×
25.08.2017
217.015.a6ab

Результат интеллектуальной деятельности: СПОСОБ ОЦЕНКИ ПАРАМЕТРОВ МОДЕЛИ ЗАМИРАНИЯ ОГИБАЮЩЕЙ СИГНАЛА ПО ЗАКОНУ НАКАГАМИ ПО ИНФОРМАЦИОННОМУ МНОГОЧАСТОТНОМУ СИГНАЛУ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области электрорадиотехники и связи и может быть использовано в системах передачи данных, использующих многочастотные сигналы с ортогональным частотным разделением каналов для оценки параметров канала связи. Техническим результатом заявленного изобретения является обеспечение более точного определения параметров модели замирания огибающей сигнала по закону Накагами по информационному многочастотному сигналу в случае наличия на приемной стороне блока автоматической регулировки усиления. Кроме того, данный способ не требует наличия тестового сигнала. Технический результат достигается благодаря тому, что в предложенном способе осуществляется измерение значений амплитуды смеси сигнала и шума на частотах, используемых для передачи информационного сигнала, и значений амплитуды шума на частотах, неиспользуемых для передачи информационного сигнала, и используется аналитическое выражение для плотности случайной величины, равной отношению измеренных величин. 1 ил.

Изобретение относится к области электрорадиотехники и связи и может быть использовано в системах передачи данных, использующих многочастотные сигналы с ортогональным частотным разделением каналов, для оценки параметров канала связи.

Для обеспечения стабильной работы системы передачи данных необходимо осуществлять контроль качества используемого канала связи. Критерием качества канала в цифровых системах связи является вероятность ошибки на бит, которая однозначно связана с параметрами модели замираний. Поэтому актуальной является задача определения параметров модели замирания огибающей сигнала по закону Накагами по результатам анализа информационного многочастотного сигнала.

Наиболее близким к заявленному техническому решению является способ, описанный в [Y. Chen, N.C. Beaulieu, C. Tellambura. "Novel Nakagami-m Parameter Estimator for Noisy Channel Samples", IEEE Communications Letters, vol. 9, no. 5, may 2005], который принят за прототип. Оценка параметров формируется с помощью анализа амплитуд полезного сигнала и шума на основе метода моментов.

Известный способ определения параметров распределения Накагами работает следующим образом. На приемной стороне оцифровывают принимаемый сигнал в аналогово-цифровом преобразователе (АЦП), затем передают оцифрованный сигнал с выхода АЦП на вход первого блока вычисления амплитуды, в котором определяют амплитуду принимаемого сигнала на частоте, используемой для передачи информационного сигнала на длительности элементарной посылки. Одновременно с выхода АЦП передают оцифрованный сигнал на вход второго блока вычисления амплитуды, в котором определяют амплитуду принимаемого сигнала на частоте, неиспользуемой для передачи информационного сигнала на длительности элементарной посылки, определяя, таким образом, амплитуду шума. Затем с выхода первого блока вычисления амплитуды вычисленное значение амплитуды передают на вход первого квадратора, в котором полученное значение возводят в квадрат. Далее с выхода первого квадратора полученное значение передают одновременно на вход первого блока накопления, в котором накапливают последние N значений. С выхода первого блока накопления накопленный массив значений передают на вход первого сумматора, в котором вычисляют сумму всех N значений массива. Затем с выхода первого сумматора вычисленное значение передают на вход первого делителя, в котором делят полученное значение на N, а результат деления m2 передают одновременно на первый вход блока нахождения среднего значения отношения сигнал/шум и на первый вход блока вычисления коэффициента В. При этом одновременно с выхода первого блока вычисления амплитуды вычисленное значение амплитуды передают на вход второго блока накопления, в котором накапливают последние N значений. С выхода второго блока накопления накопленный массив значений передают на вход второго сумматора, в котором вычисляют сумму всех N значений массива. Затем с выхода второго сумматора вычисленное значение передают на вход второго делителя, в котором делят полученное значение на N, а результат деления m1 передают на второй вход блока вычисления коэффициента В. При этом с выхода второго блока вычисления амплитуды вычисленное значение амплитуды шума передают на вход второго квадратора, в котором полученное значение возводят в квадрат. Далее с выхода второго квадратора полученное значение передают одновременно на вход третьего блока накопления, в котором накапливают последние N значений. С выхода третьего блока накопления накопленный массив значений передают на вход третьего сумматора, в котором вычисляют сумму всех N значений массива. Затем с выхода третьего сумматора вычисленное значение передают на вход третьего делителя, в котором делят полученное значение на N, а результат деления S передают на второй вход блока нахождения среднего значения отношения сигнал/шум. При этом в блоке нахождения среднего значения отношения сигнал/шум делят полученное значение в первого входа на значение, полученное со второго входа и вычитают из результата деления единицу, получая таким образом среднее значение отношения сигнал/шум h. Полученное среднее значение отношения сигнал/шум с выхода блока нахождения среднего значения отношения сигнал/шум передают одновременно на вход блока вычисления коэффициента А, на вход блока вычисления коэффициента С и на третий вход блока вычисления коэффициента В. При этом в блоке вычисления коэффициента А определяют коэффициент А по формуле , в блоке вычисления коэффициента В определяют коэффициент В по формуле , в блоке вычисления коэффициента С определяют коэффициент С по формуле , где коэффициенты , , , , , , , , , являются коэффициентами полинома, определяются заранее и равны , , , , , , , , . Далее с выхода блока вычисления коэффициента А передают значение коэффициента А на первый вход блока нахождения параметров распределения, также с выхода блока вычисления коэффициента В передают значение коэффициента В на второй вход блока нахождения параметров распределения, а с выхода блока вычисления коэффициента С передают значение коэффициента С на третий вход блока нахождения параметров распределения. В блоке нахождения параметров распределения определяют параметр распределения m по формуле .

На приемной стороне реальных систем связи обычно присутствует блок автоматической регулировки усиления (АРУ) для приведения уровня входного сигнала к значению, обеспечивающему оптимальную работу АЦП. В таком случае, выборочная плотность амплитуды не будет являться соответствующей состоятельной оценкой истинной плотности распределения. Таким образом, недостатком прототипа является то, что он не учитывает наличие блока АРУ и получаемая данным способом оценка будет обладать большой погрешностью.

Целью изобретения является получение оценки параметров модели замирания радиоканала по закону Накагами путем анализа принимаемого информационного многочастотного сигнала.

Поставленная цель достигается тем, что способ оценки параметров модели замирания огибающей сигнала по закону Накагами по информационному многочастотному сигналу состоит в том, что на приемной стороне оцифровывают принимаемый сигнал в аналогово-цифровом преобразователе, затем передают оцифрованный сигнал с выхода аналогово-цифрового преобразователя на вход первого блока вычисления амплитуды, при этом в нем определяют значение амплитуды смеси принимаемого сигнала и шума на всех n частотах, используемых для передачи информационного сигнала на длительности элементарной посылки, а с n выходов первого блока вычисления амплитуды на первые входы n соответствующих делителей передают вычисленные значения амплитуд, также с выхода аналогово-цифрового преобразователя передают оцифрованный сигнал на вход второго блока вычисления амплитуды, в котором определяют значение амплитуды шума на n частотах, неиспользуемых для передачи информационного сигнала на длительности элементарной посылки, а с n выходов второго блока вычисления амплитуды передают вычисленные значения амплитуд на вторые входы n соответствующих делителей, а в каждом делителе осуществляют деление значения амплитуды шума на частоте, неиспользуемой для передачи информационного сигнала, полученное по второму входу на значение амплитуды смеси сигнала и шума на частоте, используемой для передачи информационного сигнала, полученное по первому входу, а результат деления передают с выходов n делителей на n соответствующих входов блока накопления, в котором накапливают выборку полученных n значений на длительности интервала анализа, равной М посылкам, получая, таким образом, выборку размером n×М значений, а с выхода блока накопления передают накопленный массив значений на вход блока вычисления параметров распределения, в котором, например, методом наискорейшего спуска, определяют параметры модели замирания огибающей сигнала по закону Накагами m и , являющиеся координатами максимума функции правдоподобия , где xi - это i-е значение выборки, - плотность распределения вероятности измеряемой случайной величины.

Структурная схема предложенного способа приведена на фиг. 1.

Способ основан на следующих предположениях.

В общем случае для определения плотности распределения огибающей сигнала в канале с замираниями, когда доступными для измерения являются только значения огибающей смеси сигнал + шум, можно использовать подход, заключающийся в том, чтобы по плотности распределения огибающей смеси сигнал + шум определить параметры распределения Райса. При этом восстановить истинную плотность распределения огибающей можно, используя выборочную плотность распределения огибающей смеси сигнал + шум, получаемую посредством измерений на приемной стороне.

В данном подходе следует учитывать техническую проблему, связанную с тем, что на приемной стороне чаще всего сигнал перед обработкой проходит через устройство автоматической регулировки усиления (АРУ). Поскольку коэффициент усиления АРУ неизвестен и динамически меняется в процессе измерений, статистические характеристики выборочной плотности распределения амплитуды сигнала значительно меняются и применение указанных выше способов напрямую дает неадекватные оценки.

Избавиться от указанной трудности при приеме сигнала с использованием АРУ можно, если для оценки параметров модели канала использовать выборку случайных величин, инвариантную к значению коэффициента усиления АРУ. В качестве такой случайной величины может быть использована случайная величина ξ, определяемая как отношение огибающих Ai и Aj, измеренных на длительности одной и той же элементарной посылки на различных субчастотах с номерами i и j:

ξ=Ai/Aj.

Такой подход можно реализовать, если информационный сигнал является многочастотным, и при этом часть субчастот не используются для передачи. Тогда на входе приемника на занятых субчастотах наблюдается смесь информационного сигнала с шумом, а на свободных только шум.

Для описания плотности распределения огибающей шума на свободных субчастотах при гипотезе, что шум является гауссовским, используется плотность распределения Рэлея:

Тогда в качестве Ai можно использовать измеренную огибающую шума, а в качестве Aj - огибающую смеси сигнал + шум.

В случае постоянного уровня информационного сигнала А на соответствующих субчастотах для модели гауссовского шума функцию распределения случайной величины ξ можно найти следующим образом:

Если уровень информационного сигнала А не постоянен, а подвержен замираниям и его плотность распределения WA(x) подчиняется закону Накагами, то в этом случае функция распределения случайной величины ξ можно найти следующим образом:

При этом величина представляет собой среднее значение отношения сигнал/помеха.

Тогда в новых обозначениях функция распределения случайной величины ξ имеет следующий вид:

Выражение для плотности при этом имеет следующий вид:

Сформировав выборку случайной величины ξ и имея аналитическое выражение для ее плотности распределения, можно воспользоваться методом максимального правдоподобия, как одним из методов оценки неизвестных параметров распределений. В данном случае неизвестными параметрами будут и m. Тогда функция правдоподобия L, определяется выражением:

где xi - значение случайной величины ξ, n*М - объем выборки.

В этом случае координаты максимума функции правдоподобия являются оценками искомых величин и m.

Таким образом, приведенные аналитические выводы показывают, что с помощью предложенного способа можно определить параметры модели замирания огибающей сигнала по закону Накагами по информационному многочастотному сигналу. При этом необходимыми данными являются измеренные значения амплитуды смеси сигнала и шума на частотах, используемых для передачи информационного сигнала и значения амплитуды шума на частотах, неиспользуемых для передачи информационного сигнала.

Способ работает следующим образом.

На приемной стороне оцифровывают принимаемый сигнал в аналогово-цифровом преобразователе 1, затем передают оцифрованный сигнал с выхода аналогово-цифрового преобразователя 1 на вход первого блока вычисления амплитуды 2, в котором определяют значение амплитуды смеси принимаемого сигнала и шума на всех n частотах, используемых для передачи информационного сигнала на длительности элементарной посылки. С n выходов первого блока вычисления амплитуды 2 на первые входы n соответствующих делителей 4(1)…4(N) передают вычисленные значения амплитуд. При этом с выхода аналогово-цифрового преобразователя 1 также передают оцифрованный сигнал на вход второго блока вычисления амплитуды 3, в котором определяют значение амплитуды шума на n частотах, неиспользуемых для передачи информационного сигнала на длительности элементарной посылки, а с n выходов второго блока вычисления амплитуды 3 передают вычисленные значения амплитуд на вторые входы n соответствующих делителей 4(1)…4(N). В каждом делителе 4(1)…4(N) осуществляют деление значения амплитуды шума на частоте, неиспользуемой для передачи информационного сигнала, полученное по второму входу на значение амплитуды смеси сигнала и шума на частоте, используемой для передачи информационного сигнала, полученное по первому входу, а результат деления передают с выходов n делителей 4(1)…4(N) на n соответствующих входов блока накопления 5, в котором накапливают выборку полученных n значений на длительности интервала анализа, равной М посылкам, получая, таким образом, выборку размером n×М значений, а с выхода блока накопления 5 передают накопленный массив значений на вход блока вычисления параметров распределения 6, в котором, например, методом наискорейшего спуска, определяют параметры модели замирания огибающей сигнала по закону Накагами m и , являющиеся координатами максимума функции правдоподобия , где xi - это i-е значение выборки, - плотность распределения вероятности измеряемой случайной величины.

Предлагаемый способ может быть использован для систем связи, использующих сигналы с ортогональным многочастотным разделением каналов связи. Применение такого способа позволяет более точно определять параметры замирающего канала связи.

Предлагаемое устройство по сравнению с прототипом обладает следующим преимуществом: обеспечивает более точное определение параметров модели замирания огибающей сигнала по закону Накагами по информационному многочастотному сигналу в случае наличия на приемной стороне блока автоматической регулировки усиления.

Способ оценки параметров модели замирания огибающей сигнала по закону Накагами по информационному многочастотному сигналу, заключающийся в том, что на приемной стороне оцифровывают принимаемый сигнал в аналогово-цифровом преобразователе, затем передают оцифрованный сигнал с выхода аналогово-цифрового преобразователя одновременно на вход первого блока вычисления амплитуды и на вход второго блока вычисления амплитуды, отличающийся тем, что в первом блоке вычисления амплитуды определяют значение амплитуды смеси принимаемого сигнала и шума на всех n частотах, используемых для передачи информационного сигнала, на длительности элементарной посылки, а с n выходов первого блока вычисления амплитуды на первые входы n соответствующих делителей передают вычисленные значения амплитуд, также во втором блоке вычисления амплитуды определяют значение амплитуды шума на n частотах, неиспользуемых для передачи информационного сигнала, на длительности элементарной посылки, а с n выходов второго блока вычисления амплитуды передают вычисленные значения амплитуд на вторые входы n соответствующих делителей, в каждом делителе осуществляют деление значения амплитуды шума на частоте, неиспользуемой для передачи информационного сигнала, полученное по второму входу на значение амплитуды смеси сигнала и шума на частоте, используемой для передачи информационного сигнала полученное по первому входу, а результат деления передают с выхода каждого из n делителей на n соответствующих входов блока накопления, в котором накапливают выборку полученных n значений на длительности интервала анализа, равной М посылкам, получая, таким образом, выборку размером n×М значений, а с выхода блока накопления передают накопленный массив значений на вход блока вычисления параметров распределения, в котором методом наискорейшего спуска, определяют параметры модели замирания огибающей сигнала по закону Накагами m и , являющиеся координатами максимума функции правдоподобия , где x - это i-е значение выборки, а - плотность распределения вероятности измеряемой случайной величины.
СПОСОБ ОЦЕНКИ ПАРАМЕТРОВ МОДЕЛИ ЗАМИРАНИЯ ОГИБАЮЩЕЙ СИГНАЛА ПО ЗАКОНУ НАКАГАМИ ПО ИНФОРМАЦИОННОМУ МНОГОЧАСТОТНОМУ СИГНАЛУ
СПОСОБ ОЦЕНКИ ПАРАМЕТРОВ МОДЕЛИ ЗАМИРАНИЯ ОГИБАЮЩЕЙ СИГНАЛА ПО ЗАКОНУ НАКАГАМИ ПО ИНФОРМАЦИОННОМУ МНОГОЧАСТОТНОМУ СИГНАЛУ
СПОСОБ ОЦЕНКИ ПАРАМЕТРОВ МОДЕЛИ ЗАМИРАНИЯ ОГИБАЮЩЕЙ СИГНАЛА ПО ЗАКОНУ НАКАГАМИ ПО ИНФОРМАЦИОННОМУ МНОГОЧАСТОТНОМУ СИГНАЛУ
СПОСОБ ОЦЕНКИ ПАРАМЕТРОВ МОДЕЛИ ЗАМИРАНИЯ ОГИБАЮЩЕЙ СИГНАЛА ПО ЗАКОНУ НАКАГАМИ ПО ИНФОРМАЦИОННОМУ МНОГОЧАСТОТНОМУ СИГНАЛУ
Источник поступления информации: Роспатент

Showing 61-68 of 68 items.
20.01.2018
№218.016.11f8

Способ формирования многочастотного сигнала

Изобретение относится к области радиотехники и связи и может быть использовано для улучшения линейности усиления многочастотных сигналов. Технический результат заключается в снижении динамического диапазона многочастотных сигналов. Предложенный способ позволяет определить начальные фазы...
Тип: Изобретение
Номер охранного документа: 0002634188
Дата охранного документа: 24.10.2017
20.01.2018
№218.016.1931

Способ установления битовой синхронизации псевдослучайных последовательностей с использованием принципов декодирования

Изобретение относится к технике связи и может быть использовано в системах передачи данных. Техническим результатом является уменьшение времени на установление битовой синхронизации между принимаемой псевдослучайной последовательностью и последовательностью, вырабатываемой в приемнике, при...
Тип: Изобретение
Номер охранного документа: 0002636094
Дата охранного документа: 20.11.2017
20.01.2018
№218.016.1d23

Устройство передачи информации с подводной лодки бесконтактным методом

Изобретение относится к области радиотехники и может быть использовано для передачи сообщений с подводной лодки, находящейся в погруженном состоянии. Технический результат состоит в передаче сообщений с подводной лодки бесконтактным методом. Технический результат достигается за счет...
Тип: Изобретение
Номер охранного документа: 0002640577
Дата охранного документа: 10.01.2018
13.02.2018
№218.016.2352

Автоматическое аварийное устройство для остановки прокладываемого подводного кабеля

Изобретение относится к области судостроения и может быть использовано на кабельных судах для аварийной остановки прокладываемого подводного кабеля. Предложено устройство для аварийной остановки прокладываемого подводного кабеля, содержащее корпус со смонтированными в нем силовым электрическим...
Тип: Изобретение
Номер охранного документа: 0002642025
Дата охранного документа: 23.01.2018
17.02.2018
№218.016.2d5f

Устройство оценки частоты гармонического зашумлённого сигнала

Изобретение относится к области электрорадиотехники и может быть использовано в измерительной технике, в системах передачи данных и системах радиолокации для оценки частоты принимаемого сигнала. Техническим результатом заявленного изобретения является повышение точности определения частоты...
Тип: Изобретение
Номер охранного документа: 0002643708
Дата охранного документа: 05.02.2018
17.02.2018
№218.016.2e03

Способ оценки вероятности ошибки на бит по результатам декодирования кодовых слов

Изобретение относится к области радиосвязи. Технический результат - повышение скорости передачи данных за счет оценки вероятности ошибки на бит при кодировании с помощью линейного блока помехоустойчивого кода. Способ оценки вероятности ошибки на бит, при котором источник сообщений формирует...
Тип: Изобретение
Номер охранного документа: 0002643571
Дата охранного документа: 02.02.2018
04.04.2018
№218.016.30a8

Высокочастотный трансформатор

Изобретение относится к электротехнике и может быть использовано в радиотехнике в трансформаторных устройствах и устройствах суммирования мощности при построении радиопередатчиков КВ-УКВ диапазонов. Внутри протяженного ферритового сердечника высокочастотного (ВЧ) трансформатора на его оси...
Тип: Изобретение
Номер охранного документа: 0002644764
Дата охранного документа: 14.02.2018
10.07.2019
№219.017.aec8

Подземная передающая модульная активная фазированная антенная решетка

Изобретение относится к радиотехнике, а именно к антенной технике, и может использоваться в качестве передающей в KB или УКВ диапазонах в условиях глубокого заложения излучателей в толщу земли. Технический результат заключается в повышении эффективности и снижении материальных затрат на...
Тип: Изобретение
Номер охранного документа: 0002325742
Дата охранного документа: 27.05.2008
Showing 81-90 of 121 items.
20.05.2019
№219.017.5cc4

Широкополосное радиопередающее устройство

Изобретение относится к радиотехнике и может быть использовано в радиосвязи. Широкополосное радиопередающее устройство содержит лазер с генератором накачки, оптический модулятор, оптическое устройство для формирования луча и введения его в волоконно-оптическую линию связи, N...
Тип: Изобретение
Номер охранного документа: 0002687985
Дата охранного документа: 17.05.2019
01.06.2019
№219.017.7225

Способ генерации электромагнитного излучения в широком диапазоне радиосвязи

Изобретение относится к оптоэлектронике и может быть использовано для генерации электромагнитного излучения в диапазонах радиосвязи. Способ генерации электромагнитного излучения, заключающийся в том, что возбуждающее лазерное излучение модулируется информационным сигналом на частотах радиосвязи...
Тип: Изобретение
Номер охранного документа: 0002690064
Дата охранного документа: 30.05.2019
01.06.2019
№219.017.723c

Широкополосная антенна

Изобретение относится к области радиотехники и может быть использовано в качестве антенны для излучения высокочастотного электромагнитного поля в диапазонах от УКВ до СДВ. Широкополосная антенна состоит из двух полых цилиндров и выводящих кабелей. На стенках цилиндров закреплены солнечные...
Тип: Изобретение
Номер охранного документа: 0002690066
Дата охранного документа: 30.05.2019
20.06.2019
№219.017.8d00

Многоканальная цифровая возбудительная система

Изобретение относится к области радиотехники и связи и может быть использовано в радиопередающей аппаратуре. Технический результат состоит в расширении функиональных возможностей путем реализации новых режимов работы перспективных радиолиний, совершенствование методов цифрового формирования...
Тип: Изобретение
Номер охранного документа: 0002691757
Дата охранного документа: 18.06.2019
04.07.2019
№219.017.a4cd

Способ адаптивного выбора оптимального параметра алгоритма коррекции на основе разброса фаз корректируемого сигнала

Изобретение относится к технике связи и может быть использовано в системах передачи данных с адаптивной коррекцией сигналов для выбора параметра алгоритма коррекции. Техническим результатом является выбор оптимального параметра алгоритма коррекции сигналов на основе анализа разброса фаз...
Тип: Изобретение
Номер охранного документа: 0002693286
Дата охранного документа: 02.07.2019
10.08.2019
№219.017.bd7a

Приемо-передающее оптическое устройство

Изобретение относится к системам связи и навигации и может быть использовано для оперативной доставки команд управления и коррекции инерциальных навигационных комплексов автономных обитаемых подводных объектов. Техническим результатом является активное переотражение оптического сигнала за счет...
Тип: Изобретение
Номер охранного документа: 0002696626
Дата охранного документа: 05.08.2019
02.10.2019
№219.017.cc53

Устройство для обработки речевого сигнала

Изобретение относится к области электротехники и может быть использовано в автоматизированных комплексах связи. Технический результат заключается в повышении надежности работы устройства в условиях высоких шумов. Устройство для обработки речевого сигнала состоит из аналого-цифрового блока...
Тип: Изобретение
Номер охранного документа: 0002701120
Дата охранного документа: 24.09.2019
02.10.2019
№219.017.cd3f

Широкополосный усилитель мощности

Изобретение относится к области радиотехники и связи и может быть использовано при разработке современных широкополосных радиопередатчиков в диапазоне 1,5-30 МГц. Технический результат заключается в построении усилителя мощности по принципу усилителя с распределенной полосой. В заявляемом...
Тип: Изобретение
Номер охранного документа: 0002701115
Дата охранного документа: 24.09.2019
01.11.2019
№219.017.dc53

Устройство автоматической верификации личности по голосу

Изобретение относится к области вычислительной техники для распознавания голоса. Технический результат заключается в повышении точности распознавания голоса для идентификации личности. Технический результат достигается за счет устройства автоматической верификации личности по голосу,...
Тип: Изобретение
Номер охранного документа: 0002704723
Дата охранного документа: 30.10.2019
10.11.2019
№219.017.dfa4

Способ адаптивного выбора оптимального параметра алгоритма коррекции по оценке приема в целом информационного сигнала

Изобретение относится к технике связи и может быть использовано в системах передачи данных с адаптивной коррекцией сигналов для выбора параметра алгоритма коррекции. Техническим результатом является повышение точности оценки оптимального значения алгоритма коррекции выбор оптимального параметра...
Тип: Изобретение
Номер охранного документа: 0002705466
Дата охранного документа: 07.11.2019
+ добавить свой РИД