×
25.08.2017
217.015.a66a

Результат интеллектуальной деятельности: Способ получения износостойкого нанокомпозитного покрытия с заданным значением микротвердости на поверхности полированной ситалловой пластины

Вид РИД

Изобретение

Аннотация: Изобретение относится к материаловедению и может быть использовано в различных областях современной электроники, альтернативной энергетике и машиностроении. Способ получения износостойкого нанокомпозитного покрытия с заданным значением микротвердости на поверхности полированной ситалловой пластины ионно-лучевым распылением включает обеспечение в получаемом покрытии необходимого процентного соотношения металлической и керамической фаз при определенном химическом составе упомянутых фаз, при этом определяют значения микротвердости для металлического и керамического покрытий различного химического состава без примесей керамической или металлической фазы соответственно, затем получают покрытие с заданным химическим составом и заданным процентным соотношением указанных фаз с определенным шагом и с изменением процентного соотношения фаз металл-керамика в покрытии от нуля до максимума, после чего определяют значения микротвердости полученного покрытия при заданном соотношении указанных фаз. На основании полученных данных создают искусственную нейронную сеть, проводят ее обучение. Затем проводят тестирование полученной нейросетевой модели путем последовательного исключения из статистической выборки, которая использовалась для ее обучения, факторов нейросетевой модели в виде экспериментально измеренных величин, включающих микротвердость металлического покрытия (Н), микротвердость керамического покрытия (Н) и концентрацию металлической фазы в композите (С) с последующим определением при помощи полученной нейросетовой модели ее выходного параметра в виде значения микротвердости нанокомпозитного покрытия (Н) и сравнением полученного теоретического значения с исходными экспериментальными данными. Затем вводят в упомянутую искусственную нейронную сеть значения микротвердости для металлической и керамической фаз без примесей и процентное соотношение упомянутых фаз в получаемом покрытии и при помощи искусственной нейронной сети определяют значение микротвердости получаемого нанокомпозитного покрытия металл-керамика при введенном соотношении металлической и керамической фаз. В частных случаях осуществления изобретения после сравнения полученного теоретического значения микротвердости нанокомпозитного покрытия (Н) с исходными экспериментальными данными проводят корректировку полученной нейросетевой модели. Обеспечивается повышенная износостойкость с одновременным снижением себестоимости покрытия и высокая стабильность определяемых параметров, используемых для нанесения покрытия. 1 з.п. ф-лы, 4 ил.

Изобретение относится к материаловедению и может быть использовано в различных областях современной электроники, альтернативной энергетике, машиностроении и т.д.

Исследования последних лет показали, что материалы и покрытия с ультрамелкодисперсной структурой и наноструктурными упрочняющими элементами обладают улучшенными физико-химическими и механическими свойствами, поэтому в последние годы во всем мире проводятся работы по разработке способов получения материалов с наноструктурой.

Весьма перспективным направлением является применение не просто наноструктурированных материалов, а нанокомпозитных материалов, сочетающих в себе металлическую и керамическую фазы, характерные размеры которых составляют единицы - десятки нанометров. Механические свойства таких наноструктурированных материалов в значительной степени зависят от концентрационного соотношения между металлической и керамической фазами. Изменение концентрации одной из фаз в композите позволяет менять значение их механических характеристик в достаточно широких пределах. С другой стороны, для нахождения требуемого соотношения металлической и керамической фаз в покрытии, с целью получения заданных свойств, требуются значительные дорогостоящие экспериментальные работы, т.к. характеристики получаемого покрытия изменяются нелинейно, что приводит к значительным временным и материальным затратам.

Известен способ получения наноструктурного покрытия из композита металл-керамика состава (Co86Nb12Ta2)x(SiOn)100-x, включающий осаждение композита ионно-лучевым распылением с обеспечением образования гранул металлической фазы со средним диаметром 2-4 нм, изолированных сплошной керамической фазой, при этом концентрацию металлической фазы при распылении выбирают в пределах 20-40 ат. %. (Патент РФ №2515600, заявка №2011148577/02 от 29.11.2011, МПК: C23C 14/46, C23C 14/06, B82B 3/00 - прототип).

Основным недостатком данного способа является то, что, для нахождения требуемого соотношения металлической и керамической фаз в покрытии, с целью получения заданных свойств, требуются значительные дорогостоящие экспериментальные работы.

Данные обстоятельства обуславливают целесообразность применения методов обработки экспериментальных данных для построения экспериментальных факторных моделей, которые не раскрывают физической сущности явлений, но позволяют описывать и, самое главное, прогнозировать практически важные свойства материалов в некоторой ограниченной области факторного пространства.

Искусственные нейронные сети (ИНС) являются мощным и универсальным алгоритмом аппроксимации (см., например, Барский А.Б. Введение в нейронные сети, М.: Интернет-Университет информационных технологий, 2011; Калацкая Л.В., Новиков В.А., Садов В.С. Организация и обучение искусственных нейронных сетей: Экспериментальное учеб. пособие. - Минск: Изд-во БГУ, 2003. - 72 с. Галушкин А.И. Синтез многослойных систем распознавания образов. - М.: Энергия, 1974).

С одной стороны, искусственные нейронные сети слабочувствительны к структуре экспериментальных данных, а с другой - способны выявлять зависимости между входными и выходными данными, а также выполнять обобщение на основе сравнительно небольшого массива экспериментальных результатов. Нейросетевые алгоритмы способны аппроксимировать произвольную многофакторную зависимость с любой точностью при соответствующей регуляризации процедуры настройки параметров аппроксимационного уравнения. В случае успешного обучения такая сеть сможет вернуть верный результат на основании данных, которые отсутствовали в обучающей выборке, а также на основе неполных или частично искаженных данных. Вследствие этого нейронные сети можно рассматривать не только как инструмент аппроксимации, но и как способ прогнозирования физических свойств реальных объектов на основе экспериментальных данных.

Задачей предложенного технического решения является устранение лишних временных и материальных затрат посредством создания способа определения концентрации компонент в наноструктурном покрытии из гранулированного композита «металл-керамика», и получении собственно самого наноструктурного покрытия из гранулированного композита «металл-керамика», применение которого позволит обеспечить повышенную износостойкость и высокую стабильность параметров с одновременным снижением себестоимости.

Решение указанной задачи достигается тем, что в предложенном способе получения износостойкого нанокомпозитного покрытия с заданным значением микротвердости на поверхности полированной ситалловой пластины ионно-лучевым распылением, включающим обеспечение в получаемом покрытии необходимого процентного соотношения металлической и керамической фаз при их определенном химическом составе, согласно изобретению, сначала определяют значения микротвердости для металлического и керамического покрытий различного химического состава без примесей керамической или металлической фазы соответственно, затем получают покрытия с заданным химическим составом и заданным процентным соотношением указанных фаз с определенным шагом и с изменением процентного соотношения фаз металл-керамика в покрытии от нуля до максимума, после чего определяют значения микротвердости полученного покрытия при заданном соотношении указанных фаз, затем, на основании полученных данных, создают искусственную нейронную сеть, проводят ее обучение, после чего проводят тестирование полученной нейросетевой модели путем последовательного исключения из статистической выборки, которая использовалась для ее обучения, факторов нейросетевой модели в виде экспериментально измеренных величин, включающих микротвердость металлического покрытия (Нм), микротвердость керамического покрытия (Нк) и концентрацию металлической фазы в композите (Ск) с последующим определением при помощи полученной нейросетовой модели ее выходного параметра в виде значения микротвердости нанокомпозитного покрытия (Н) и сравнением полученного теоретического значения с исходными экспериментальными данными, затем вводят в упомянутую искусственную нейронную сеть значения микротвердости для металлической и керамической фаз без примесей и процентное соотношение упомянутых фаз в получаемом покрытии и при помощи искусственной нейронной сети определяют значение микротвердости получаемого нанокомпозитного покрытия металл-керамика при введенном соотношении металлической и керамической фаз.

В варианте применения способа, после сравнения полученного теоретического значения микротвердости нанокомпозитного покрытия (Н) с исходными экспериментальными данными, проводят корректировку полученной нейросетевой модели.

Сущность изобретения иллюстрируется чертежами, где на фиг. 1 показаны концентрационные зависимости параметра, характеризующего механические свойства композитов CoFeZr-Al2O3, с указанием точек, полученных экспериментальными и аналитическими исследованиями, на фиг. 2 - зависимости для композитов Fe-Al2O3, на фиг. 3 - зависимости для композитов Fe-SiO2, на фиг. 4 - зависимости для композитов Co-CaF.

На всех фигурах показана концентрационная зависимость микротвердости композитов, измеренная методом Кнупа (символы) и полученная с помощью нейросетевой модели (линия).

Экспериментальные данные представляли собой результат исследования микротвердости нанокомпозитных покрытий металл-керамика, отличающихся друг от друга, как элементным составом, так и соотношением фаз. В качестве факторов модели приняты экспериментально измеренные величины: микротвердость чистого металлического покрытия (Нм), микротвердость чистого керамического покрытия (Нк) и концентрация металличекой фазы в композите (См), при этом в качестве выходного параметра модели используется значение микротвердости композитного покрытия (Н).

Все данные получены при исследовании нанокомпозитов, которые, в свою очередь, были получены по единой технологии, в одинаковых условиях на одном и том же оборудовании. Покрытия представляли собой тонкие пленки толщиной 5-7 мкм, нанесенные на поверхность полированных пластин СТ-50. Осаждение покрытий производилось с помощью метода ионно-лучевого распыления составных мишеней в атмосфере аргона и последующего осаждения выбитых атомов на поверхность подложки. Образование композитной структуры в напыляемых покрытиях происходило вследствие процессов самоорганизации. Наличие композитной структуры у исследованных покрытий непосредственно подтверждалось данными просвечивающей электронной микроскопии.

Для структурных исследований композиты наносились на монокристаллические подложки из NaCl с последующим отделением, а длительность процесса осаждения составляла несколько минут. Микротвердость композитных покрытий исследовалась методом индентирования алмазной пирамидкой. Поскольку толщина покрытий находилась в интервале 5-7 мкм, для измерений использовалась алмазная пирамидка Кнупа. Все измерения микротвердости проводились при одинаковой нагрузке на индентор, составлявшей 0.49 Н.

При помощи искусственной нейронной сети рассчитывали значения микротвердости получаемого нанокомпозитного покрытия металл-керамика при заданном соотношении металлической и керамической фаз, при этом, для формирования отображения Н=fNмкм), использовали

стандартную структуру многослойного персептрона и формировали персептрон, после чего выход сети рассчитывали по формуле: , при этом в качестве функции активации используют логистическую сигмоиду , где: после чего определяют выходы нейронов первого скрытого слоя следующим образом: , где:, затем входные переменные приводят в диапазон [0;1] согласно минимаксным формулам: x1=0.01⋅cм; х2=0.003636⋅Hм-2.090909; х3=0.00125⋅Нк-0.125, при этом выход сети связывают с искомой величиной Н соотношением: , где - значение порога активации i(j)-го нейрона k-го скрытого слоя нейронной сети; b0 - значение порога активации выходного нейрона сети; b -вектор порогов активации нейронов сети; см - концентрация металлической фазы в нанокомпозите, ат. %; ED - суммарная квадратическая ошибка обучения сети; Ew - сумма квадратов весов сети; fs - функция активации j-го нейрона - логистическая сигмоида; F - целевая функция обучения сети; Н - микротвердость композита с определенной концентрацией металлической фазы, ед. Кнупа; Нk и НM - микротвердость чистой керамической и металлической фазы соответственно, ед. Кнупа; К - энергетический фактор; q - количество нейронов в случае одного скрытого слоя многослойного персептрона; vi - вес нейрона выходного слоя, соответствующий i-му нейрону последнего скрытого слоя; vil - вес соединения i-го нейрона первого скрытого слоя с l-м входом; v - матрица весов соединений входных переменных и нейронов первого скрытого слоя; wji - нелинейно входящий в модель нейронной сети вес между j-м нейроном второго скрытого слоя и i-м нейроном первого скрытого слоя; w - матрица весов соединений нейронов первого и второго скрытых слоев персептрона; у - выходное значение нейронной сети, к - керамический; м - металлический; i - номер нейрона первого скрытого слоя; j - номер нейрона второго скрытого слоя; l - номер входной переменной; n - количество входных переменных.

Проведенные экспериментальные и аналитические исследования на натурных образцах подтвердили достаточно хорошую сходимость экспериментальных данных с теоретическими данными, полученными при использовании заложенной математической модели, что показывает работоспособность предложенного способа в заданном интервале.

Использование предложенного технического решения позволит построить регрессионные зависимости, открытые для новых данных, то есть созданные модели могут пополняться и уточняться за счет введения новых факторов, что усложняет их структуру, но при этом повышает их адекватность.


Способ получения износостойкого нанокомпозитного покрытия с заданным значением микротвердости на поверхности полированной ситалловой пластины
Способ получения износостойкого нанокомпозитного покрытия с заданным значением микротвердости на поверхности полированной ситалловой пластины
Источник поступления информации: Роспатент

Showing 261-270 of 738 items.
20.04.2015
№216.013.4331

Вертикальный ротор

Изобретение относится к области энергетики и может быть использовано в ветроэлектрогенераторах с вертикальной осью вращения. Вертикальный ротор содержит вертикальный вал, активные лопасти, соединенные гибкими связями с валом. Места крепления лопастей соединяются между собой дополнительными...
Тип: Изобретение
Номер охранного документа: 0002548699
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.4335

Форсунка смесительной головки парогазогенератора

Изобретение относится к энергетике. Форсунка смесительной головки парогазогенератора содержит как минимум полый наконечник, соединяющий полость окислителя с зоной горения, втулку, охватывающую с кольцевым зазором наконечник и соединяющую полость горючего с зоной горения, характеризующаяся тем,...
Тип: Изобретение
Номер охранного документа: 0002548703
Дата охранного документа: 20.04.2015
27.04.2015
№216.013.45f5

Установка для очистки воздуха

Изобретение относится к очистке воздуха и может быть использовано в газовой, нефтяной, нефтехимической и других отраслях промышленности. Установка для очистки воздуха содержит трубчатый корпус, имеющий входной канал для входа запыленного и/или задымленного воздушного потока, несколько...
Тип: Изобретение
Номер охранного документа: 0002549413
Дата охранного документа: 27.04.2015
27.04.2015
№216.013.45f6

Конденсационная камера

Изобретение относится к очистке воздуха и может быть использовано в газовой, нефтяной, нефтехимической и других отраслях промышленности. Конденсационная камера для установки для очистки газового потока содержит трубчатый корпус, имеющий входной канал для входа запыленного и/или задымленного...
Тип: Изобретение
Номер охранного документа: 0002549414
Дата охранного документа: 27.04.2015
27.04.2015
№216.013.45fa

Способ подачи пара в конденсационную камеру

Изобретение относится к очистке воздуха и может быть использовано в газовой, нефтяной, нефтехимической и других отраслях промышленности. Способ подачи пара в конденсационную камеру для очистки газового потока заключается в многократном последовательном поэтапном насыщении запыленного газового...
Тип: Изобретение
Номер охранного документа: 0002549418
Дата охранного документа: 27.04.2015
27.04.2015
№216.013.46a9

Закрылок самолета короткого взлета и посадки

Изобретение относится к авиационной технике. Закрылок самолета короткого взлета и посадки содержит основное звено, дефлектор, каретки с опорными роликами, направляющие рельсы перемещения закрылка. В верхней части основного звена подвижно установлены жесткие панели, к которым шарнирно закреплены...
Тип: Изобретение
Номер охранного документа: 0002549593
Дата охранного документа: 27.04.2015
27.04.2015
№216.013.46c0

Электрическая лампа накаливания

Изобретение относится к светотехнике, а именно: к источникам излучения. Электрическая лампа накаливания содержит цоколь, колбу, держатель, электроды, тело накала, состоящее из нескольких нитей накала, закрепленных на электродах и установленных с возможностью очередного включения каждой из них....
Тип: Изобретение
Номер охранного документа: 0002549616
Дата охранного документа: 27.04.2015
10.05.2015
№216.013.498d

Электрическая лампа накаливания

Изобретение относится к светотехнике, а именно к источникам излучения. Электрическая лампа накаливания содержит цоколь, колбу, держатель, электроды, тело накала, состоящее из нескольких нитей накала, закрепленных на электродах, предпочтительно четырех, и установленных с возможностью очередного...
Тип: Изобретение
Номер охранного документа: 0002550336
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.49f4

Способ электрохимической обработки отверстий форсунки из токопроводящего материала

Изобретение относится к электрохимической обработке и может быть использовано для электрохимической доводки форсунок из токопроводящих материалов преимущественно для жидкостных ракетных двигателей. Способ включает доводку геометрических размеров отверстий электрохимической обработкой с...
Тип: Изобретение
Номер охранного документа: 0002550439
Дата охранного документа: 10.05.2015
20.05.2015
№216.013.4b82

Факельная горелка для сжигания газов и способ сжигания газов

Группа изобретений относится к энергетике. Факельная горелка содержит полый корпус в виде трубы, снабженной в выходной части рассекателем, размещенным с кольцевым зазором относительно верхнего торца корпуса. Внутри трубы установлено, как минимум, два полых профилированных центральных тела,...
Тип: Изобретение
Номер охранного документа: 0002550844
Дата охранного документа: 20.05.2015
Showing 261-270 of 817 items.
10.01.2015
№216.013.175f

Способ упрочнения каналов детали

Изобретение относится к области машиностроения и может быть использовано для отделочно-упрочняющей обработки внутренних поверхностей каналов детали. Обеспечивают вибрацию с частотой 20-30 Гц корпуса контейнера, содержащего токопроводящие стальные шарики для возвратно-поступательного движения...
Тип: Изобретение
Номер охранного документа: 0002537411
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.177a

Способ удаления диэлектрических покрытий с металлической основы

Изобретение относится к области машиностроения и может быть использовано при удалении диэлектрических покрытий с металлических изделий путем их обработки вращаемым непрофилированным электродом-щеткой. В способе электрод-щетку с ворсом в виде радиальных проволок перед обработкой устанавливают с...
Тип: Изобретение
Номер охранного документа: 0002537438
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.17b3

Установка для очистки воздуха

Изобретение относится к отделению дисперсных частиц от газового потока. Установка для очистки воздуха содержит трубчатый корпус, имеющий входной канал для входа запыленного и/или задымленного газового потока, несколько последовательно расположенных конденсационных секций, каждая из которых...
Тип: Изобретение
Номер охранного документа: 0002537495
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.17b4

Устройство для очистки воздуха

Изобретение относится к очистке воздуха и может быть использовано в газовой, нефтяной, нефтехимической и других отраслях промышленности. Техническим результатом является создание блока осушки с адсорбером, конструкция которого позволит исключить попадание капельной влаги на зерна адсорбента....
Тип: Изобретение
Номер охранного документа: 0002537496
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1807

Способ вырубки

Изобретение относится к разделительным операциям обработки металлов давлением и может быть использовано для вырубки тонкого материала. Заготовку укладывают на торец установленного в жесткой обойме на плите основания из мягкого металла. Осуществляют прижим припуска заготовки, осадку и вырубку...
Тип: Изобретение
Номер охранного документа: 0002537579
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.180d

Способ очистки воздуха и устройство для его реализации

Изобретение относится к очистке воздуха и может быть использовано в газовой, нефтяной, нефтехимической и других отраслях промышленности. Техническим результатом является создание блока осушки с адсорбером, конструкция которого позволит исключить попадание капельной влаги на зерна адсорбента....
Тип: Изобретение
Номер охранного документа: 0002537585
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.180e

Конденсационная камера

Изобретение относится к очистке воздуха. Конденсационная камера для установки очистки газового потока содержит трубчатый корпус, имеющий входной канал для входа запыленного и/или задымленного газового потока и выходной канал для выхода очищенного газового потока, средство для вдувания пара,...
Тип: Изобретение
Номер охранного документа: 0002537586
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.180f

Способ подачи пара в конденсационную камеру

Изобретение относится к очистке воздуха. При осуществлении способа пар подают в конденсационную камеру, состоящую из нескольких последовательно расположенных конденсационных секций, каждая из которых содержит трубчатый корпус, имеющий входной канал для входа запыленного и/или задымленного...
Тип: Изобретение
Номер охранного документа: 0002537587
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1810

Установка для очистки воздуха

Изобретение относится к очистке воздуха и может быть использовано в газовой, нефтяной, нефтехимической и других отраслях промышленности. Установка для очистки воздуха содержит трубчатый корпус, имеющий входной канал для входа запыленного и/или задымленного газового потока. Установка также...
Тип: Изобретение
Номер охранного документа: 0002537588
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1811

Адсорбер для блока осушки воздуха

Изобретение относится к очистке воздуха и может быть использовано в газовой, нефтяной, нефтехимической и других отраслях промышленности. Техническим результатом является создание блока осушки с адсорбером, конструкция которого позволит исключить попадание капельной влаги на зерна адсорбента....
Тип: Изобретение
Номер охранного документа: 0002537589
Дата охранного документа: 10.01.2015
+ добавить свой РИД