×
25.08.2017
217.015.abf4

Результат интеллектуальной деятельности: Полупогружной ледокол

Вид РИД

Изобретение

Аннотация: Изобретение относится к области судостроения и касается создания ледокольных судов, использующих для разрушения ледяного покрова подъемную архимедову и гидродинамическую силу. Предложен полупогружной ледокол, содержащий подводный корпус с ледоразрушающим устройством в виде трех таранов с наклонными разрушающими ребрами, расположенным вдоль всего корпуса сверху, и надводную часть, состоящую из надстройки, закрепленной на прочном плавнике. Разрушающие ребра среднего тарана смещены в нос и корму относительно ребер бортовых таранов и находятся под острым углом к горизонтальной плоскости подводного корпуса судна. Подводный корпус ледокола представляет собой широкую плоскую конструкцию, выполненную в виде крыла малого удлинения с гидродинамическим профилем. Подводный корпус содержит балластные цистерны, занимающие весь свободный объем корпуса. Технический результат заключается в улучшении эксплуатационных характеристик ледокола. 7 з.п. ф-лы, 3 ил.

Изобретение относится к судостроению и может быть использовано при создании ледоколов круглогодичного, всепогодного плавания, точнее к разрушению ледяного покрова морскими ледокольными судами, использующих подъемную архимедову и гидродинамическую силу.

Известно полупогружное ледокольное судно [1], состоящее из подводного грузового корпуса с двигателями и движителями и надводной части с надстройкой, причем подводный корпус содержит ледоразрушающее устройство и балластные камеры. Недостатком такого устройства является невозможность функционирования в толстых льдах.

Известно полупогружное ледокольное судно [2], состоящее из подводного грузового корпуса с двигателями и движителями, соединенного с ледоразрушающим устройством и надводной части с надстройкой, причем подводный корпус содержит балластные камеры. Недостатком данного ледокола является то, что разрушающее лед устройство выполнено в виде фрез, из-за чего такое судно будет иметь незначительную скорость перемещения во льдах толщиной 2÷3 м при большом расходе энергии на дробление льда. Кроме того, за судном остается узкий проход, что не позволяет проводить за собой другие суда и высока вероятность затирания его льдами, причем судно не имеет возможности освободиться само, т.к. не может развернуться на 180°, а при его движении поворотная надстройка будет испытывать большие перегрузки на поворотный механизм.

Наиболее близким является полупогружное ледокольное транспортное судно [3] для перевозки жидких, сыпучих грузов и контейнеров, состоящее из подводного грузового корпуса с двигателями, движителями и горизонтальными гидродинамическими рулями, снабженного устройством в виде одного тарана с ледоразрушающим ребром, расположенного вдоль всего корпуса в диаметральной плоскости судна. При большой грузоподъемности 100 тыс.т и более судно обладает значительными габаритами и осадкой. Ширина полыньи, как показали эксперименты, составляет величину порядка 30-40 метров, что не дает возможности проводить за собой суда большого водоизмещения.

В основу настоящего изобретения положена задача создания ледокола, способного разрушать любые Арктические льды с шириной образующейся полыньи 100-120 метров и более для проводки, маневрирования и расхождения супертанкеров и других крупнотоннажных судов; сверхманевренного, способного работать на глубинах до 5 метров в устьях рек и акваториях портов и разрушать лед вокруг морских буровых платформ. Ледокола с массой конструкции в 1,5-2 раза меньшей, чем у современных ледоколов, а следовательно, и меньшей стоимости, и с величиной вертикального разрушающего усилия, равного или превышающего полный вес современных ледоколов, способного преодолеть любые льды.

Поставленная задача достигается тем, что в техническом решении полупогружной ледокол состоит из подводного корпуса с двигателями, движителями, соединенного с ледоразрушающим устройством в виде трех таранов с наклонными разрушающими ребрами, расположенным вдоль всего корпуса сверху. Средний таран находится в диаметральной плоскости судна и снабжен надводной частью, состоящей из надстройки, закрепленной на прочном плавнике. Боковые тараны расположены вдоль бортов (бортовые). Для снижения разрушающего усилия разрушающие кромки среднего тарана смещены в нос и корму относительно кромок бортовых таранов на величину L1, равную (0,1-0,2)S, где S - расстояние между бортовыми таранами. Разрушающие ребра всех таранов расположены под острым углом к горизонтальной плоскости подводного корпуса судна как в носовой, так и в кормовой частях корпуса судна. В частности, угол наклона разрушающего ребра всех таранов может составлять не более 10° к горизонтальной плоскости подводного корпуса судна.

Подводный корпус ледокола представляет собой широкую плоскую конструкцию, выполненную в виде крыла малого удлинения, с гидродинамическим профилем. Отношение ширины S2 подводного корпуса к длине L составляет 0,6-1,0, высота подводного корпуса H равна 3-10% от длины L корпуса. Расстояние S между бортовыми таранами определяется соотношением S=S1-n, где S1 - ширина создаваемой полыньи в метрах, n - экспериментально определенная величина, равная 30-40 м.

Подводный корпус содержит балластные цистерны, занимающие большую часть объема корпуса. Площадь герметичной обшивки днища подводного корпуса не превышает 25-30% от общей площади днища, т.к. балластные цистерны подводного корпуса для более быстрого заполнения водой и ее вытеснения воздухом могут быть выполнены без сплошного дна. Герметичными выполняются только верхние и боковые части (эффект водолазного колокола). Герметичная обшивка располагается только в районе машинного отделения, топливных баков и в районе других необходимых герметичных объемов. Отсутствие герметичного днища на большей части площади повышает живучесть ледокола и безопасность его работы на мелководном шельфе. Полностью герметичной выполняется обшивка верхней части подводного корпуса и бортов ледокола. Маршевые движители максимально разнесены к бортам корпуса.

Сущность изобретения поясняется чертежами, где на фиг. 1 представлен общий вид полупогружного ледокола при разрушении ледяного покрова, на фиг. 2 и 3 - соответственно вид сбоку и вид сверху. Ледокол состоит из подводного корпуса 1, среднего тарана 2 с разрушающими ребрами 3, бортовых таранов 4 с разрушающими ребрами 5, надстройки 6, закрепленной на плавнике 7, и движителей 8. Угол α - угол между разрушающими ребрами и плоскостью льда, Y - вертикальная разрушающая сила, X - горизонтальная сила (упор движителей).

Устройство работает следующим образом. Вертикальная разрушающая сила Y, направленная снизу вверх, создается всей положительной плавучестью судна и/или гидродинамической подъемной силой подводного корпуса. Разрушение ледяного покрова начинается средним тараном 2, а затем образовавшаяся полынья расширяется бортовыми таранами 4. Такая последовательность разрушения значительно снижает величину вертикального разрушающего усилия и позволяет создавать широкую полынью. Разрушающая вертикальная сила Y=X/tgα при малых углах α может во много раз превосходить величину X упора движителей. Угол α может изменяться дифферентом судна, при этом, исходя из обеспечения оптимального условия разрушения льда при работе ледокола величина угла α предпочтительно не должна превышать 10°. Разрушение особо мощных льдов осуществляется следующим образом: ледокол, заполняя цистерны водой, погружает корпус 1 и заводит его под лед до плавника 7, продувая цистерны воздухом и всплывая, разрушает лед таранами 2, 4. Затем весь процесс повторяется. Движение ледокола имеет волнообразный характер. Процесс разрушения льда ледоколом при движении задним ходом аналогичен. Разнесение движителей 8 к бортам широкого корпуса 1 позволяет эффективно управлять ледоколом по курсу только маршевыми движителями, отказавшись от рулей поворота, как легко повреждаемых элементов. При реверсе одного из движителей ледокол может разворачиваться в полынье на 180° практически на месте. Полупогруженный характер движения имеет преимущество и на чистой ото льда воде за счет снижения волнового сопротивления и снижения нагрузок на корпус в шторм, т.к. ударам волн подвержен только прочный плавник ходовой рубки. Связь с атмосферой позволяет использовать обычные (не атомные) судовые двигатели. Сравнительные экспериментальные исследования, проведенные на маломасштабных моделях с одним разрушающим тараном, показали семикратное снижение величины упора движителей, необходимого для разрушения льда. Сравнение проводилось с моделью ледокола, имеющей классические обводы корпуса. При этом процесс разрушения ледяного покрова носил плавный характер, что уменьшает динамические нагрузки на корпус и повышает комфортность экипажа. При использовании трех разрушающих таранов, как показывают расчеты, основанные на экспериментальных данных, величина упора движителей снижается в 2-3 раза, что тоже позволяет устанавливать двигатели меньшей мощности.

Пример конкретного применения: пусть ледокольное судно имеет длину L=130 м, ширину S2=100 м и высоту корпуса Н=4 м, расстояние между боковыми таранами S=90 м. Тогда горизонтальная площадь подводного корпуса составит величину 12 тыс. м2, объем корпуса - 42 тыс. м3. При весе конструкции снаряженного ледокола 16 тыс.т, положительная плавучесть (вертикальная разрушающая сила) будет равна 26 тыс.т. Вес корпуса определялся исходя из толщины стальной обшивки носовой части, таранов и плавника в 50 мм, остальной обшивки 30 мм (как у современных ледоколов). Гидродинамическая подъемная сила корпуса на скорости 3 м/сек (10,8 км/час) составит величину порядка 4900 т, а при скорости 5 м/сек (18 км/час) величину - 13700 т. Тогда вертикальная разрушающая сила при этих скоростях в сумме составит величины: 30900 т и 39700 т, соответственно, при мощности на валах - 30-40 Мвт. При n=30 м ширина образующейся полыньи S1=S+30 будет равна 120 м. Плоская конструкция корпуса позволяет судну работать на глубине до 6 м. Сравним заявленный ледокол с последним построенным ледоколом и перспективным ледоколом, находящимся в процессе постройки.

Ледокол «50 лет Победы» (в состоянии эксплуатации) Ледокол проекта 22220 «Арктика» (в состоянии строительства)
Длина - 160 м Длина - 173,3 м
Ширина - 30 м Ширина - 34 м
Осадка - 11 м Осадка - 10,5 м или 8,55 м
Водоизмещение - 25000 т Водоизмещение - 33540 т
Мощность на валах - 50 МВт Мощность на валах - 60 МВт
Предельная толщина льда - 2,5 м Предельная толщина льда - 2,9 м

Сравнительный анализ показывает, что при водоизмещении в 1,5-2 раза меньшем, а следовательно, и меньшей стоимости заявляемого ледокола, создаваемая им при работе суммарная вертикальная разрушающая сила в 1,5 раза больше или равна полному водоизмещению приведенных ледоколов. Такая сила разрушит любые Арктические льды. При этом необходимая мощность на валах в 1,5-2 раза меньше. Ширина образующейся полыньи в 3-4 раза больше, предельные рабочие глубины почти в 1,5-2 раза меньше.

Источники информации

1. Заявка Нидерландов NL2011/050494, Semi-submersible vessel and operating method.

2. Патент США №4350114. Semi-submersible tanker with directional ice cutters.

3. Патент РФ №2535346. Способ разрушения ледяного покрова и полупогружное ледокольное судно.


Полупогружной ледокол
Полупогружной ледокол
Полупогружной ледокол
Источник поступления информации: Роспатент

Showing 31-40 of 40 items.
10.05.2018
№218.016.4a92

Магнитогидродинамическая ячейка для формирования сигнала обратной связи и калибровки молекулярно-электронных датчиков угловых и линейных движений

Изобретение относится к измерительной технике, в частности к устройствам, используемым при создании датчиков линейных и угловых движений. Магнитогидродинамическая ячейка для формирования сигнала обратной связи и калибровки молекулярно-электронных датчиков угловых и линейных движений состоит из...
Тип: Изобретение
Номер охранного документа: 0002651607
Дата охранного документа: 23.04.2018
10.05.2018
№218.016.4b05

Способ определения значений параметров потока, обеспечивающих максимальную ориентацию вытянутых и пластинчатых нанообъектов вдоль потока жидкой среды

Использование: для определения значений параметров потока, обеспечивающих максимальную ориентацию вытянутых и пластинчатых нанообъектов вдоль потока жидкой среды. Сущность изобретения заключается в том, что используют измерительную ячейку в форме кольцевого канала переменного сечения для...
Тип: Изобретение
Номер охранного документа: 0002651606
Дата охранного документа: 23.04.2018
18.05.2018
№218.016.5095

Катализатор и способ получения фракции ароматических и алифатических углеводородов из растительного масла

Изобретение относится к области гетерогенно-каталитических превращений органических соединений, а именно к каталитическому превращению возобновляемого сырья - растительных масел в алкан-ароматическую фракцию углеводородов С-С, которая может быть использована для получения компонентов моторных...
Тип: Изобретение
Номер охранного документа: 0002652986
Дата охранного документа: 04.05.2018
18.05.2018
№218.016.51f3

Способ измерения концентрации агломератов несферических наноразмерных частиц в жидких средах

Использование: для определения концентрации агломератов несферических наноразмерных частиц в жидких средах. Сущность изобретения заключается в том, что используют измерительную ячейку в форме кольцевого канала переменного сечения для создания ускоренного потока, содержащую побудитель...
Тип: Изобретение
Номер охранного документа: 0002653143
Дата охранного документа: 07.05.2018
25.06.2018
№218.016.66c8

Способ совместной оценки канала связи и мягкой демодуляции для cofdm-сигналов и устройство для его реализации

Изобретение относится к области передачи дискретной информации и предназначено для применения в приемных устройствах беспроводных систем передачи, использующих COFDM-модуляцию. Технический результат изобретения заключается в повышении точности оценки канальной характеристики и эффективности...
Тип: Изобретение
Номер охранного документа: 0002658335
Дата охранного документа: 20.06.2018
28.10.2018
№218.016.97a2

Метод получения суспензии, содержащей частицы микрогеля для закрепления почв и грунтов

Изобретение относится к способу получения суспензии, которая может быть использована для закрепления почв и грунтов в сельском хозяйстве, при строительстве различных дорог и других земляных сооружений. Способ получения суспензии заключается в том, что растворяют в воде мономер, сшивающий агент...
Тип: Изобретение
Номер охранного документа: 0002670968
Дата охранного документа: 26.10.2018
02.12.2018
№218.016.a2dd

Способ оперативного лечения ожоговых ран

Изобретение относится к медицине, а именно к хирургии и комбустиологии, и может быть использовано в ходе лечения ожоговых ран для временного закрытия ран различной этиологии. Способ оперативного лечения ожоговых ран включает хирургическую обработку раны и временное наложение биологического...
Тип: Изобретение
Номер охранного документа: 0002673806
Дата охранного документа: 30.11.2018
13.01.2019
№219.016.aed8

Оптический смеситель излучения с применением призм из оптически активных материалов

Изобретение предназначено для получения сигналов вращения четырехчастотного лазерного гироскопа. Оптический смеситель лучей, распространяющихся во встречных направлениях в резонаторе четырехчастотного лазерного гироскопа, предназначен для одновременного детектирования интерференционных картин,...
Тип: Изобретение
Номер охранного документа: 0002676835
Дата охранного документа: 11.01.2019
31.01.2019
№219.016.b551

Молекулярно-электронный гидрофон

Изобретение относится к измерительной технике, в частности к прямому измерению акустических сигналов, обусловленных перепадом давления. Изобретение представляет собой устройство для измерения изменений давления в акустической волне в жидких и газообразных средах. Изобретение представляет собой...
Тип: Изобретение
Номер охранного документа: 0002678503
Дата охранного документа: 29.01.2019
09.05.2019
№219.017.4964

Ингибитор braf киназы n-(3-(5-(4-хлорофенил)-1h-пиразоло[3,4-b]пиридин-3-карбонил)-2,4-дифторофенил) пропан-1-сульфонамид

Изобретение относится к ингибитору BRAF киназы, представляющему собой соединение N-(3-(5-(4-хлорофенил)-1Н-пиразоло[3,4-b]пиридин-3-карбонил)-2,4-дифторофенил)пропан-1-сульфонамид формулы 1, в качестве средства для профилактики или лечения пролиферативного заболевания, характеризующегося...
Тип: Изобретение
Номер охранного документа: 0002687107
Дата охранного документа: 07.05.2019
Showing 31-31 of 31 items.
13.02.2018
№218.016.23e1

Блиск охлаждаемых пилонов подачи горючего

Изобретение относится к области аэрокосмической техники и может быть использовано для подачи горючего в высокоскоростной поток воздуха в перспективных прямоточных воздушно-реактивных двигателях внутриатмосферных летательных аппаратов. Блиск охлаждаемых пилонов подачи горючего в...
Тип: Изобретение
Номер охранного документа: 0002642718
Дата охранного документа: 25.01.2018
+ добавить свой РИД