×
25.08.2017
217.015.aab6

Результат интеллектуальной деятельности: Способ и стенд для моделирования ударной нагрузки на объект испытаний

Вид РИД

Изобретение

Аннотация: Изобретение относится к испытательной технике и может быть использовано для динамических испытаний объектов на воздействие ударных перегрузок. Стенд содержит узел формирования внешнего ударного воздействия, контейнер в виде полого поршня и стол, предназначенный для закрепления объекта испытаний, размещенный в контейнере с возможностью перемещения вдоль его продольной оси и связанный с контейнером посредством упругой связи. Упругая связь выполнена в виде набора упругих колец, расположенных последовательно и соосно с продольной осью контейнера, с возможностью деформации в радиальном направлении и контактирующих друг с другом по плоской поверхности, и вставки в виде жесткого кольца, вложенного в крайнее кольцо набора упругих колец. Технический результат заключается в обеспечении моделирования требуемых параметров ударного импульса (например, снижение параметров ударного импульса), преобразовании колебаний ударного импульса в знакоположительное одиночное ударное воздействие и уменьшении габаритов устройства. 2 н. и 1 з.п. ф-лы, 3 ил.

Изобретение относится к испытательной технике и может быть использовано для динамических испытаний объектов на воздействие ударных перегрузок.

Известен стенд для динамических испытаний изделий на ударные нагрузки, содержащий узел формирования внешнего ударного воздействия, состоящий из ствола, камеры высокого давления, приспособления для предварительной деформации мембранного резонаторного устройства и упора, установленный в стволе контейнер в виде полого поршня, стол, связанный с поршнем посредством мембранного упругого устройства, служащий для закрепления изделия, разрушаемый элемент. Мембранное резонаторное устройство выполнено в виде нескольких последовательно расположенных мембран, имеющих разные собственные частоты и скрепленных с наружным контуром мембран масс в виде колец (а.с. №1663468, кл. G01M 7/00, опубл. 15.07.91, бюл. №26).

Такой стенд для динамических испытаний изделий на ударные нагрузки не позволяет проводить динамические испытания с моногармонической частотой вынужденных колебаний, так как резонансное устройство формирует полигармонические колебания изделия.

Наиболее близким по техническому существу к изобретению является ударный стенд для динамических испытаний, содержащий узел формирования внешнего ударного воздействия, состоящий из камеры высокого давления, соединенной с полостью ствола, установленный в стволе контейнер в виде полого поршня, стол, размещенный в контейнере и предназначенный для закрепления объекта испытаний, связанный с контейнером посредством упругого устройства, выполненного в виде упругой мембраны, жестко прикрепленной по внешнему контуру к поверхности контейнера, тормозное устройство. Упругое устройство снабжено дополнительной упругой мембраной, размещенной между столом и мембраной, и упругой связью, соединяющей мембраны и расположенной вдоль продольной оси ствола, при этом дополнительная мембрана по внешнему контуру жестко соединена со столом и выполнена с возможностью перемещения вдоль продольной оси ствола (патент №2438110, МПК 5G01M 7/08, опубл. 27.12.2011, бюл. №36).

Это изобретение имеет следующие недостатки:

- на объекте испытаний реализуется ударное ускорение с амплитудой, в два раза превышающей внешний ударный импульс за счет наложения квазистатической внешней нагрузки и колебательной составляющей ударного ускорения, реализуемой в процессе работы упругого устройства;

- при интенсивных нагрузках на объекте испытаний (200-300 т), характеризующихся колебательной зависимостью ударного импульса от времени, возникает сигнал помехи, амплитуда которого может превышать уровень полезного сигнала. В данном случае необходимо снизить уровень ударного импульса на объекте испытаний (снижение до 50%);

- кроме того, увеличивается материалоемкость стенда, так как передача таких усилий требует значительных габаритов мембраны, контейнера и ствола, соответственно, их массы.

Известен способ нагружения объекта испытаний двумя последовательными импульсами сжатия, заключающийся в моделировании ударного воздействия на объект испытаний за счет взаимодействия его с ударником, содержащим две пластины, расположенные по оси его действия. При этом ударник выполняют из двух вложенных один в другой стаканов, ориентированных в направлении испытываемого объекта испытаний доньями, выполняющими функцию нагружающих пластин, метание ударника производят из ствольной баллистической установки, после чего выполняют перемещение внутреннего стакана относительно наружного под действием набегающего потока воздуха и осуществляют с заданным временным интервалом нагружение объекта испытаний доньями стаканов (патент №2470276, МПК 5G01M 7/08, опубл. 20.12.2012, бюл. №35).

К недостатку данного способа следует отнести невозможность реализации преобразования колебаний нагружающего ударного импульса в знакоположительное одиночное ударное воздействие на объекте испытаний и непосредственное ударное нагружение объекта испытаний ударником.

Задача заявляемого изобретения: расширение эксплуатационных возможностей объекта за счет моделирования требуемого уровня основной нагрузки на нем (например, снижение амплитуды ударного ускорения основной нагрузки) и, как следствие, снижение уровня максимально допустимых нагрузок на объекте, а также уменьшение материалоемкости средств испытаний объекта.

Технический результат: обеспечение требуемого уровня параметров (амплитуда и длительность ударного ускорения) ударного импульса (например, снижение амплитуды ударного ускорения), преобразование колебаний ударного импульса в знакоположительное одиночное ударное воздействие и уменьшение габаритов стенда.

Технический результат достигается тем, что в стенде для моделирования ударной нагрузки на объект испытаний, содержащий узел формирования внешнего ударного воздействия, контейнер в виде полого поршня и стол, предназначенный для закрепления объекта испытаний, размещенный в контейнере с возможностью перемещения вдоль его продольной оси и связанный с контейнером посредством упругой связи, упругая связь выполнена в виде набора упругих колец, расположенных последовательно и соосно с продольной осью контейнера, с возможностью деформации в радиальном направлении и контактирующих друг с другом по плоской поверхности, и вставки в виде жесткого кольца, вложенного в крайнее кольцо набора упругих колец.

Технический результат достигается также за счет применения способа моделирования ударной нагрузки на объект испытаний, характеризующийся тем, что выбирают жесткостные характеристики упругих колец, располагают упругие кольца в контейнере последовательно и соосно с продольной осью контейнера с возможностью деформации в радиальном направлении и с обеспечением их контакта друг с другом по плоской поверхности, вкладывают вставку в виде жесткого кольца в крайнее кольцо набора упругих колец, стол с закрепленным на нем объектом испытаний устанавливают соосно на упругую связь, состоящую из набора упругих колец и вставки, на контейнер осуществляют внешнее ударное воздействие, объект испытаний и стол перемещают с меньшей скоростью, чем контейнер до полной деформации каждого последующего упругого кольца.

Преобразование внешнего ударного воздействия за счет упругой связи позволяет обеспечивать требуемые уровни ударного импульса, реализуемые на объекте испытаний, не меняя конструкцию узла формирования внешнего ударного воздействия. Снижение амплитуды ударного ускорения на объекте испытаний с применением упругой связи дает возможность уменьшить габариты и массу стола для закрепления объекта испытаний.

Реализация способа моделирования ударной нагрузки на объект испытаний осуществляется в стенде моделирования ударной нагрузки на объект испытаний.

Изобретение поясняется чертежами, где:

на фиг. 1 изображен стенд моделирования ударной нагрузки на объект испытаний, который содержит узел формирования внешнего ударного воздействия 1, контейнер 2 в виде полого поршня, размещенный внутри него стол 3 для закрепления объекта испытаний 4, связанный с контейнером 2 посредством упругой связи 5. Упругая связь 5 выполнена в виде набора упругих колец, расположенных последовательно и соосно с продольной осью контейнера 2, с возможностью деформации в радиальном направлении, и контактирующих друг с другом по плоской поверхности, и вставки 6 в виде жесткого кольца, вложенного в крайнее кольцо набора упругих колец. Стол 3 с объектом испытаний 4 имеет возможность перемещения в осевом направлении;

на фиг. 2 показаны типовые зависимости от времени ударного импульса внешнего воздействия и реализуемые в местах крепления объекта испытаний в относительных координатах;

на фиг. 3 изображены элементы упругой связи в виде набора колец 5 массой МУС, имеющих площадь поперечного сечения SК, выполненных из материала с пределом прочности на растяжение (сжатие) [σТ] и расположенных последовательно и соосно с продольной осью контейнера, с возможностью деформации в радиальном направлении и контактирующих друг с другом по плоской поверхности, и вставки 6 в виде жесткого кольца, вложенного в крайнее кольцо набора упругих колец.

Изобретение осуществляются следующим образом.

Перед проведением испытаний для заданных массы MO объекта испытаний 3 и требуемых параметров ударного ускорения (амплитуда Аmах и длительность действия каждого импульса τ) объекта испытаний 4 выбираются параметры узла формирования внешнего ударного воздействия и упругих колец (жесткостные характеристики). В результате работы узла формирования внешнего ударного воздействия 1, например, в виде камеры высокого давления с источником газов высокого давления, стенда моделирования ударной нагрузки на объект испытаний 4, контейнер 2 как жесткое тело получает колебательное ударное ускорение с заданными параметрами. Параметры упругой связи 5, выполненной в виде набора колец и вставки 6, выбираются такими, что на объект испытаний 4 и стол 3 действуют меньшие перегрузки, чем на контейнер 2, в результате чего объект испытаний 4 и стол 3 двигаются с меньшей скоростью, чем контейнер 2 до полной деформации каждого последующего кольца набора упругих колец. Далее относительная (относительно контейнера) скорость объекта испытаний 4 и стола 3 гасится последовательно за счет деформации каждого последующего кольца набора колец вследствие взаимодействия со вставкой 6. При этом ударное ускорение объекта испытаний 4 и стола 3 уменьшается до величины, в n раз меньшей, чем ударное ускорение контейнера 2. Причем эта величина регулируется параметрами упругих колец 5 (жесткостными характеристиками), вставки 6 и глубиной вложения вставки 6 в крайнее кольцо набора упругих колец 5. Длительность действия одиночного ударного воздействия определяется количеством и жесткостью упругих колец 5.

За счет последовательного упругопластического деформирования упругой связи 5 обеспечивается преобразование колебательного ударного внешнего импульса в знакоположительное одиночное ударное воздействие на объект испытаний 4.

Параметры знакоположительного одиночного ударного воздействия определяются жесткостью набора упругих колец, вставки 6 и глубиной вложения вставки 6 в крайнее кольцо набора упругих колец 5 и силовой характеристикой упругой связи, подбирая которую можно регулировать начальную относительную (относительно контейнера) скорость объекта испытаний со столом и, соответственно, регулировать величину начальной деформации колец.

Например, для снижения ударной нагрузки (множественный удар, многоимпульсное воздействие), характеризующейся колебательной зависимостью ускорения от времени с амплитудой Аmах и длительностью действия каждого импульса τ, как показано на фиг. 2, на объекте испытаний массой МO, закрепленном внутри контейнера массой МК в виде полого поршня, на столе массой МС, размещенном в контейнере с возможность перемещения вдоль его продольной оси и предназначенном для закрепления объекта испытаний, связанного с контейнером посредством упругой связи, выполненной в виде набора упругих колец, имеющих массу МУС, площадь поперечного сечения SК (см. фиг. 3) и выполненных из материала с пределом прочности на растяжение (сжатие) [σТ], расположенных последовательно и соосно с продольной осью контейнера, с возможностью деформации в радиальном направлении и контактирующих друг с другом по плоской поверхности, и вставки в виде жесткого кольца массой МВ, вложенного в крайнее кольцо набора упругих колец, параметры силовой характеристики упругой связи определяются соотношением:

Число упругих колец N в составе упругой связи прямо пропорционально количеству ударных импульсов внешнего воздействия, амплитуду которых необходимо снизить на объекте испытаний.

Параметры основной нагрузки Аmах и τ определяются уровнем ударного ускорения, реализуемым в местах крепления упругой связи к объекту испытаний, которое может воспроизводиться с достаточно высокой точностью (5%).

Одним из возможных вариантов конструктивного исполнения упругой связи, выполненной в виде набора упругих колец и вставки, является исполнение всех колец в форме полых усеченных конусов (см. фиг. 3), расположенных последовательно и соосно с продольной осью контейнера, с возможностью деформации в радиальном направлении и контактирующих друг с другом по плоской поверхности, и вставки в виде жесткого кольца, вложенного в крайнее кольцо набора упругих колец. Коническая форма боковой поверхности упругих колец, деформирующихся в радиальном направлении, и вставки проста и технологична в изготовлении, а также обеспечивает плотный контакт колец и вставки при их взаимодействии. Упругая связь в виде набора полых усеченных конусов, контактирующих друг с другом по плоской поверхности, позволяет реализовать последовательное деформирование упругих колец при взаимодействии со вставкой и плавное безударное воздействие на стол с объектом испытаний при передаче внешнего нагружающего импульса от контейнера к столу.

Таким образом, предложенное изобретение позволяет обеспечить моделирование требуемых параметров ударного импульса (амплитуда и длительность ударного ускорения) на объекте испытаний, преобразование колебаний ударного импульса в знакоположительное одиночное ударное воздействие, т.е. позволяет расширить эксплуатационные возможности объекта, что достигается в результате снижения уровня реализуемой на нем нагрузки (амплитуды ударного ускорения), кроме того, позволяет уменьшить материалоемкость стенда за счет применения уменьшенной массы стола для закрепления объекта испытаний.


Способ и стенд для моделирования ударной нагрузки на объект испытаний
Способ и стенд для моделирования ударной нагрузки на объект испытаний
Способ и стенд для моделирования ударной нагрузки на объект испытаний
Источник поступления информации: Роспатент

Showing 91-100 of 191 items.
10.02.2016
№216.014.c31e

Спектрозональный позиционно-чувствительный детектор гамма-излучения

Изобретение относится к области регистрации ионизирующих излучений и может быть использовано при создании радиационных детекторов, применяемых в геофизической аппаратуре нейтрон-гамма и гамма-гамма каротажа. Сущность изобретения заключается в том, что спектрозональный позиционно-чувствительный...
Тип: Изобретение
Номер охранного документа: 0002574415
Дата охранного документа: 10.02.2016
20.03.2016
№216.014.c5f6

Устройство для радиационного измерения плотности

Использование: для бесконтактного измерения плотности вещества с помощью нейтронного и гамма-излучения. Сущность изобретения заключается в том, что устройство для радиационного измерения плотности включает в себя источник излучения, находящийся на оси блока радиационной защиты и имеющий...
Тип: Изобретение
Номер охранного документа: 0002578048
Дата охранного документа: 20.03.2016
20.03.2016
№216.014.c7a7

Способ определения плотности

Использование: для определения плотности путем облучения контролируемого вещества потоком квантов источника электромагнитного излучения. Сущность изобретения заключается в том, что определяют плотность путем облучения контролируемого вещества потоком квантов источника электромагнитного...
Тип: Изобретение
Номер охранного документа: 0002578047
Дата охранного документа: 20.03.2016
20.03.2016
№216.014.c831

Скважинное устройство с двухсторонним расположением измерительных зондов

Использование: для измерения плотности и пористости породы с использованием нейтронного излучения. Сущность изобретения заключается в том, что скважинное устройство с двухсторонним расположением измерительных зондов содержит нейтронный источник, расположенный соосно с корпусом скважинного...
Тип: Изобретение
Номер охранного документа: 0002578050
Дата охранного документа: 20.03.2016
10.04.2016
№216.015.2c0f

Спектрозональный однокоординатный детектор рентгеновского и гамма-излучений

Изобретение относится к измерительной технике, а именно к устройствам для регистрации направленного рентгеновского или гамма-излучения. Спектрозональный однокоординатный детектор рентгеновского и гамма-излучений содержит слой сцинтиллятора, непрозрачный вдоль направления распространения...
Тип: Изобретение
Номер охранного документа: 0002579157
Дата охранного документа: 10.04.2016
27.04.2016
№216.015.378d

Импульсный нейтронный способ определения влажности материалов

Использование: для бесконтактного измерения влажности материала с помощью нейтронного излучения. Сущность изобретения заключается в том, что контролируемый материал облучают быстрыми нейтронами с энергией 2,5 МэВ, измеряют поток быстрых нейтронов во время нейтронных импульсов, в промежутках...
Тип: Изобретение
Номер охранного документа: 0002582901
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.3901

Способ защиты углов трёхмерных микромеханических структур на кремниевой пластине при глубинном анизотропном травлении

Использование: для изготовления трехмерных микромеханических структур на кремниевой пластине. Сущность изобретения заключается в том, что способ защиты углов трехмерных микромеханических структур на кремниевой пластине с кристаллографической ориентацией (100) при глубинном анизотропном...
Тип: Изобретение
Номер охранного документа: 0002582903
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.3902

Способ лазерной пробивки сквозного отверстия в неметаллической пластине

Изобретение относится к способу лазерной пробивки сквозного отверстия в неметаллической пластине и может найти применение изготовления пластин из полупроводниковых, керамических и стеклообразных материалов с отверстиями. Осуществляют облучение поверхности пластин импульсным лазерным...
Тип: Изобретение
Номер охранного документа: 0002582849
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.39c4

Управляющая система безопасности атомной электростанции

Изобретение относится к автоматике и вычислительной технике и может быть использовано в системах контроля и управления безопасностью атомных станций (АЭС). Технический результат заключается в повышении надежности системы безопасности. Система включает станции ввода-вывода, станции приоритетного...
Тип: Изобретение
Номер охранного документа: 0002582875
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.3a2d

Запаянная нейтронная трубка

Изобретение относится к запаянным нейтронным трубкам и может быть использовано в генераторах нейтронов для проведения неразрушающего элементного анализа вещества и проведения исследований нейтронно-радиационными методами, в том числе для проведения геофизических исследований нефтегазовых...
Тип: Изобретение
Номер охранного документа: 0002583000
Дата охранного документа: 27.04.2016
Showing 91-100 of 158 items.
10.02.2016
№216.014.c31e

Спектрозональный позиционно-чувствительный детектор гамма-излучения

Изобретение относится к области регистрации ионизирующих излучений и может быть использовано при создании радиационных детекторов, применяемых в геофизической аппаратуре нейтрон-гамма и гамма-гамма каротажа. Сущность изобретения заключается в том, что спектрозональный позиционно-чувствительный...
Тип: Изобретение
Номер охранного документа: 0002574415
Дата охранного документа: 10.02.2016
20.03.2016
№216.014.c5f6

Устройство для радиационного измерения плотности

Использование: для бесконтактного измерения плотности вещества с помощью нейтронного и гамма-излучения. Сущность изобретения заключается в том, что устройство для радиационного измерения плотности включает в себя источник излучения, находящийся на оси блока радиационной защиты и имеющий...
Тип: Изобретение
Номер охранного документа: 0002578048
Дата охранного документа: 20.03.2016
20.03.2016
№216.014.c7a7

Способ определения плотности

Использование: для определения плотности путем облучения контролируемого вещества потоком квантов источника электромагнитного излучения. Сущность изобретения заключается в том, что определяют плотность путем облучения контролируемого вещества потоком квантов источника электромагнитного...
Тип: Изобретение
Номер охранного документа: 0002578047
Дата охранного документа: 20.03.2016
20.03.2016
№216.014.c831

Скважинное устройство с двухсторонним расположением измерительных зондов

Использование: для измерения плотности и пористости породы с использованием нейтронного излучения. Сущность изобретения заключается в том, что скважинное устройство с двухсторонним расположением измерительных зондов содержит нейтронный источник, расположенный соосно с корпусом скважинного...
Тип: Изобретение
Номер охранного документа: 0002578050
Дата охранного документа: 20.03.2016
10.04.2016
№216.015.2c0f

Спектрозональный однокоординатный детектор рентгеновского и гамма-излучений

Изобретение относится к измерительной технике, а именно к устройствам для регистрации направленного рентгеновского или гамма-излучения. Спектрозональный однокоординатный детектор рентгеновского и гамма-излучений содержит слой сцинтиллятора, непрозрачный вдоль направления распространения...
Тип: Изобретение
Номер охранного документа: 0002579157
Дата охранного документа: 10.04.2016
27.04.2016
№216.015.378d

Импульсный нейтронный способ определения влажности материалов

Использование: для бесконтактного измерения влажности материала с помощью нейтронного излучения. Сущность изобретения заключается в том, что контролируемый материал облучают быстрыми нейтронами с энергией 2,5 МэВ, измеряют поток быстрых нейтронов во время нейтронных импульсов, в промежутках...
Тип: Изобретение
Номер охранного документа: 0002582901
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.3901

Способ защиты углов трёхмерных микромеханических структур на кремниевой пластине при глубинном анизотропном травлении

Использование: для изготовления трехмерных микромеханических структур на кремниевой пластине. Сущность изобретения заключается в том, что способ защиты углов трехмерных микромеханических структур на кремниевой пластине с кристаллографической ориентацией (100) при глубинном анизотропном...
Тип: Изобретение
Номер охранного документа: 0002582903
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.3902

Способ лазерной пробивки сквозного отверстия в неметаллической пластине

Изобретение относится к способу лазерной пробивки сквозного отверстия в неметаллической пластине и может найти применение изготовления пластин из полупроводниковых, керамических и стеклообразных материалов с отверстиями. Осуществляют облучение поверхности пластин импульсным лазерным...
Тип: Изобретение
Номер охранного документа: 0002582849
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.39c4

Управляющая система безопасности атомной электростанции

Изобретение относится к автоматике и вычислительной технике и может быть использовано в системах контроля и управления безопасностью атомных станций (АЭС). Технический результат заключается в повышении надежности системы безопасности. Система включает станции ввода-вывода, станции приоритетного...
Тип: Изобретение
Номер охранного документа: 0002582875
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.3a2d

Запаянная нейтронная трубка

Изобретение относится к запаянным нейтронным трубкам и может быть использовано в генераторах нейтронов для проведения неразрушающего элементного анализа вещества и проведения исследований нейтронно-радиационными методами, в том числе для проведения геофизических исследований нефтегазовых...
Тип: Изобретение
Номер охранного документа: 0002583000
Дата охранного документа: 27.04.2016
+ добавить свой РИД