×
25.08.2017
217.015.a8ad

Результат интеллектуальной деятельности: Способ получения наноразмерных частиц гексаферрита бария

Вид РИД

Изобретение

Аннотация: Изобретение относится к области наноразмерной технологии и может быть использовано для создания носителей информации с высокой плотностью записи, магнитных сенсоров с высокой чувствительностью и т.п., а также для применения в области медицины. Способ получения наноразмерных частиц гексаферрита бария включает смешивание раствора нитрата бария в дистиллированной воде с раствором нитрата железа в растворе глицерина и дистиллированной воды с достижением атомного отношения Ba/Fe=1:10, непрерывный нагрев и перемешивание при 50°С в течение одного часа, добавление аммиака и полиэтиленгликоля в соотношении 5:1, перемешивание полученной смеси при 80°С в течение 8 часов, центрифугирование при скорости 11000 об/мин, прокаливание при 450°С в течение 1,5 часов и спекание при температуре 1000-1100°С, при этом все процессы нагревания и перемешивания проводятся под воздействием непрерывного ультразвукового облучения частоты 10-25 кГц. Изобретение обеспечивает повышение однородности размеров наночастиц гексаферрита бария. 3 пр.

Изобретение относится к области наноразмерной технологии и может быть использовано для создания перспективных устройств: новые носители информации с высокой плотностью записи, магнитные сенсоры с высокой чувствительностью и т.п., а также для применения в области медицины.

Существует способ получения гексаферрита бария керамической технологией (см.: Летюк Л.М., Костишин В.Г., Гончар А.В. Технология ферритовых материалов магнитоэлектроники. - М.: МИСиС, 2005. - 352 с.). Указанный способ состоит из следующих операций. В начале смешиваются порошки карбоната бария BaCO3 и двуокиси железа Fe2O3 в необходимой пропорции и брикетируются. Затем брикеты отжигаются при температуре 1150°C во вращающейся печи. После проводят операцию помола в вибромельнице, прессовку, сушку и спекание в течение 6 часов при температуре 1100°C.

Основной недостаток настоящего способа - невозможность получить наноразмерные частицы гексаферрита бария.

Наиболее близким к предлагаемому способу (прототипом) является способ получения гексаферрита стронция методом прекурсоров в полимере, позволяющий добиться более равномерного распределения размеров зерен (см.: G. Tan, X. Chen. Synthesis, Structures, and Multiferroic Properties of Strontium Hexaferrite Ceramics // J. Elect. Mater., V. 42, №5, 2013, P. 906-911). Указанный способ состоит в следующем. Соли нитратов железа (III) и стронция растворяли в растворе глицерина и в воде и затем растворы смешивали при атомарном соотношении Sr/Fe как 1:10. Смесь непрерывно нагревали и перемешивали при 50°C в течение 1 ч. После этого добавляли аммиак и полиэтиленгликоль и выдерживали раствор при непрерывном перемешивании и нагреве при 80°C в течение 8 ч. Затем дисперсию центрифугировали при скорости 12000 об/мин. Остаток прокаливали при 450°C в течение 1,5 ч. Прессовали 0,1 г порошка в гранулы и отжигали при 1000-1100°C.

Недостаток настоящего способа - недостаточная однородность распределения размеров зерен в гексаферрите и невозможность получения гексаферрита бария.

Технический результат - повышение однородности размеров наночастиц гексаферита бария.

Технический результат достигается тем, что во время проведения операций непрерывного нагрева и перемешивания на смеси воздействовали непрерывным ультразвуковым облучением с частотой 10÷25 кГц.

Сущность изобретения состоит в следующем. При воздействии ультразвука: вещества, участвующие в реакции, становятся мелкодисперсными, что намного повышает их химическую активность, вследствие чего значительно увеличивается однородность смеси. Пределы ультразвукового излучения 10÷25 кГц выбраны из следующих соображений. При облучении меньше 10 кГц не было замечено влияния на размеры наночастиц гексаферрита бария. А при облучении больше 25 кГц смесь реагировала очень бурно (лавинообразно), что приводило к невозможности дальнейшего продолжения получения гексаферрита бария.

Способ включает растворение навесок нитрата бария и нитрата железа (III) в дистиллированной и в растворе глицерина и дистиллированной воды соответственно (с достижением атомного отношения Ba/Fe=1:10), непрерывный нагрев с перемешиванием при 50°С в течение одного часа, добавление аммиака и полиэтиленгликоля в соотношении 5:1, перемешивание полученной смеси при 80°C в течение 8 часов, центрифугирование при скорости 11000 об/мин, прокаливание при 450°C в течение 1,5 часов и спекание при температуре 1000÷1100°С. Все процессы непрерывного нагревания и перемешивания проводятся под воздействием непрерывного ультразвукового облучения 10÷25 кГц.

Пример 1. Навески нитрата железа (III) 12,3051 г и нитрата бария 0,7881 г растворяли в 60 мл растворе глицерина (45 мл) и дистиллированной воды (15 мл) и в 60 мл дистиллированной воде соответственно. После смешивания полученных растворов смесь непрерывно подвергали перемешиванию, нагреву при 50°С и ультразвуковому облучению с частотой 10 кГц в течение 1 часа. После этой процедуры в раствор добавляли 300 мл водного аммиака и 60 мл полиэтиленгликоля. Затем полученную коллоидную дисперсию снова непрерывно подвергали перемешиванию, нагреву при 80°C и ультразвуковому облучению с частотой 10 кГц в течение 8 часов. Сразу после этого дисперсию центрифугировали при 11000 об/мин. Полученный осадок прокаливали при 450°C в течение 1,5 часов. Затем порошок отжигали на воздухе в течение 3 часов при 1100°С.

Данные мессбауэровской спектроскопии показали, что полученные наночастицы представляют собой наночастицы BaFe12O19. Результаты мессбауэровской спектроскопии подтвердились результатами рентгеноструктурного анализа. По данным сканирующей электронной микроскопии, в результате проведенной работы были получены наночастицы BaFe12O19 размером 90-170 нм.

Пример 2. Навески нитрата железа (III) 12,3050 г и нитрата бария 0,7883 г растворяли в 60 мл растворе глицерина (45 мл) и дистиллированной воды (15 мл) и в 60 мл дистиллированной воде соответственно. После смешивания полученных растворов смесь непрерывно подвергали перемешиванию, нагреву при 50°C и ультразвуковому облучению с частотой 25 кГц в течение 1 часа. После этой процедуры в раствор добавляли 300 мл водного аммиака и 60 мл полиэтиленгликоля. Затем полученную коллоидную дисперсию снова непрерывно подвергали перемешиванию, нагреву при 80°C и ультразвуковому облучению с частотой 25 кГц в течение 8 часов. Сразу после этого дисперсию центрифугировали при 11000 об/мин. Полученный осадок прокаливали при 450°C в течение 1,5 часов. Затем порошок отжигали на воздухе в течение 3 часов при 1100°C.

Данные мессбауэровской спектроскопии показали, что полученные наночастицы представляют собой наночастицы BaFe12O19. Результаты мессбауэровской спектроскопии подтвердились результатами рентгеноструктурного анализа. По данным сканирующей электронной микроскопии, в результате проведенной работы были получены наночастицы BaFe12O19 размером 80-150 нм.

Пример 3. Навески нитрата железа (III) 12,3054 г и нитрата бария 0,7886 г растворяли в 60 мл растворе глицерина (45 мл) и дистиллированной воды (15 мл) и в 60 мл дистиллированной воде соответственно. После смешивания полученных растворов смесь непрерывно подвергали перемешиванию, нагреву при 50°С и ультразвуковому облучению с частотой 25 кГц в течение 1 часа. После этой процедуры в раствор добавляли 300 мл водного аммиака и 60 мл полиэтиленгликоля. Затем полученную коллоидную дисперсию снова непрерывно подвергали перемешиванию, нагреву при 80°С и ультразвуковому облучению с частотой 25 кГц в течение 8 часов. Сразу после этого дисперсию центрифугировали при 11000 об/мин. Полученный осадок прокаливали при 450°С в течение 1,5 часов. Затем порошок отжигали на воздухе в течение 3 часов при 1000°С.

Данные мессбауэровской спектроскопии показали, что полученные наночастицы представляют собой наночастицы BaFe12O19. Результаты мессбауэровской спектроскопии подтвердились результатами рентгеноструктурного анализа. По данным сканирующей электронной микроскопии, в результате проведенной работы были получены наночастицы BaFe12O19 размером 70-140 нм.

Способ получения наноразмерных частиц гексаферрита бария, включающий смешивание раствора нитрата металла II-й группы в дистиллированной воде с раствором нитрата железа в растворе глицерина и дистиллированной воды (с достижением атомного отношения Me/Fe=1:10), непрерывный нагрев с перемешиванием при 50°С в течение одного часа, добавление аммиака и полиэтиленгликоля в соотношении 5:1, перемешивание полученной смеси при 80°С в течение 8 часов, центрифугирование при скорости 11000 об/мин, прокаливание при 450°С в течение 1,5 часов и спекание при температуре 1000÷1100°С, отличающийся тем, что все процессы нагревания и перемешивания проводятся под воздействием непрерывного ультразвукового облучения 10÷25 кГц, а в качестве нитрата металла II-й группы используется нитрат бария.
Источник поступления информации: Роспатент

Showing 181-190 of 344 items.
13.02.2018
№218.016.20a4

Устройство для повышения тягового усилия локомотива

Изобретение относится к области железнодорожного транспорта, в частности к устройствам для повышения тягового усилия локомотива. Устройство для повышения тягового усилия локомотива включает систему подачи песка под колеса локомотива, систему дополнительных воздуховодов, расположенных попарно по...
Тип: Изобретение
Номер охранного документа: 0002641611
Дата охранного документа: 18.01.2018
13.02.2018
№218.016.22ce

Способ повышения тягового усилия локомотива

Изобретение относится к рельсовому железнодорожному транспорту, в частности к способам повышения тяговых усилий локомотива. Способ повышения тягового усилия локомотива включает подачу песка под ведущие колеса локомотива непосредственно в место контакта ведущего колеса с рельсом в момент начала...
Тип: Изобретение
Номер охранного документа: 0002641957
Дата охранного документа: 23.01.2018
13.02.2018
№218.016.268e

Способ получения акриловой кислоты

Изобретение относится к одностадийному способу газофазного окисления пропана с образованием акриловой кислоты в присутствии смешанного металлоксидного катализатора в избытке кислорода воздуха по отношению к пропану. Изобретение также относится к области электротехники и может быть...
Тип: Изобретение
Номер охранного документа: 0002644158
Дата охранного документа: 08.02.2018
13.02.2018
№218.016.2694

Способ получения адаптивного износостойкого покрытия ti-al-mo-n для защиты от изнашивания в меняющихся условиях трения

Изобретение относится к составам и способам получения износостойких покрытий для защиты от изнашивания и может быть использовано в парах трения в машиностроении, металлообработке и нефтедобыче. Способ получения износостойкого покрытия на основе TiN с добавлением Мо методом PVD на твердосплавном...
Тип: Изобретение
Номер охранного документа: 0002644094
Дата охранного документа: 07.02.2018
13.02.2018
№218.016.2707

Промежуточный ковш для непрерывной разливки стали

Изобретение относится к области металлургии и может быть использовано при обработке стали инертным газом в промежуточном ковше. В промежуточном ковше (3) установлена огнеупорная рафинирующая перегородка (1), разделяющая его полость на приемную (4) и разливочную (5) камеры. Перегородка (1) имеет...
Тип: Изобретение
Номер охранного документа: 0002644095
Дата охранного документа: 07.02.2018
17.02.2018
№218.016.2bc3

Радиоизотопный механо-электрический генератор

Изобретение относится к радиоизотопным механо-электрическим генераторам с пьезоэлектрическим кантилевером. Устройство включает отдельно расположенный радиоизотопный источник постоянного напряжения в виде плоскопараллельного конденсатора, одна обкладка которого, закрепленная на первой...
Тип: Изобретение
Номер охранного документа: 0002643151
Дата охранного документа: 31.01.2018
17.02.2018
№218.016.2dd8

Способ фракционирования полидисперсных смесей нано- и микрочастиц

Изобретение относится к области фракционирования полидисперсных смесей нано- и микрочастиц и может быть применено для выделения фракций частиц заданного размерного диапазона. Согласно способу фракционирования полидисперсных смесей нано- и микрочастиц суспензию смеси частиц, приготовленную на...
Тип: Изобретение
Номер охранного документа: 0002643539
Дата охранного документа: 02.02.2018
04.04.2018
№218.016.2f1a

Способ определения термостойкости углей к их циклическому замораживанию и оттаиванию

Изобретение относится к метрологии, в частности к способам определения термостойкости углей при их циклическом замораживании и оттаивании. Сущность: осуществляют циклическое замораживание и оттаивание однотипных образцов углей при числе М циклов, равном порядковому номеру соответствующего...
Тип: Изобретение
Номер охранного документа: 0002644615
Дата охранного документа: 13.02.2018
04.04.2018
№218.016.2f5b

Электролизер

Изобретение относится к электролизеру для электрохимического осаждения цинка электролизом водных растворов. Электролизер содержит корпус с расположенными внутри него монополярными электродами - анодами и катодами, и средство периодического реверса тока, выполненное в виде дополнительных...
Тип: Изобретение
Номер охранного документа: 0002644715
Дата охранного документа: 13.02.2018
04.04.2018
№218.016.2ff1

Способ получения электродов из сплавов на основе алюминида никеля

Изобретение относится к области специальной металлургии, в частности к получению электродов из высоколегированных сплавов на основе алюминидов никеля. Способ включает получение полуфабриката методом центробежного СВС-литья с использованием реакционной смеси, содержащей оксид никеля, алюминий,...
Тип: Изобретение
Номер охранного документа: 0002644702
Дата охранного документа: 13.02.2018
Showing 181-190 of 218 items.
13.02.2018
№218.016.20a4

Устройство для повышения тягового усилия локомотива

Изобретение относится к области железнодорожного транспорта, в частности к устройствам для повышения тягового усилия локомотива. Устройство для повышения тягового усилия локомотива включает систему подачи песка под колеса локомотива, систему дополнительных воздуховодов, расположенных попарно по...
Тип: Изобретение
Номер охранного документа: 0002641611
Дата охранного документа: 18.01.2018
13.02.2018
№218.016.22ce

Способ повышения тягового усилия локомотива

Изобретение относится к рельсовому железнодорожному транспорту, в частности к способам повышения тяговых усилий локомотива. Способ повышения тягового усилия локомотива включает подачу песка под ведущие колеса локомотива непосредственно в место контакта ведущего колеса с рельсом в момент начала...
Тип: Изобретение
Номер охранного документа: 0002641957
Дата охранного документа: 23.01.2018
13.02.2018
№218.016.268e

Способ получения акриловой кислоты

Изобретение относится к одностадийному способу газофазного окисления пропана с образованием акриловой кислоты в присутствии смешанного металлоксидного катализатора в избытке кислорода воздуха по отношению к пропану. Изобретение также относится к области электротехники и может быть...
Тип: Изобретение
Номер охранного документа: 0002644158
Дата охранного документа: 08.02.2018
13.02.2018
№218.016.2694

Способ получения адаптивного износостойкого покрытия ti-al-mo-n для защиты от изнашивания в меняющихся условиях трения

Изобретение относится к составам и способам получения износостойких покрытий для защиты от изнашивания и может быть использовано в парах трения в машиностроении, металлообработке и нефтедобыче. Способ получения износостойкого покрытия на основе TiN с добавлением Мо методом PVD на твердосплавном...
Тип: Изобретение
Номер охранного документа: 0002644094
Дата охранного документа: 07.02.2018
13.02.2018
№218.016.2707

Промежуточный ковш для непрерывной разливки стали

Изобретение относится к области металлургии и может быть использовано при обработке стали инертным газом в промежуточном ковше. В промежуточном ковше (3) установлена огнеупорная рафинирующая перегородка (1), разделяющая его полость на приемную (4) и разливочную (5) камеры. Перегородка (1) имеет...
Тип: Изобретение
Номер охранного документа: 0002644095
Дата охранного документа: 07.02.2018
17.02.2018
№218.016.2bc3

Радиоизотопный механо-электрический генератор

Изобретение относится к радиоизотопным механо-электрическим генераторам с пьезоэлектрическим кантилевером. Устройство включает отдельно расположенный радиоизотопный источник постоянного напряжения в виде плоскопараллельного конденсатора, одна обкладка которого, закрепленная на первой...
Тип: Изобретение
Номер охранного документа: 0002643151
Дата охранного документа: 31.01.2018
17.02.2018
№218.016.2dd8

Способ фракционирования полидисперсных смесей нано- и микрочастиц

Изобретение относится к области фракционирования полидисперсных смесей нано- и микрочастиц и может быть применено для выделения фракций частиц заданного размерного диапазона. Согласно способу фракционирования полидисперсных смесей нано- и микрочастиц суспензию смеси частиц, приготовленную на...
Тип: Изобретение
Номер охранного документа: 0002643539
Дата охранного документа: 02.02.2018
04.04.2018
№218.016.2f1a

Способ определения термостойкости углей к их циклическому замораживанию и оттаиванию

Изобретение относится к метрологии, в частности к способам определения термостойкости углей при их циклическом замораживании и оттаивании. Сущность: осуществляют циклическое замораживание и оттаивание однотипных образцов углей при числе М циклов, равном порядковому номеру соответствующего...
Тип: Изобретение
Номер охранного документа: 0002644615
Дата охранного документа: 13.02.2018
04.04.2018
№218.016.2f5b

Электролизер

Изобретение относится к электролизеру для электрохимического осаждения цинка электролизом водных растворов. Электролизер содержит корпус с расположенными внутри него монополярными электродами - анодами и катодами, и средство периодического реверса тока, выполненное в виде дополнительных...
Тип: Изобретение
Номер охранного документа: 0002644715
Дата охранного документа: 13.02.2018
04.04.2018
№218.016.2ff1

Способ получения электродов из сплавов на основе алюминида никеля

Изобретение относится к области специальной металлургии, в частности к получению электродов из высоколегированных сплавов на основе алюминидов никеля. Способ включает получение полуфабриката методом центробежного СВС-литья с использованием реакционной смеси, содержащей оксид никеля, алюминий,...
Тип: Изобретение
Номер охранного документа: 0002644702
Дата охранного документа: 13.02.2018
+ добавить свой РИД