×
25.08.2017
217.015.aa4d

Результат интеллектуальной деятельности: СПОСОБ ОЦЕНКИ КОЛИЧЕСТВА ГИДРОКСИЛЬНЫХ ГРУПП НА ВНУТРЕННЕЙ ПОВЕРХНОСТИ ФОТОННО-КРИСТАЛЛИЧЕСКОГО ВОЛНОВОДА

Вид РИД

Изобретение

Аннотация: Изобретение относится к нанотехнологиям и может быть использовано для оценки количества гидроксильных групп на внутренней поверхности стеклянных фотонно-кристаллических волноводов с полой сердцевиной (ФКВ с ПС), в том числе с селективно запаянными внешними оболочками, используемых для изготовления конструктивных элементов сенсоров, при химической модификации их внутренней поверхности. Способ оценки количества поверхностных гидроксильных групп на внутренней поверхности стеклянных ФКВ с ПС основан на измерении положения локальных максимумов спектра пропускания образца ФКВ с ПС, последующей химической модификации внутренней поверхности образца до полного насыщения внутренней поверхности поверхностными гидроксильными группами. Затем осуществляют измерение новых положений локальных максимумов спектра пропускания модифицированного образца и построение линейной зависимости положения локального максимума от количества поверхностных гидроксильных групп для локального максимума, изменившего свое положение на большую абсолютную величину, чем другие, присутствующие в спектре пропускания образца. Затем оценивают количество поверхностных гидроксильных групп для аналогичного образца по построенной линейной зависимости при измерении спектра пропускания. Техническим результатом являются уменьшение времени подготовки образцов ФКВ с ПС, простота и повышение чувствительности процесса и использование стандартного оборудования для измерения спектров пропускания ФКВ с ПС. 3 ил.

Настоящее изобретение относится к нанотехнологиям и может быть использовано для оценки количества гидроксильных групп на внутренней поверхности стеклянных фотонно-кристаллических волноводов с полой сердцевиной (ФКВ с ПС), в том числе с селективно запаянными внешними оболочками, используемых для изготовления конструктивных элементов сенсоров при химической модификации их внутренней поверхности.

Известен метод определения числа гидроксильных групп на поверхности стекла способом дейтерообмена с масс-спектрометрическим анализом продуктов реакции (L.T.Zhuravlev, The surface chemistry of amorphous silica. Zhuravlev model. Colloids and surfaces A: Physicochem. Eng. Aspects. 2000, v. 173, p. 1-38). Метод требует высушивания образца под вакуумом в течение двух часов при температуре 200°С, последующего размещения образца в промежуточной емкости с использованием сухих инертных газов и последующего дейтерообмена в автоклаве при температуре 160°С и давлении в 10 атм в течение 6 часов. Число гидроксильных групп определяют по количеству замещённого дейтерием водорода методом масс-спектроскопии.

Однако из-за своей многостадийности и сложности выполнения данный метод в применении к определению гидроксильных групп на внутренней поверхности ФКВ с ПС является сложно реализуемым.

Наиболее близким к предлагаемому решению является метод определения количества поверхностных гидроксильных групп с помощью ИК спектроскопии (В.И. Лыгин, Модели "жесткой" и "мягкой" поверхности. Конструирование микроструктуры поверхности кремнеземов. Ж. Рос.хим. об-ва им. Д.И. Менделеева, 2002, т. XLVI, № 3, стр. 356-369), основанный на анализе интенсивности характеристических пиков ОН-групп в ИК спектрах на длине волны 3520 см-1. Способ включает процесс длительной многостадийной пробоподготовки с использованием вакуумной сушки образца ФКВ с ПС, связанной с необходимостью полностью удалить из образца сорбированную воду, привнесённую в образец при его изготовлении и последующей обработке. Процесс сушки образцов производится при повышении температуры образца до 450-500°С и может занимать несколько часов.

Однако данный метод не является удобным в применении для анализа образцов ФКВ с ПС в связи с крайне низким уровнем изменения целевого сигнала поверхностных гидроксильных групп, связанного с незначительной площадью внутренней поверхности, порядка 6⋅10-8 м2 на 1 погонный метр ФКВ с ПС.

Задачей изобретения является разработка способа оценки количества гидроксильных групп на внутренней поверхности стеклянных ФКВ с ПС при их химической модификации перекисно-кислотными растворами, основанного на использовании стандартного оборудования для измерения спектров пропускания ФКВ с ПС.

Технический результат заявляемого изобретения заключается в уменьшении времени подготовки образцов ФКВ с ПС, простоте и большей чувствительности процесса и использовании стандартного оборудования для измерения спектров пропускания ФКВ с ПС.

Указанный технический результат достигается тем что для образца ФКВ с ПС измеряют положения локальных максимумов спектра пропускания, осуществляют химическую модификацию внутренней поверхности образца до полного насыщения поверхностными гидроксильными группами, измеряют новые положения локальных максимумов спектра пропускания модифицированного образца, для локального максимума, изменившего свое положение на большую абсолютную величину, чем другие, осуществляют построение линейной зависимости положения локального максимума от количества поверхностных гидроксильных групп, при этом оценивают количество поверхностных гидроксильных групп для аналогичного образца по построенной линейной зависимости при измерении спектра пропускания. Типичный вид спектров пропускания ФКВ с ПС представлен на фиг. 1, схема измерительного устройства для их получения представлена на фиг.2.

Изобретение проиллюстрировано следующими чертежами:

На фигуре 1 изображены типичные спектры пропускания ФКВ с ПС.

На фигуре 2 изображена схема установки для измерения спектров пропускания и оценки количества гидроксильных групп на внутренней поверхности ФКВ с ПС: 1 – широкополосный источник излучения; 2, 4 – регулируемая система фокусировки оптического излучения; 3 – ФКВ с ПС, интегрированный в стеклянную кювету; 5 - спектр-анализатор.

На фигуре 3 изображён линейный градуировочный график для оценки количества поверхностных гидроксильных групп в ФКВ с ПС при различном времени обработки образца.

На основании известных в литературе данных различных методов определения количества поверхностных гидроксильных групп при исследовании образцов различных типов кремнеземов и стёкол установлено, что количество таких групп на поверхности составляет от 0,5 до 4,6 единиц на 1 нм2, при этом минимальное значение, 0,5 единиц на 1 нм2, характерно для образцов стекла, прошедших тепловую обработку при температуре не менее 700-1100°С, без химической модификации поверхности, а максимальное значение, 4,6 единиц на 1 нм2, характерно для образцов стекла, прошедших долговременную обработку поверхности гидроксилирующими агентами (Айлер Р. Химия кремнезема, ч.2. Под редакцией д-ра техн. наук проф. В.П. Прянишникова — М.: Мир, 1982. — 712 c.). Эти значения используются для анализа состояния поверхности и полноты прохождения реакций химического модифицирования поверхности.

В качестве перекисно-кислотного компонента выступает раствор перекиси водорода Н2О2 (25% об.) в концентрированной серной кислоте Н24 (конц.) с содержанием Н2О2 от 30% об. до 60% об., при этом в качестве кислотного компонента наряду с концентрированной серной кислотой могут быть использованы различные сильные и слабые кислоты.

Излучение от источника белого света по оптоволоконному кабелю с коллиматором, выходной торец которого закреплен на юстировочной трехкоординатной подвижке, подается на микрообъектив, также закрепленный на трехкоординатной подвижке. Микрообъектив применяется для фокусировки излучения и создания фокусного пятна малого диаметра для ввода излучения строго в полую сердцевину образца ФКВ с ПС. Образец ФКВ с ПС помещают в специальную стеклянную кювету, которая при помощи трехкоординатной подвижки располагается так, чтобы торец волновода находился точно в фокусе микрообъектива. Таким образом, пучок излучения вводится именно в полую сердцевину волновода. Излучение, выходящее из полой сердцевины ФКВ с ПС, собирается вторым микрообъективом и подается на вход оптоволоконного кабеля спектр-анализатора, напрямую связанного с компьютером.

Пики пропускания полученного спектра смещаются в длинноволновую либо в коротковолновую область при увеличении либо времени обработки гидроксилирующим агентом, либо изменении его состава. При этом при увеличении времени обработки гидроксилирующим агентом достигается момент, после которого сдвиг максимумов полос пропускания в спектре прекращается, что характеризует максимальное насыщение поверхности гидроксильными группами. Так как при изготовлении ФКВ с ПС технологический процесс происходит длительное при температуре от 800°С до 900°С, то количество поверхностных гидроксильных групп на внутренней поверхности ФКВ с ПС составляет в среднем 1,2 единиц на 1 нм2, до обработки гидроксилирующим агентом, при этом положение локальных максимумов полос спектра пропускания ФКВ с ПС принимается за соответствующее этому количеству гидроксильных групп. Аналогично максимальное количество поверхностных гидроксильных групп на внутренней поверхности ФКВ с ПС после обработки гидроксилирующим агентом составляет 4,6 единиц на 1 нм2 и соответствует максимальному сдвигу локальных максимумов полос спектра пропускания ФКВ с ПС. Таким образом, для проведения экспресс-оценки количества поверхностных гидроксильных групп на внутренней поверхности ФКВ с ПС при их химической модификации необходимо получить следующие данные:

- положение локальных максимумов полос спектра пропускания ФКВ с ПС до химической модификации гидроксилирующим агентом, соответствующее количеству поверхностных гидроксильных групп в размере 1,2 единиц на 1 нм2;

- положение локальных максимумов полос спектра пропускания ФКВ с ПС после химической модификации гидроксилирующим агентом, в момент времени, после которого сдвиг локальных максимумов полос в спектре пропускания прекращается, что характеризует максимальное насыщение поверхности гидроксильными группами и соответствует количеству поверхностных гидроксильных групп в размере 4,6 единиц на 1 нм2. При этом данный момент времени обработки индивидуален и характеристичен для каждого типа ФКВ с ПС и гидроксилирующего агента.

На основании этих данных производится построение линейного градуировочного графика для локального максимума, изменившего свое положение на большую абсолютную величину, чем другие, присутствующие в спектре пропускания образца, в котором максимальное количество поверхностных гидроксильных групп, соответствующее максимальному сдвигу локального максимума спектра пропускания ФКВ с ПС, принято за 4,6 единиц на 1 нм2, а минимальное количество вышеуказанных групп, соответствующее расположению локального максимума спектра пропускания до обработки гидроксилирующими агентами, принято за 1,2 единицы на 1 нм2. Дальнейшая оценка количества поверхностных гидроксильных групп на внутренней поверхности ФКВ с ПС производится с использованием данного градуировочного графика с установлением количества поверхностных гидроксильных групп на внутренней поверхности ФКВ с ПС соответствующего сдвигу локального максимума в спектре пропускания ФКВ с ПС при различном времени обработки образца.

Пример

Для экспресс-оценки количества поверхностных гидроксильных групп на внутренней поверхности образца ФКВ с ПС при химической модификации его внутренней поверхности образец ФКВ с ПС обрабатывают смесью H2O2 (конц.) и H2SO4 (конц.), с концентрацией Н2О2 50 об.% при одинаковой температуре и различном времени обработки. Максимальный сдвиг локального максимума полосы в спектре пропускания образца ФКВ с ПС составляет 60 нм, при дальнейшем увеличении времени обработки положение локальных максимумов полос в спектре пропускания образца ФКВ с ПС практически не меняется, что свидетельствует о насыщении внутренней поверхности гидроксильными группами. В этом случае количество поверхностных гидроксильных групп в размере 4,6 единиц на 1 нм2соответствует сдвигу локального максимума полосы в спектре пропускания ФКВ с ПС в размере 60 нм, а для образца ФКВ с ПС, не прошедшего химическую модификацию гидроксилирующим агентом, количество поверхностных гидроксильных групп составляет 1,2 единиц на 1 нм2. Используя эти данные, производят построение линейного градуировочного графика и дальнейшую экспресс-оценку количества гидроксильных групп на внутренней поверхности образца ФКВ с ПС при различном времени его химической модификации на основании анализа спектров пропускания образца ФКВ с ПС. Пример линейного градуировочного графика представлен на фиг.3. Показанные на графике три группы точек соответствуют трём опытам, проведённым при одинаковом времени обработки образца. В данном случае количество гидроксильных групп на внутренней поверхности ФКВ С ПС в размере 2.6, 3.1, 3.5 единиц на 1 нм2 соответствует сдвигу локального максимума спектра пропускания ФКВ с ПС в 30, 38, 48 нм соответственно.

Способ оценки количества поверхностных гидроксильных групп, отличающийся тем, что в качестве образца выбирают фотонно-кристаллический волновод с полой сердцевиной, содержащий поверхностные гидроксильные группы на внутренней поверхности, измеряют положения локальных максимумов спектра пропускания образца, осуществляют химическую модификацию внутренней поверхности образца до полного насыщения поверхностными гидроксильными группами, измеряют новые положения локальных максимумов спектра пропускания модифицированного образца; для локального максимума, изменившего свое положение на большую абсолютную величину, чем другие, осуществляют построение линейной зависимости положения локального максимума от количества поверхностных гидроксильных групп, при этом оценивают количество поверхностных гидроксильных групп для аналогичного образца по построенной линейной зависимости при измерении спектра пропускания.
СПОСОБ ОЦЕНКИ КОЛИЧЕСТВА ГИДРОКСИЛЬНЫХ ГРУПП НА ВНУТРЕННЕЙ ПОВЕРХНОСТИ ФОТОННО-КРИСТАЛЛИЧЕСКОГО ВОЛНОВОДА
СПОСОБ ОЦЕНКИ КОЛИЧЕСТВА ГИДРОКСИЛЬНЫХ ГРУПП НА ВНУТРЕННЕЙ ПОВЕРХНОСТИ ФОТОННО-КРИСТАЛЛИЧЕСКОГО ВОЛНОВОДА
Источник поступления информации: Роспатент

Showing 1-10 of 102 items.
10.06.2013
№216.012.4868

Способ повышения стабильности водного раствора квантовых точек - наночастиц селенида кадмия, покрытых меркаптокислотами

Изобретение относится к аналитической химии. Водный раствор квантовых точек на основе селенида кадмия, покрытых меркаптокислотой, стабилизируют, вводя сульфит натрия до его концентрации в растворе 0,02-0,2 моль/л. Технический результат - повышение стабильности водного раствора квантовых точек...
Тип: Изобретение
Номер охранного документа: 0002484116
Дата охранного документа: 10.06.2013
10.02.2014
№216.012.9fae

Способ определения уровня токсикантов в воде, продуктах питания или физиологических жидкостях и тест-система

Группа изобретений относится к области биотехнологии и может быть использована для определения уровня токсикантов в воде, продуктах питания или физиологических жидкостях. Способ осуществляют путем проведения в колонке тест-системы иммуноферментного анализа, включающего размещение в колонке...
Тип: Изобретение
Номер охранного документа: 0002506586
Дата охранного документа: 10.02.2014
27.02.2014
№216.012.a756

Способ определения уровня токсикантов в воде, продуктах питания или физиологических жидкостях и тест-система

Группа изобретений относится к области биотехнологии и может быть использована для повышения эффективности и достоверности определения уровня токсикантов в различных средах путем проведения твердофазного иммуноферментного анализа. Способ, осуществляемый путем проводимого в колонке тест-системы...
Тип: Изобретение
Номер охранного документа: 0002508553
Дата охранного документа: 27.02.2014
20.10.2014
№216.012.fef7

Фотонно-кристаллический волновод для селективного пропускания оптического излучения

Изобретение относится к волоконной оптике. Фотонно-кристаллический волновод гексагональной формы содержит оболочку и полую сердцевину, в которую введен мультислой капилляров. Период и диаметр каналов мультислоя капилляров, близкими или много меньшими длины волны излучения требуемого...
Тип: Изобретение
Номер охранного документа: 0002531127
Дата охранного документа: 20.10.2014
10.01.2015
№216.013.1c6f

Способ определения уровня токсикантов в воде, продуктах питания или физиологических жидкостях и тест-система

Группа изобретений относится к области биотехнологии. Более подробно группа изобретений относится к способу определения уровня токсикантов в воде, продуктах питания или физиологических жидкостях и тест-системе. Группа изобретений основана на том, что в колонке тест-системы размещают носитель в...
Тип: Изобретение
Номер охранного документа: 0002538707
Дата охранного документа: 10.01.2015
10.04.2015
№216.013.3ed9

Способ определения уровня токсикантов в воде, продуктах питания или физиологических жидкостях и тест-система

Изобретение относится к области биотехнологии и может быть использовано для повышения эффективности и достоверности определения уровня токсикантов в воде, продуктах питания или физиологических жидкостях путем проведения твердофазного иммуноферментного анализа. Способ определения уровня...
Тип: Изобретение
Номер охранного документа: 0002547577
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3eed

Многоканальный наконечник для экстракции нуклеиновых кислот, белков и пептидов

Группа изобретений относится к многоканальным устройствам, модифицированным нанослоями анилинсодержащих полимеров. Предложен многоканальный наконечник для выделения нуклеиновых кислот, белков, пептидов и способ изготовления многоканального элемента, входящего в состав многоканального...
Тип: Изобретение
Номер охранного документа: 0002547597
Дата охранного документа: 10.04.2015
10.06.2015
№216.013.524d

Фотонно-кристаллическое халькогенидное волокно и способ его изготовления

Изобретение относится к волоконной оптике. Фотонно-кристаллическое халькогенидное волокно состоит из центрального волноведущего стержня из халькогенидного стекла, микроструктурной волноведущей оболочки из чередующихся слоев халькогенидного стекла и воздушных зазоров и второй защитной...
Тип: Изобретение
Номер охранного документа: 0002552590
Дата охранного документа: 10.06.2015
27.07.2015
№216.013.67eb

Металлодиэлектрическая структура и способ ее изготовления

Металл-диэлектрическая структура и способ ее изготовления относятся к электронной промышленности и электротехнике и может найти применение как в современных энергосберегающих системах, так и в компонентах, которые являются неотъемлемой частью современных процессоров, в частности для создания...
Тип: Изобретение
Номер охранного документа: 0002558156
Дата охранного документа: 27.07.2015
10.12.2015
№216.013.992a

Способ выделения и очистки квантовых точек, заключенных в оболочки оксида кремния

Использование: для получения стабильных водных растворов полупроводниковых квантовых точек (КТ), покрытых оболочками оксида кремния, полученных на основе кремнийорганических соединений различного строения. Сущность изобретения заключается в том, что способ выделения и очистки квантовых точек,...
Тип: Изобретение
Номер охранного документа: 0002570830
Дата охранного документа: 10.12.2015
Showing 1-10 of 46 items.
10.06.2013
№216.012.4868

Способ повышения стабильности водного раствора квантовых точек - наночастиц селенида кадмия, покрытых меркаптокислотами

Изобретение относится к аналитической химии. Водный раствор квантовых точек на основе селенида кадмия, покрытых меркаптокислотой, стабилизируют, вводя сульфит натрия до его концентрации в растворе 0,02-0,2 моль/л. Технический результат - повышение стабильности водного раствора квантовых точек...
Тип: Изобретение
Номер охранного документа: 0002484116
Дата охранного документа: 10.06.2013
10.02.2014
№216.012.9fae

Способ определения уровня токсикантов в воде, продуктах питания или физиологических жидкостях и тест-система

Группа изобретений относится к области биотехнологии и может быть использована для определения уровня токсикантов в воде, продуктах питания или физиологических жидкостях. Способ осуществляют путем проведения в колонке тест-системы иммуноферментного анализа, включающего размещение в колонке...
Тип: Изобретение
Номер охранного документа: 0002506586
Дата охранного документа: 10.02.2014
27.02.2014
№216.012.a756

Способ определения уровня токсикантов в воде, продуктах питания или физиологических жидкостях и тест-система

Группа изобретений относится к области биотехнологии и может быть использована для повышения эффективности и достоверности определения уровня токсикантов в различных средах путем проведения твердофазного иммуноферментного анализа. Способ, осуществляемый путем проводимого в колонке тест-системы...
Тип: Изобретение
Номер охранного документа: 0002508553
Дата охранного документа: 27.02.2014
20.10.2014
№216.012.fef7

Фотонно-кристаллический волновод для селективного пропускания оптического излучения

Изобретение относится к волоконной оптике. Фотонно-кристаллический волновод гексагональной формы содержит оболочку и полую сердцевину, в которую введен мультислой капилляров. Период и диаметр каналов мультислоя капилляров, близкими или много меньшими длины волны излучения требуемого...
Тип: Изобретение
Номер охранного документа: 0002531127
Дата охранного документа: 20.10.2014
10.01.2015
№216.013.1c6f

Способ определения уровня токсикантов в воде, продуктах питания или физиологических жидкостях и тест-система

Группа изобретений относится к области биотехнологии. Более подробно группа изобретений относится к способу определения уровня токсикантов в воде, продуктах питания или физиологических жидкостях и тест-системе. Группа изобретений основана на том, что в колонке тест-системы размещают носитель в...
Тип: Изобретение
Номер охранного документа: 0002538707
Дата охранного документа: 10.01.2015
10.04.2015
№216.013.3ed9

Способ определения уровня токсикантов в воде, продуктах питания или физиологических жидкостях и тест-система

Изобретение относится к области биотехнологии и может быть использовано для повышения эффективности и достоверности определения уровня токсикантов в воде, продуктах питания или физиологических жидкостях путем проведения твердофазного иммуноферментного анализа. Способ определения уровня...
Тип: Изобретение
Номер охранного документа: 0002547577
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3eed

Многоканальный наконечник для экстракции нуклеиновых кислот, белков и пептидов

Группа изобретений относится к многоканальным устройствам, модифицированным нанослоями анилинсодержащих полимеров. Предложен многоканальный наконечник для выделения нуклеиновых кислот, белков, пептидов и способ изготовления многоканального элемента, входящего в состав многоканального...
Тип: Изобретение
Номер охранного документа: 0002547597
Дата охранного документа: 10.04.2015
10.06.2015
№216.013.524d

Фотонно-кристаллическое халькогенидное волокно и способ его изготовления

Изобретение относится к волоконной оптике. Фотонно-кристаллическое халькогенидное волокно состоит из центрального волноведущего стержня из халькогенидного стекла, микроструктурной волноведущей оболочки из чередующихся слоев халькогенидного стекла и воздушных зазоров и второй защитной...
Тип: Изобретение
Номер охранного документа: 0002552590
Дата охранного документа: 10.06.2015
27.07.2015
№216.013.67eb

Металлодиэлектрическая структура и способ ее изготовления

Металл-диэлектрическая структура и способ ее изготовления относятся к электронной промышленности и электротехнике и может найти применение как в современных энергосберегающих системах, так и в компонентах, которые являются неотъемлемой частью современных процессоров, в частности для создания...
Тип: Изобретение
Номер охранного документа: 0002558156
Дата охранного документа: 27.07.2015
10.12.2015
№216.013.992a

Способ выделения и очистки квантовых точек, заключенных в оболочки оксида кремния

Использование: для получения стабильных водных растворов полупроводниковых квантовых точек (КТ), покрытых оболочками оксида кремния, полученных на основе кремнийорганических соединений различного строения. Сущность изобретения заключается в том, что способ выделения и очистки квантовых точек,...
Тип: Изобретение
Номер охранного документа: 0002570830
Дата охранного документа: 10.12.2015
+ добавить свой РИД