение относится к оптоэлектронике, в частности к системам охлаждения мощных светодиодов. Технический результат - обеспечение высокоэффективного отвода тепла при минимальном значении сопротивления теплопередачи от одиночного мощного светодиода. Достигается тем, что интенсифицированная...
Тип: Изобретение
Номер охранного документа: 0002621320
Дата охранного документа: 02.06.2017
Showing 41-50 of 66 items.
25.08.2017
№217.015.abc0

Оппозитный ветротеплогенератор

Изобретение относится к агрегатированию ветродвигателей с теплогенератором. Оппозитный ветротеплогенератор, в котором теплогенератор расположен между двумя однотипными роторными ветродвигателями, валы которых сочленены с осями верхнего и нижнего однотипных соосных многоцилиндровых роторов...
Тип: Изобретение
Номер охранного документа: 0002612237
Дата охранного документа: 03.03.2017
25.08.2017
№217.015.b75b

Конденсатор-сепаратор для двухкомпонентных двухфазных систем

Изобретение относится к области мини- и микросистем, которые используются в энергетике и на транспорте и могут применяться в устройствах для охлаждения электроники. В конденсаторе-сепараторе для двухкомпонентных двухфазных систем, содержащем конденсатор, сепаратор, согласно изобретению...
Тип: Изобретение
Номер охранного документа: 0002614897
Дата охранного документа: 30.03.2017
25.08.2017
№217.015.bc43

Способ и устройство для плазменной газификации твёрдого углеродсодержащего материала и получения синтез-газа

Изобретение относится к способу и устройству для получения синтез-газа из твердых углеродсодержащих топлив и может быть применено в энергетике, химической промышленности, металлургии, коммунальном хозяйстве, экологии. Способ получения синтез-газа включает шлюзовую загрузку материала,...
Тип: Изобретение
Номер охранного документа: 0002616079
Дата охранного документа: 12.04.2017
25.08.2017
№217.015.c5a1

Способ эксплуатации алюминий-воздушного гальванического элемента

Изобретение относится к области электротехники, а более конкретно к металл-воздушным химическим источникам тока с анодами из алюминиевого сплава. Задачей изобретения является увеличение удельной емкости алюминий-воздушных элементов и повышение степени использования анодов. Поставленная задача...
Тип: Изобретение
Номер охранного документа: 0002618440
Дата охранного документа: 05.05.2017
25.08.2017
№217.015.c6fc

Способ получения гелия на основе сжигания природного газа с полезным использованием тепловой энергии

Изобретение относится к области получения гелия из природного газа и может использоваться в газовой, нефтяной, химической и других отраслях промышленности и науке. Способ включает получение обогащенного до 90-95 об. % гелием газа путем сжигания природного газа, последующим пропусканием...
Тип: Изобретение
Номер охранного документа: 0002618818
Дата охранного документа: 11.05.2017
25.08.2017
№217.015.ca16

Мельница-сушилка для дробления, селективного помола и сушки полиминеральных отходов

Изобретение относится к горно-обогатительной технике и предназначено для дробления, селективного помола и сушки отходов обогащения углей, углистых аргиллитов, а также других полиминеральных отходов, в частности отходов флотационного обогащения железных руд, каолинов, песков и др....
Тип: Изобретение
Номер охранного документа: 0002619905
Дата охранного документа: 19.05.2017
25.08.2017
№217.015.ce03

Способ одновременного определения расходов жидкой и газовой фаз потока газожидкостной смеси

Изобретение относится к контрольно-измерительной технике и может быть использовано для определения величин расходов фаз в двухфазных потоках, например, при добыче или переработке углеводородного топлива. Способ одновременного определения расходов жидкой и газовой фаз потока газожидкостной смеси...
Тип: Изобретение
Номер охранного документа: 0002620776
Дата охранного документа: 29.05.2017
25.08.2017
№217.015.cec6

Устройство формирования пристенных капельных течений жидкости в микро- и мини-каналах

Изобретение относится к области электроники, в частности к микромасштабным охлаждающим устройствам таким, как микроканальные теплообменники, которые обеспечивают высокие значения коэффициента теплопередачи при течении жидкостей в относительно небольших объемах. В устройстве, включающем плоский...
Тип: Изобретение
Номер охранного документа: 0002620732
Дата охранного документа: 29.05.2017
25.08.2017
№217.015.d090

Интенсифицированная система охлаждения одиночного мощного светодиода

Изобретение относится к оптоэлектронике, в частности к системам охлаждения мощных светодиодов. Технический результат - обеспечение высокоэффективного отвода тепла при минимальном значении сопротивления теплопередачи от одиночного мощного светодиода. Достигается тем, что интенсифицированная...
Тип: Изобретение
Номер охранного документа: 0002621320
Дата охранного документа: 02.06.2017
29.12.2017
№217.015.f429

Интенсифицирующая теплообменная поверхность для удлинения динамического мениска

Изобретение относится к области электроники, в частности к испарительным системам охлаждения электронного и микроэлектронного оборудования, таким, как микроканальные теплообменники и тепловые трубы, которые обеспечивают высокие значения коэффициента теплопередачи в высоконапряженных по тепловым...
Тип: Изобретение
Номер охранного документа: 0002637802
Дата охранного документа: 07.12.2017
+ добавить свой РИД