×
25.08.2017
217.015.aa69

Результат интеллектуальной деятельности: МЕТАМОРФНЫЙ ФОТОПРЕОБРАЗОВАТЕЛЬ

Вид РИД

Изобретение

Аннотация: Изобретение относится к полупроводниковой электронике и может быть использовано для создания солнечных элементов. Метаморфный фотопреобразователь включает подложку (1) из GaAs, метаморфный буферный слой (2) и по меньшей мере один фотоактивный p-n-переход (3), выполненный из InGaAs и включающий базовый слой (4) и эмиттерный слой (5), слой (6) широкозонного окна из In(AlGa)As, где x=0,2-0,5, и контактный субслой (7) из InGaAs. Метаморфный фотопреобразователь, выполненный согласно изобретению, имеет повышенные величину фототока и КПД. 5 з.п. ф-лы, 4 ил.

Изобретение относится к полупроводниковой электронике и может быть использовано для создания фотопреобразователей (солнечных элементов).

В последние десятилетия в мире постоянно возрастал интерес к возобновляемым источникам энергии, в частности использующим солнечную энергию. Для космических летательных аппаратов фотовольтаика (солнечная энергетика) является единственным источником энергии, что во многом обуславливает ее развитие, однако в последние годы постоянно растет и доля фотовольтаики в общем объеме энергии, генерируемой наземными электростанциями. При этом разработка полупроводниковых структур каскадных фотоэлектрических преобразователей (ФЭП) на основе соединений А3В5, преобразующих концентрированное излучение, является одним из наиболее перспективных путей к достижению наивысших значений КПД фотоэлектрического преобразования. Значительное ограничение на КПД каскадных ФЭП накладывают свойства полупроводниковых материалов, из которых выполнены элементы их полупроводниковой структуры. В первую очередь, это относится к параметру кристаллической решетки. Наличие рассогласования материалов по параметру решетки приводит к накапливанию упругих напряжений, которые релаксируют при достижении определенной толщины с образованием дефектов, что особенно критично для фотопреобразующих структур ввиду большой толщины их фотоактивных слоев. Таким образом, обеспечение возможности расширения спектрального диапазона фоточувствительности субэлементов каскадного ФЭП, которое влечет за собой увеличение генерируемого ими фототока, является важной задачей для реализации потенциала КПД каскадных фотопреобразователей.

Известен метаморфный фотопреобразователь (см. заявка US 20140370648, МПК H01L 31/18, опубл. 18.12.2014), содержащий подложку из GaAs и три инвертированных фотоактивных p-n-перехода, один из которых выполнен из GalnAs с использованием метаморфного буферного слоя, при этом GaInAs p-n-переход включает базовый слой, эмиттерный слой и слой широкозонного окна, выполненный из GaInP.

Недостатком известного метаморфного фотопреобразователя является недостаточный фототок GaInAs p-n-перехода, связанный с рекомбинацией носителей на гетерогранице эмиттерного слоя GaInAs и слоя широкозонного окна GaInP, а также с потерей носителей, фотогенерированных в слое широкозонного окна.

Известен метаморфный фотопреобразователь (см. заявка US 20120211068, МПК H01L 31/18, опубл. 24.09.2007), содержащий подложку из GaAs и четыре инвертированных фотоактивных p-n-перехода, два из которых выполнены из GaInAs с использованием метаморфных буферных слоев, при этом один из GaInAs p-n-переходов включает базовый слой, эмиттерный слой и слой широкозонного окна, выполненный из AlGaInAs.

Недостатком известного метаморфного фотопреобразователя является значительное последовательное сопротивление структуры за счет большого разрыва зон на гетерогранице широкозонное окно-эмиттерный слой, связанное с наличием AlGaInAs широкозонного окна с большим содержанием алюминия.

Известен метаморфный фотопреобразователь (см. заявка ЕР 2086024, МПК H01L 31/18, опубл. 24.09.2007), содержащий подложку из GaAs и четыре инвертированных фотоактивных p-n-перехода, два из которых выполнены из GaInAs с использованием метаморфных буферных слоев, при этом один из GaInAs p-n-переходов является гетеропереходом.

Недостатками известного метаморфного фотопреобразователя являются большое последовательное сопротивление структуры, связанное с наличием AlGaInAs широкозонного окна, а также малый фототок, генерируемый метаморфными p-n-переходами в случае использования широкозонного окна GaInP.

Наиболее близким к настоящему техническому решению по совокупности существенных признаков является метаморфный фотопреобразователь (см. заявка US 20120240987, МПК H01L 31/18, опубл. 27.09.2012), принятый за прототип и включающий подложку из Ge, метаморфный буферный слой и один фотоактивный p-n-переход, выполненный из GaInAs и включающий базовый слой, эмиттерный слой и слой широкозонного окна из GaInP.

Недостатками известного метаморфного фотопреобразователя является рекомбинация носителей на гетерогранице эмиттерного слоя из GaInAs и слоя широкозонного окна из GaInP, а также выход носителей, фотогенерированных в слое широкозонного окна за пределы фотоактивного перехода, что снижает эффективность его преобразования.

Задачей настоящего решения является создание такого метаморфного фотопреобразователя, в котором обеспечивалось бы хорошее собирание носителей, фотогенерированных в слое широкозонного окна и в эмиттерном слое, что обуславливает повышение фототока и КПД фотопреобразователя.

Поставленная задача достигается тем, что метаморфный фотопреобразователь включает последовательно выращенные на подложке из GaAs метаморфный буферный слой и по меньшей мере одни фотоактивный p-n-переход, выполненный из InGaAs и включающий базовый слой и эмиттерный слой, а также слой широкозонного окна из In(AlxGa1-x)As, где x=0,2-0,5, и контактный субслой из InGaAs.

В метаморфном фотопреобразователе p-n-переход может быть выполнен из InyGa1-yAs, где y=0,24.

Между метаморфным буферным слоем и базовым слоем может быть включен слой тыльного потенциального барьера из In(AlGa)As.

В метаморфном фотопреобразователе базовый слой может быть выполнен толщиной 3000 нм, эмиттерный слой может быть выполнен толщиной 500 нм, слой широкозонного окна может быть выполнен толщиной 50 нм, а контактный субслой может быть выполнен 300 нм.

Новым в метаморфном фотопреобразователе является выполнение слоя широкозонного окна из Inx(AlyGa1-y)1-xAs, где x=0,2-0,5, что позволяет повысить фототок, генерируемый фотопреобразователем, и сократить его последовательное сопротивление.

В метаморфном фотопреобразователе уровень легирования базового слоя атомами кремния может составлять порядка 1⋅1017 см-3, уровень легирования эмиттерного слоя атомами цинка может составлять порядка 1⋅1018 см-3, а уровень легирования слоя широкозонного окна атомами цинка может составлять порядка 2⋅1018 см-3.

В метаморфном фотопреобразователе уровень легирования контактного субслоя атомами цинка может составлять порядка 1⋅1019 см-3.

Настоящее техническое решение поясняется чертежами, где

на фиг. 1 показано схематичное изображение поперечного сечения настоящего метаморфного фотопреобразователя;

на фиг. 2 представлены зонные диаграммы гетеропереходов: контактный субслой/слой широкозонного окна/эмиттер для метаморфного фотопреобразователя, включающего слой широкозонного окна, выполненный из In0.24Al0.76As (кривая 1 - зона проводимости, кривая 2 - валентная зона) и In0.24(Al0.5Ga0.5)0.76As (кривая 3 - зона проводимости, кривая 4 - валентная зона), кривая 5 - уровень Ферми;

на фиг. 3 представлены спектральные характеристики метаморфного фотопреобразователя, включающего слой широкозонного окна, выполненный из In0.24Al0.76As (кривая 6) и In0.24(Al0.5Ga0.5)0.76As (кривая 7);

на фиг. 4 представлены вольтамперные характеристики метаморфного фотопреобразователя, включающего слой широкозонного окна, выполненный из In0.24Al0.76As (кривая 8) и In0.24(Al0.5Ga0.5)0.76As (кривая 9).

Настоящий метаморфный фотопреобразователь (фиг. 1) включает подложку 1, выполненную из GaAs, метаморфный буферный слой 2 и по меньшей мере один фотоактивный p-n-переход 3, выполненный из InGaAs и включающий базовый слой 4, с толщиной, например, 3000 нм и уровнем легирования, например, атомами кремния порядка 1⋅1017 см-3, и эмиттерный слой 5, выполненный толщиной, например 500 нм и уровнем легирования, например, атомами цинка порядка 1⋅1018 см-3, слой 6 широкозонного окна, выполненный из In(AlxGa1-x)As, где x=0,2-0,5, толщиной, например, 50 нм, и уровнем легирования, например, атомами цинка порядка 2⋅1018 см-3, и контактный субслой 7, выполненный из InxGa1-xAs с толщиной, например 300 нм, и уровнем легирования, например, атомами цинка порядка 1⋅1019 см-3.

В случае рассогласования подложки 1 и растущего метаморфного буферного слоя 2 в последнем будут накапливаться упругие напряжения. При накоплении критического значения упругих напряжений происходит пластическая деформация, и часть упругой энергии превращается в энергию дислокаций. Другая часть упругой энергии идет на работу, совершаемую кристаллической решеткой при расширении или сжатии объема твердой фазы после частичной релаксации упругих напряжений.

Метаморфный буферный слой (МБС) 2 может представлять собой набор релаксированных субслоев переменного состава, на интерфейсы которого загибаются дислокации. Профиль изменения состава может быть линейным, ступенчатым или пилообразным.

С целью увеличения собирания фотогенерированных носителей из области широкозонного окна, в настоящем изобретении были оптимизированы параметры слоя 6 широкозонного окна. Для этого предварительно был проведен численный расчет зонной диаграммы структуры ФЭП. В результате было обнаружено, что при составе слоя 6 широкозонного окна In0.24AlAs (в случае ФЭП с концентрацией In 24%), данный слой имеет энергетический максимум для дна зоны проводимости (фиг 2, кривая 1). Так как слой 6 широкозонного окна легирован акцепторной примесью, неосновными носителями заряда (ННЗ) в нем являются электроны. Подобный вид дна зоны проводимости приводит к тому, что ННЗ, рожденные в области поля, направленного к контактному субслою 7, погибнут, не дав вклада в фототок. В результате в коротковолновой области снижается внутренний квантовый выход.

Такое же поведение происходит при использовании слоя 6 широкозонного окна, выполненного из GaInP. Важно также отметить, что интерфейс между слоями GaInP слоя 6 широкозонного окна и GaInAs эмиттерного слоя 5 может характеризоваться повышенной рекомбинацией, так как эти материалы этих слоев имеют разные атомы пятой группы (мышьяк и фосфор), что будет приводить к рекомбинации носителей, фотогенерированных в эмиттерном слое 5, вблизи слоя 6 широкозонного окна.

При добавлении в состав слоя 6 широкозонного окна In0.24AlAs галлия, ширина запрещенной зоны снижается, что существенно изменяет вид зонной диаграммы. Оптимальным составом для слоя 6 широкозонного окна в исследованной структуре ФЭП является состав In0.24(Al0.5Ga0.5)0.76As. При данном составе в слое 6 окна оказывается встроено поле (фиг. 2, кривая 3). Направление поля способствует движению фотогенерированных электронов в сторону эмиттера, что способствует более полному собиранию ННЗ.

Было дополнительно проведено сравнение спектральных характеристик квантового выхода ФЭП с различным составом широкозонного окна. Несмотря на то что уменьшение ширины запрещенной зоны слоя окна должно приводить к улучшению поглощения длинноволновых фотонов и, как следствие, являться оптическим фильтром для ФЭП, измеренная спектральная характеристика фотоэлемента с более узкозонным окном (фиг 4, кривая 7) имела более высокий внутренний квантовый выход. Это полностью подтверждает моделирование зонной диаграммы. При увеличении спектральной эффективности для коротковолнового диапазона была сохранена спектральная эффективность для длинноволнового края, тем самым увеличив суммарный вырабатываемый фототок.

Оптимизация широкозонного окна также позволила значительно улучшить электрические характеристики. Это является следствием уменьшения ширины запрещенной зоны и уменьшения барьера для основных носителей заряда в слое широкозонного окна (фиг. 2, кривая 4). Действительно, в случае использования широкозонного окна In0.24AlAs в валентной зоне возникал высокий барьер, препятствующий транспорту дырок в сторону контактного подслоя (фиг. 2, кривая 2), что выражалось в повышении последовательного сопротивления и падении КПД ФЭП (фиг 4, кривая 8). В результате использования широкозонного окна, выполненного из In0.24(Al0.5Ga0.5)0.76As, удалось уменьшить последовательное сопротивление структуры и существенно увеличить фактор заполнения (фиг. 4, кривая 9), а следовательно, и КПД.


МЕТАМОРФНЫЙ ФОТОПРЕОБРАЗОВАТЕЛЬ
МЕТАМОРФНЫЙ ФОТОПРЕОБРАЗОВАТЕЛЬ
МЕТАМОРФНЫЙ ФОТОПРЕОБРАЗОВАТЕЛЬ
Источник поступления информации: Роспатент

Showing 81-90 of 121 items.
19.12.2018
№218.016.a8a8

Способ упрочнения поверхности вольфрамовой пластины

Изобретение относится к обработке и упрочнению поверхности вольфрамовой пластины, подвергающейся интенсивным тепловым нагрузкам, в частности, в установках термоядерного синтеза, в которых вольфрам используют в качестве материала первой стенки и пластин дивертора. Проводят воздействие на...
Тип: Изобретение
Номер охранного документа: 0002675194
Дата охранного документа: 17.12.2018
27.12.2018
№218.016.ac3c

Способ получения нанокомпозитного материала на основе алюминия

Изобретение относится к получению нанокомпозитного материала на основе алюминия. Способ включает приготовление шихты путем нанесения раствора нитрата металла-катализатора на поверхность частиц алюминия и его сушки, термического разложения нитрата металла-катализатора до оксида...
Тип: Изобретение
Номер охранного документа: 0002676117
Дата охранного документа: 26.12.2018
16.05.2019
№219.017.5260

Способ изготовления фотоэлектрического преобразователя с антиотражающим покрытием

Изобретение относится к солнечной энергетике. Способ изготовления фотоэлектрического преобразователя включает последовательное формирование фоточувствительной полупроводниковой гетероструктуры АВ с пассивирующим слоем и контактным слоем GaAs, удаление контактного слоя над...
Тип: Изобретение
Номер охранного документа: 0002687501
Дата охранного документа: 14.05.2019
18.05.2019
№219.017.53af

Способ изготовления омических контактов фотоэлектрического преобразователя

Способ изготовления омических контактов фотоэлектрического преобразователя включает напыление на гетероструктуру AB основы фронтального омического контакта через первую фоторезистивную маску с рисунком фронтального омического контакта и основы тыльного омического контакта, термообработку...
Тип: Изобретение
Номер охранного документа: 0002687851
Дата охранного документа: 16.05.2019
01.06.2019
№219.017.7275

Способ изготовления нитридного светоизлучающего диода

Способ изготовления нитридного светоизлучающего диода включает последовательное формирование на диэлектрической подложке слоя нитридного полупроводника n-типа проводимости, активного слоя нитридного полупроводника, слоя нитридного полупроводника р-типа проводимости. На полученной...
Тип: Изобретение
Номер охранного документа: 0002690036
Дата охранного документа: 30.05.2019
07.06.2019
№219.017.7543

Концентраторно-планарный солнечный фотоэлектрический модуль

Концентраторно-планарный фотоэлектрический модуль (1) содержит фронтальную светопрозрачную панель (2) с концентрирующими оптическими элементами (4), светопрозрачную тыльную панель (5), на которой сформированы планарные неконцентраторные фотоэлектрические преобразователи (6) с окнами (10),...
Тип: Изобретение
Номер охранного документа: 0002690728
Дата охранного документа: 05.06.2019
13.06.2019
№219.017.8186

Импульсный инжекционный лазер

Импульсный инжекционный лазер содержит гетероструктуру раздельного ограничения, включающую асимметричный многомодовый волновод, ограничительные слои (3), (8) которого одновременно являются эмиттерами n- и р-типа проводимости с одинаковыми показателями преломления, активную область (6),...
Тип: Изобретение
Номер охранного документа: 0002691164
Дата охранного документа: 11.06.2019
20.06.2019
№219.017.8cbe

Оптический магнитометр

Изобретение относится к нанотехнологиям и может быть использовано в области разработки материалов на основе карбида кремния для магнитометрии, квантовой оптики, биомедицины, а также в информационных технологиях, основанных на квантовых свойствах спинов и одиночных фотонов. Оптический...
Тип: Изобретение
Номер охранного документа: 0002691774
Дата охранного документа: 18.06.2019
20.06.2019
№219.017.8cfa

Оптический магнитометр

Изобретение относится к нанотехнологиям и может быть использовано в области разработки материалов на основе карбида кремния для магнитометрии, квантовой оптики, биомедицины, а также в информационных технологиях, основанных на квантовых свойствах спинов и одиночных фотонов. Оптический...
Тип: Изобретение
Номер охранного документа: 0002691775
Дата охранного документа: 18.06.2019
20.06.2019
№219.017.8d0a

Способ измерения температуры

Изобретение относится к области нанотехнологий и может быть использовано в области измерения локальных слабых температурных полей с микро- и наноразмерным разрешением в микроэлектронике, биотехнологиях и др. Предложен способ измерения температуры, включающий предварительное построение...
Тип: Изобретение
Номер охранного документа: 0002691766
Дата охранного документа: 18.06.2019
Showing 81-90 of 107 items.
29.12.2018
№218.016.acdd

Способ изготовления импульсного фотодетектора

Изобретение относится к области разработки и изготовления фоточувствительных полупроводниковых приборов на основе GaAs. Способ изготовления мощного импульсного фотодетектора, работающего в фотовольтаическом режиме (с нулевым напряжением смещения), на основе GaAs включает последовательное...
Тип: Изобретение
Номер охранного документа: 0002676221
Дата охранного документа: 26.12.2018
29.12.2018
№218.016.acf3

Способ изготовления свч фотодетектора

Изобретение относится к оптоэлектронике и может быть использовано для создания мощного СВЧ фотодетектора на основе эпитаксиальных структур GaAs/AlGaAs, чувствительных к излучению на длине волны 810-860 нм. Способ заключается в создании многослойной структуры из системы чередующихся слоев AlGaAs...
Тип: Изобретение
Номер охранного документа: 0002676185
Дата охранного документа: 26.12.2018
29.12.2018
№218.016.acfa

Свч фотоприемник лазерного излучения

Изобретение относится к полупроводниковым приборам, применяемым в электронике. СВЧ фотоприемник лазерного излучения состоит из подложки 1, выполненной из n-GaAs, и последовательно осажденных: слоя тыльного потенциального барьера 2 n-AlGaAs, базового слоя, выполненного из n-GaAs 3, с толщиной...
Тип: Изобретение
Номер охранного документа: 0002676188
Дата охранного документа: 26.12.2018
29.12.2018
№218.016.acff

Свч фотодетектор лазерного излучения

Изобретение относится к полупроводниковой электронике и может быть использовано для создания фотодетекторов (ФД) лазерного излучения (ЛИ). СВЧ фотодетектор лазерного излучения состоит из подложки 1, выполненной из n-GaAs, и последовательно осажденных: Брегговского отражателя 2, настроенного на...
Тип: Изобретение
Номер охранного документа: 0002676187
Дата охранного документа: 26.12.2018
01.03.2019
№219.016.cedd

Способ полирования полупроводниковых материалов

Изобретение относится к области обработки полупроводниковых материалов, а именно к химико-механическим способам полирования полупроводников. Изобретение обеспечивает высокое качество полированной поверхности. Сущность изобретения: в способе химико-механического полирования полупроводниковых...
Тип: Изобретение
Номер охранного документа: 0002457574
Дата охранного документа: 27.07.2012
01.03.2019
№219.016.d0be

Способ изготовления полупроводниковой структуры с p-n переходами

Изобретение относится к электронной технике, а именно к полупроводниковым многопереходным структурам, используемым, в частности, в фотоэлектрических преобразователях. Способ изготовления полупроводниковой структуры включает последовательное формирование на полупроводниковой подложке методом...
Тип: Изобретение
Номер охранного документа: 0002461093
Дата охранного документа: 10.09.2012
01.03.2019
№219.016.d0c1

Способ определения неоднородностей в полупроводниковом материале

Изобретение относится к области электронной техники и может быть использовано для контроля качества проводящих слоев и поверхностей полупроводниковых пленок, применяемых при изготовлении изделий микроэлектроники. Сущность изобретения: в способе определения неоднородностей в полупроводниковом...
Тип: Изобретение
Номер охранного документа: 0002461091
Дата охранного документа: 10.09.2012
03.03.2019
№219.016.d231

Способ изготовления мощного фотодетектора

Изобретение может быть использовано для создания СВЧ-фотодетекторов на основе эпитаксиальных структур GaAs/AlGaAs, чувствительных к излучению на длине волны 810-860 нм. Способ заключается в создании фоточувствительной области и контактной площадки для бондинга вне фоточувствительной области на...
Тип: Изобретение
Номер охранного документа: 0002680983
Дата охранного документа: 01.03.2019
10.04.2019
№219.017.0277

Способ формирования многослойного омического контакта фотоэлектрического преобразователя (варианты)

Изобретение относится к микроэлектронике. Сущность изобретения: в способе формирования многослойного омического контакта фотоэлектрического преобразователя на основе арсенида галлия электронной проводимости формируют фотолитографией топологию фоточувствительных областей и проводят травление...
Тип: Изобретение
Номер охранного документа: 0002391741
Дата охранного документа: 10.06.2010
16.05.2019
№219.017.5260

Способ изготовления фотоэлектрического преобразователя с антиотражающим покрытием

Изобретение относится к солнечной энергетике. Способ изготовления фотоэлектрического преобразователя включает последовательное формирование фоточувствительной полупроводниковой гетероструктуры АВ с пассивирующим слоем и контактным слоем GaAs, удаление контактного слоя над...
Тип: Изобретение
Номер охранного документа: 0002687501
Дата охранного документа: 14.05.2019
+ добавить свой РИД