×
25.08.2017
217.015.a6ab

Результат интеллектуальной деятельности: СПОСОБ ОЦЕНКИ ПАРАМЕТРОВ МОДЕЛИ ЗАМИРАНИЯ ОГИБАЮЩЕЙ СИГНАЛА ПО ЗАКОНУ НАКАГАМИ ПО ИНФОРМАЦИОННОМУ МНОГОЧАСТОТНОМУ СИГНАЛУ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области электрорадиотехники и связи и может быть использовано в системах передачи данных, использующих многочастотные сигналы с ортогональным частотным разделением каналов для оценки параметров канала связи. Техническим результатом заявленного изобретения является обеспечение более точного определения параметров модели замирания огибающей сигнала по закону Накагами по информационному многочастотному сигналу в случае наличия на приемной стороне блока автоматической регулировки усиления. Кроме того, данный способ не требует наличия тестового сигнала. Технический результат достигается благодаря тому, что в предложенном способе осуществляется измерение значений амплитуды смеси сигнала и шума на частотах, используемых для передачи информационного сигнала, и значений амплитуды шума на частотах, неиспользуемых для передачи информационного сигнала, и используется аналитическое выражение для плотности случайной величины, равной отношению измеренных величин. 1 ил.

Изобретение относится к области электрорадиотехники и связи и может быть использовано в системах передачи данных, использующих многочастотные сигналы с ортогональным частотным разделением каналов, для оценки параметров канала связи.

Для обеспечения стабильной работы системы передачи данных необходимо осуществлять контроль качества используемого канала связи. Критерием качества канала в цифровых системах связи является вероятность ошибки на бит, которая однозначно связана с параметрами модели замираний. Поэтому актуальной является задача определения параметров модели замирания огибающей сигнала по закону Накагами по результатам анализа информационного многочастотного сигнала.

Наиболее близким к заявленному техническому решению является способ, описанный в [Y. Chen, N.C. Beaulieu, C. Tellambura. "Novel Nakagami-m Parameter Estimator for Noisy Channel Samples", IEEE Communications Letters, vol. 9, no. 5, may 2005], который принят за прототип. Оценка параметров формируется с помощью анализа амплитуд полезного сигнала и шума на основе метода моментов.

Известный способ определения параметров распределения Накагами работает следующим образом. На приемной стороне оцифровывают принимаемый сигнал в аналогово-цифровом преобразователе (АЦП), затем передают оцифрованный сигнал с выхода АЦП на вход первого блока вычисления амплитуды, в котором определяют амплитуду принимаемого сигнала на частоте, используемой для передачи информационного сигнала на длительности элементарной посылки. Одновременно с выхода АЦП передают оцифрованный сигнал на вход второго блока вычисления амплитуды, в котором определяют амплитуду принимаемого сигнала на частоте, неиспользуемой для передачи информационного сигнала на длительности элементарной посылки, определяя, таким образом, амплитуду шума. Затем с выхода первого блока вычисления амплитуды вычисленное значение амплитуды передают на вход первого квадратора, в котором полученное значение возводят в квадрат. Далее с выхода первого квадратора полученное значение передают одновременно на вход первого блока накопления, в котором накапливают последние N значений. С выхода первого блока накопления накопленный массив значений передают на вход первого сумматора, в котором вычисляют сумму всех N значений массива. Затем с выхода первого сумматора вычисленное значение передают на вход первого делителя, в котором делят полученное значение на N, а результат деления m2 передают одновременно на первый вход блока нахождения среднего значения отношения сигнал/шум и на первый вход блока вычисления коэффициента В. При этом одновременно с выхода первого блока вычисления амплитуды вычисленное значение амплитуды передают на вход второго блока накопления, в котором накапливают последние N значений. С выхода второго блока накопления накопленный массив значений передают на вход второго сумматора, в котором вычисляют сумму всех N значений массива. Затем с выхода второго сумматора вычисленное значение передают на вход второго делителя, в котором делят полученное значение на N, а результат деления m1 передают на второй вход блока вычисления коэффициента В. При этом с выхода второго блока вычисления амплитуды вычисленное значение амплитуды шума передают на вход второго квадратора, в котором полученное значение возводят в квадрат. Далее с выхода второго квадратора полученное значение передают одновременно на вход третьего блока накопления, в котором накапливают последние N значений. С выхода третьего блока накопления накопленный массив значений передают на вход третьего сумматора, в котором вычисляют сумму всех N значений массива. Затем с выхода третьего сумматора вычисленное значение передают на вход третьего делителя, в котором делят полученное значение на N, а результат деления S передают на второй вход блока нахождения среднего значения отношения сигнал/шум. При этом в блоке нахождения среднего значения отношения сигнал/шум делят полученное значение в первого входа на значение, полученное со второго входа и вычитают из результата деления единицу, получая таким образом среднее значение отношения сигнал/шум h. Полученное среднее значение отношения сигнал/шум с выхода блока нахождения среднего значения отношения сигнал/шум передают одновременно на вход блока вычисления коэффициента А, на вход блока вычисления коэффициента С и на третий вход блока вычисления коэффициента В. При этом в блоке вычисления коэффициента А определяют коэффициент А по формуле , в блоке вычисления коэффициента В определяют коэффициент В по формуле , в блоке вычисления коэффициента С определяют коэффициент С по формуле , где коэффициенты , , , , , , , , , являются коэффициентами полинома, определяются заранее и равны , , , , , , , , . Далее с выхода блока вычисления коэффициента А передают значение коэффициента А на первый вход блока нахождения параметров распределения, также с выхода блока вычисления коэффициента В передают значение коэффициента В на второй вход блока нахождения параметров распределения, а с выхода блока вычисления коэффициента С передают значение коэффициента С на третий вход блока нахождения параметров распределения. В блоке нахождения параметров распределения определяют параметр распределения m по формуле .

На приемной стороне реальных систем связи обычно присутствует блок автоматической регулировки усиления (АРУ) для приведения уровня входного сигнала к значению, обеспечивающему оптимальную работу АЦП. В таком случае, выборочная плотность амплитуды не будет являться соответствующей состоятельной оценкой истинной плотности распределения. Таким образом, недостатком прототипа является то, что он не учитывает наличие блока АРУ и получаемая данным способом оценка будет обладать большой погрешностью.

Целью изобретения является получение оценки параметров модели замирания радиоканала по закону Накагами путем анализа принимаемого информационного многочастотного сигнала.

Поставленная цель достигается тем, что способ оценки параметров модели замирания огибающей сигнала по закону Накагами по информационному многочастотному сигналу состоит в том, что на приемной стороне оцифровывают принимаемый сигнал в аналогово-цифровом преобразователе, затем передают оцифрованный сигнал с выхода аналогово-цифрового преобразователя на вход первого блока вычисления амплитуды, при этом в нем определяют значение амплитуды смеси принимаемого сигнала и шума на всех n частотах, используемых для передачи информационного сигнала на длительности элементарной посылки, а с n выходов первого блока вычисления амплитуды на первые входы n соответствующих делителей передают вычисленные значения амплитуд, также с выхода аналогово-цифрового преобразователя передают оцифрованный сигнал на вход второго блока вычисления амплитуды, в котором определяют значение амплитуды шума на n частотах, неиспользуемых для передачи информационного сигнала на длительности элементарной посылки, а с n выходов второго блока вычисления амплитуды передают вычисленные значения амплитуд на вторые входы n соответствующих делителей, а в каждом делителе осуществляют деление значения амплитуды шума на частоте, неиспользуемой для передачи информационного сигнала, полученное по второму входу на значение амплитуды смеси сигнала и шума на частоте, используемой для передачи информационного сигнала, полученное по первому входу, а результат деления передают с выходов n делителей на n соответствующих входов блока накопления, в котором накапливают выборку полученных n значений на длительности интервала анализа, равной М посылкам, получая, таким образом, выборку размером n×М значений, а с выхода блока накопления передают накопленный массив значений на вход блока вычисления параметров распределения, в котором, например, методом наискорейшего спуска, определяют параметры модели замирания огибающей сигнала по закону Накагами m и , являющиеся координатами максимума функции правдоподобия , где xi - это i-е значение выборки, - плотность распределения вероятности измеряемой случайной величины.

Структурная схема предложенного способа приведена на фиг. 1.

Способ основан на следующих предположениях.

В общем случае для определения плотности распределения огибающей сигнала в канале с замираниями, когда доступными для измерения являются только значения огибающей смеси сигнал + шум, можно использовать подход, заключающийся в том, чтобы по плотности распределения огибающей смеси сигнал + шум определить параметры распределения Райса. При этом восстановить истинную плотность распределения огибающей можно, используя выборочную плотность распределения огибающей смеси сигнал + шум, получаемую посредством измерений на приемной стороне.

В данном подходе следует учитывать техническую проблему, связанную с тем, что на приемной стороне чаще всего сигнал перед обработкой проходит через устройство автоматической регулировки усиления (АРУ). Поскольку коэффициент усиления АРУ неизвестен и динамически меняется в процессе измерений, статистические характеристики выборочной плотности распределения амплитуды сигнала значительно меняются и применение указанных выше способов напрямую дает неадекватные оценки.

Избавиться от указанной трудности при приеме сигнала с использованием АРУ можно, если для оценки параметров модели канала использовать выборку случайных величин, инвариантную к значению коэффициента усиления АРУ. В качестве такой случайной величины может быть использована случайная величина ξ, определяемая как отношение огибающих Ai и Aj, измеренных на длительности одной и той же элементарной посылки на различных субчастотах с номерами i и j:

ξ=Ai/Aj.

Такой подход можно реализовать, если информационный сигнал является многочастотным, и при этом часть субчастот не используются для передачи. Тогда на входе приемника на занятых субчастотах наблюдается смесь информационного сигнала с шумом, а на свободных только шум.

Для описания плотности распределения огибающей шума на свободных субчастотах при гипотезе, что шум является гауссовским, используется плотность распределения Рэлея:

Тогда в качестве Ai можно использовать измеренную огибающую шума, а в качестве Aj - огибающую смеси сигнал + шум.

В случае постоянного уровня информационного сигнала А на соответствующих субчастотах для модели гауссовского шума функцию распределения случайной величины ξ можно найти следующим образом:

Если уровень информационного сигнала А не постоянен, а подвержен замираниям и его плотность распределения WA(x) подчиняется закону Накагами, то в этом случае функция распределения случайной величины ξ можно найти следующим образом:

При этом величина представляет собой среднее значение отношения сигнал/помеха.

Тогда в новых обозначениях функция распределения случайной величины ξ имеет следующий вид:

Выражение для плотности при этом имеет следующий вид:

Сформировав выборку случайной величины ξ и имея аналитическое выражение для ее плотности распределения, можно воспользоваться методом максимального правдоподобия, как одним из методов оценки неизвестных параметров распределений. В данном случае неизвестными параметрами будут и m. Тогда функция правдоподобия L, определяется выражением:

где xi - значение случайной величины ξ, n*М - объем выборки.

В этом случае координаты максимума функции правдоподобия являются оценками искомых величин и m.

Таким образом, приведенные аналитические выводы показывают, что с помощью предложенного способа можно определить параметры модели замирания огибающей сигнала по закону Накагами по информационному многочастотному сигналу. При этом необходимыми данными являются измеренные значения амплитуды смеси сигнала и шума на частотах, используемых для передачи информационного сигнала и значения амплитуды шума на частотах, неиспользуемых для передачи информационного сигнала.

Способ работает следующим образом.

На приемной стороне оцифровывают принимаемый сигнал в аналогово-цифровом преобразователе 1, затем передают оцифрованный сигнал с выхода аналогово-цифрового преобразователя 1 на вход первого блока вычисления амплитуды 2, в котором определяют значение амплитуды смеси принимаемого сигнала и шума на всех n частотах, используемых для передачи информационного сигнала на длительности элементарной посылки. С n выходов первого блока вычисления амплитуды 2 на первые входы n соответствующих делителей 4(1)…4(N) передают вычисленные значения амплитуд. При этом с выхода аналогово-цифрового преобразователя 1 также передают оцифрованный сигнал на вход второго блока вычисления амплитуды 3, в котором определяют значение амплитуды шума на n частотах, неиспользуемых для передачи информационного сигнала на длительности элементарной посылки, а с n выходов второго блока вычисления амплитуды 3 передают вычисленные значения амплитуд на вторые входы n соответствующих делителей 4(1)…4(N). В каждом делителе 4(1)…4(N) осуществляют деление значения амплитуды шума на частоте, неиспользуемой для передачи информационного сигнала, полученное по второму входу на значение амплитуды смеси сигнала и шума на частоте, используемой для передачи информационного сигнала, полученное по первому входу, а результат деления передают с выходов n делителей 4(1)…4(N) на n соответствующих входов блока накопления 5, в котором накапливают выборку полученных n значений на длительности интервала анализа, равной М посылкам, получая, таким образом, выборку размером n×М значений, а с выхода блока накопления 5 передают накопленный массив значений на вход блока вычисления параметров распределения 6, в котором, например, методом наискорейшего спуска, определяют параметры модели замирания огибающей сигнала по закону Накагами m и , являющиеся координатами максимума функции правдоподобия , где xi - это i-е значение выборки, - плотность распределения вероятности измеряемой случайной величины.

Предлагаемый способ может быть использован для систем связи, использующих сигналы с ортогональным многочастотным разделением каналов связи. Применение такого способа позволяет более точно определять параметры замирающего канала связи.

Предлагаемое устройство по сравнению с прототипом обладает следующим преимуществом: обеспечивает более точное определение параметров модели замирания огибающей сигнала по закону Накагами по информационному многочастотному сигналу в случае наличия на приемной стороне блока автоматической регулировки усиления.

Способ оценки параметров модели замирания огибающей сигнала по закону Накагами по информационному многочастотному сигналу, заключающийся в том, что на приемной стороне оцифровывают принимаемый сигнал в аналогово-цифровом преобразователе, затем передают оцифрованный сигнал с выхода аналогово-цифрового преобразователя одновременно на вход первого блока вычисления амплитуды и на вход второго блока вычисления амплитуды, отличающийся тем, что в первом блоке вычисления амплитуды определяют значение амплитуды смеси принимаемого сигнала и шума на всех n частотах, используемых для передачи информационного сигнала, на длительности элементарной посылки, а с n выходов первого блока вычисления амплитуды на первые входы n соответствующих делителей передают вычисленные значения амплитуд, также во втором блоке вычисления амплитуды определяют значение амплитуды шума на n частотах, неиспользуемых для передачи информационного сигнала, на длительности элементарной посылки, а с n выходов второго блока вычисления амплитуды передают вычисленные значения амплитуд на вторые входы n соответствующих делителей, в каждом делителе осуществляют деление значения амплитуды шума на частоте, неиспользуемой для передачи информационного сигнала, полученное по второму входу на значение амплитуды смеси сигнала и шума на частоте, используемой для передачи информационного сигнала полученное по первому входу, а результат деления передают с выхода каждого из n делителей на n соответствующих входов блока накопления, в котором накапливают выборку полученных n значений на длительности интервала анализа, равной М посылкам, получая, таким образом, выборку размером n×М значений, а с выхода блока накопления передают накопленный массив значений на вход блока вычисления параметров распределения, в котором методом наискорейшего спуска, определяют параметры модели замирания огибающей сигнала по закону Накагами m и , являющиеся координатами максимума функции правдоподобия , где x - это i-е значение выборки, а - плотность распределения вероятности измеряемой случайной величины.
СПОСОБ ОЦЕНКИ ПАРАМЕТРОВ МОДЕЛИ ЗАМИРАНИЯ ОГИБАЮЩЕЙ СИГНАЛА ПО ЗАКОНУ НАКАГАМИ ПО ИНФОРМАЦИОННОМУ МНОГОЧАСТОТНОМУ СИГНАЛУ
СПОСОБ ОЦЕНКИ ПАРАМЕТРОВ МОДЕЛИ ЗАМИРАНИЯ ОГИБАЮЩЕЙ СИГНАЛА ПО ЗАКОНУ НАКАГАМИ ПО ИНФОРМАЦИОННОМУ МНОГОЧАСТОТНОМУ СИГНАЛУ
СПОСОБ ОЦЕНКИ ПАРАМЕТРОВ МОДЕЛИ ЗАМИРАНИЯ ОГИБАЮЩЕЙ СИГНАЛА ПО ЗАКОНУ НАКАГАМИ ПО ИНФОРМАЦИОННОМУ МНОГОЧАСТОТНОМУ СИГНАЛУ
СПОСОБ ОЦЕНКИ ПАРАМЕТРОВ МОДЕЛИ ЗАМИРАНИЯ ОГИБАЮЩЕЙ СИГНАЛА ПО ЗАКОНУ НАКАГАМИ ПО ИНФОРМАЦИОННОМУ МНОГОЧАСТОТНОМУ СИГНАЛУ
Источник поступления информации: Роспатент

Showing 41-50 of 68 items.
20.08.2016
№216.015.4e43

Способ протезирования деревянной балки

Изобретение относится к области строительства, в частности к способу усиления деревянных балок перекрытий и покрытий зданий. Технический результат изобретения заключается в повышении эксплуатационной надежности балки. Способ усиления деревянной балки включает установку временной страхующей...
Тип: Изобретение
Номер охранного документа: 0002595026
Дата охранного документа: 20.08.2016
12.01.2017
№217.015.63f4

Октавный фильтр

Изобретение относится к радиоэлектронике и может быть использовано в широкополосных радиопередатчиках. Суть заявляемого изобретения заключается в том, что в октавный фильтр дополнительно включена фазосдвигающая цепь, причем вход фазосдвигающей цепи соединен параллельно с фильтром верхних частот...
Тип: Изобретение
Номер охранного документа: 0002589467
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.7b41

Автоматизированный корабельный комплекс светосигнальной связи

Автоматизированный корабельный комплекс светосигнальной связи содержит прибор оптической связи направленного действия, прибор оптической связи всенаправленного действия, блок электропитания, автоматизированное рабочее место оператора, общекорабельную систему стабилизации качки корабля,...
Тип: Изобретение
Номер охранного документа: 0002600121
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.8490

Цифровой широкополосный радиопередатчик

Изобретение относится к области радиотехники и может быть использовано в радиопередатчиках. Достигаемый технический результат - унификация радиопередатчиков в части возбудительных устройств и усилителей мощности. Цифровой широкополосный радиопередатчик содержит генератор тактовых импульсов с...
Тип: Изобретение
Номер охранного документа: 0002602974
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.920d

Приемная корабельная подсистема коротковолнового диапазона

Приемная корабельная подсистема коротковолнового диапазона включает в себя аттенюаторы, фазовращатели, микроЭВМ и сумматоры. Причем микроЭВМ соединена с датчиками координат и курса, а также с аналого-цифровым преобразователем, который соединен с радиоприемниками. При этом сигналы от активных...
Тип: Изобретение
Номер охранного документа: 0002605788
Дата охранного документа: 27.12.2016
25.08.2017
№217.015.a68f

Автоматизированный аппаратурный комплекс спутниковой открытой оптической связи

Изобретение относится к области оптической связи и может быть использовано на искусственных спутниках Земли или на самолетах для приема и передачи информации. Автоматизированный аппаратурный комплекс спутниковой открытой оптической связи выполнен в виде двух модулей. В первый модуль входят...
Тип: Изобретение
Номер охранного документа: 0002608060
Дата охранного документа: 12.01.2017
25.08.2017
№217.015.b782

Способ и устройство управления робототехническим комплексом морского базирования

Изобретения относятся к области электрорадиотехники, а именно к подводной технике электромагнитной связи. Технический результат состоит в повышении надежности и качества связи, а также помехозащищенности канала связи. Для этого способ и устройство управления робототехническим комплексом...
Тип: Изобретение
Номер охранного документа: 0002614864
Дата охранного документа: 30.03.2017
25.08.2017
№217.015.c874

Протяженный по оси цилиндра кольцевой ферромагнитный сердечник высокочастотного трансформатора

Изобретение относится к электротехнике и может быть использовано в радиотехнике, в частности в трансформаторных устройствах и устройствах суммирования мощности при построении радиопередатчиков KB-УКВ диапазона. Технический результат состоит в выравнивании магнитного поля в различных частях...
Тип: Изобретение
Номер охранного документа: 0002619087
Дата охранного документа: 11.05.2017
25.08.2017
№217.015.cb61

Система подводной кабельной глубоководной связи с подводными лодками

Изобретение относится к области радиоэлектроники, а именно к технике проводной связи, и может быть использовано для организации связи с глубокопогруженными подводными объектами. Техническим результатом является повышение помехоустойчивости, увеличение скорости и объема передаваемой информации...
Тип: Изобретение
Номер охранного документа: 0002620253
Дата охранного документа: 24.05.2017
25.08.2017
№217.015.d09a

Сталебетонная балка

Изобретение относится к строительству, а именно к балкам покрытий и перекрытий зданий и сооружений, к подкрановым балкам и другим элементам, работающим преимущественно в условиях пространственного изгиба. Сталебетонная балка состоит из верхнего и нижнего поясов, стенок и опорных диафрагм,...
Тип: Изобретение
Номер охранного документа: 0002621247
Дата охранного документа: 01.06.2017
Showing 41-50 of 121 items.
13.01.2017
№217.015.920d

Приемная корабельная подсистема коротковолнового диапазона

Приемная корабельная подсистема коротковолнового диапазона включает в себя аттенюаторы, фазовращатели, микроЭВМ и сумматоры. Причем микроЭВМ соединена с датчиками координат и курса, а также с аналого-цифровым преобразователем, который соединен с радиоприемниками. При этом сигналы от активных...
Тип: Изобретение
Номер охранного документа: 0002605788
Дата охранного документа: 27.12.2016
25.08.2017
№217.015.a68f

Автоматизированный аппаратурный комплекс спутниковой открытой оптической связи

Изобретение относится к области оптической связи и может быть использовано на искусственных спутниках Земли или на самолетах для приема и передачи информации. Автоматизированный аппаратурный комплекс спутниковой открытой оптической связи выполнен в виде двух модулей. В первый модуль входят...
Тип: Изобретение
Номер охранного документа: 0002608060
Дата охранного документа: 12.01.2017
25.08.2017
№217.015.b782

Способ и устройство управления робототехническим комплексом морского базирования

Изобретения относятся к области электрорадиотехники, а именно к подводной технике электромагнитной связи. Технический результат состоит в повышении надежности и качества связи, а также помехозащищенности канала связи. Для этого способ и устройство управления робототехническим комплексом...
Тип: Изобретение
Номер охранного документа: 0002614864
Дата охранного документа: 30.03.2017
25.08.2017
№217.015.c874

Протяженный по оси цилиндра кольцевой ферромагнитный сердечник высокочастотного трансформатора

Изобретение относится к электротехнике и может быть использовано в радиотехнике, в частности в трансформаторных устройствах и устройствах суммирования мощности при построении радиопередатчиков KB-УКВ диапазона. Технический результат состоит в выравнивании магнитного поля в различных частях...
Тип: Изобретение
Номер охранного документа: 0002619087
Дата охранного документа: 11.05.2017
25.08.2017
№217.015.cb61

Система подводной кабельной глубоководной связи с подводными лодками

Изобретение относится к области радиоэлектроники, а именно к технике проводной связи, и может быть использовано для организации связи с глубокопогруженными подводными объектами. Техническим результатом является повышение помехоустойчивости, увеличение скорости и объема передаваемой информации...
Тип: Изобретение
Номер охранного документа: 0002620253
Дата охранного документа: 24.05.2017
25.08.2017
№217.015.d09a

Сталебетонная балка

Изобретение относится к строительству, а именно к балкам покрытий и перекрытий зданий и сооружений, к подкрановым балкам и другим элементам, работающим преимущественно в условиях пространственного изгиба. Сталебетонная балка состоит из верхнего и нижнего поясов, стенок и опорных диафрагм,...
Тип: Изобретение
Номер охранного документа: 0002621247
Дата охранного документа: 01.06.2017
26.08.2017
№217.015.d7fb

Способ возбуждения электромагнитных волн

Изобретение относится к области радиотехники и может быть использовано при разработке устройств для излучения радиоволн преимущественно дециметрового и более длинноволнового диапазона электромагнитных волн. Способ возбуждения электромагнитных волн заключается в том, что каждый период...
Тип: Изобретение
Номер охранного документа: 0002622620
Дата охранного документа: 16.06.2017
26.08.2017
№217.015.dae9

Способ увеличения скорости передачи информации при время-импульсной модуляции

Изобретение относится к области радиотехники и связи и может быть использовано в системах связи с расширенным спектром сигналов. Достигаемый технический результат - повышение скорости передаваемой информации при псевдослучайной время-импульсной модуляции. Способ увеличения скорости передачи...
Тип: Изобретение
Номер охранного документа: 0002623881
Дата охранного документа: 29.06.2017
26.08.2017
№217.015.e3da

Система охлаждения и кондиционирования радиопередатчиков большой мощности

Настоящее изобретение относится к области прикладной механики и может быть использовано в системах охлаждения и кондиционирования радиопередающими устройствами большой мощности типа «Огонь-Б100». Техническим результатом является автоматизация процессов охлаждения и кондиционирования...
Тип: Изобретение
Номер охранного документа: 0002626294
Дата охранного документа: 25.07.2017
26.08.2017
№217.015.e445

Бортовая система прогноза гидрофизических параметров

Бортовая система прогноза гидрофизических параметров (БСПГП) относится к области измерительной техники и может быть использована на НК и ПЛ. Техническим результатом является повышение точности и своевременности получения характеристик, а также их анализа и прогнозирования на текущий и...
Тип: Изобретение
Номер охранного документа: 0002626211
Дата охранного документа: 24.07.2017
+ добавить свой РИД