×
25.08.2017
217.015.a507

Результат интеллектуальной деятельности: Способ получения нанокапсул аденина в каррагинане

Вид РИД

Изобретение

№ охранного документа
0002607654
Дата охранного документа
10.01.2017
Аннотация: Изобретение относится к способу получения нанокапсул аденина. Указанный способ характеризуется тем, что к каррагинану в бензоле добавляют сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты в качестве поверхностно-активного вещества, полученную смесь перемешивают, добавляют порошок аденина, после образования самостоятельной твердой фазы медленно добавляют петролейный эфир, полученную суспензию нанокапсул отфильтровывают, промывают петролейным эфиром и сушат, при этом соотношение ядро/оболочка в нанокапсулах составляет 1:3, 1:1 или 5:1. Изобретение обеспечивает ускорение и упрощение процесса получения нанокапсул аденина, а также увеличение выхода по массе. 1 ил., 4 пр.

Изобретение относится к области нанотехнологии, в частности к растениеводству.

В пат. 2095055 МПК A61K 9/52, A61K 9/16, A61K 9/10, Российская Федерация, опубликован 10.11.1997, предложен способ получения твердых непористых микросфер включает расплавление фармацевтически неактивного вещества-носителя, диспергирование фармацевтически активного вещества в расплаве в инертной атмосфере, распыление полученной дисперсии в виде тумана в замораживающей камере под давлением, в инертной атмосфере, при температуре от -15 до -50°C, и разделение полученных микросфер на фракции по размерам. Суспензия, предназначенная для введения путем парентеральной инъекции, содержит эффективное количество указанных микросфер, распределенных в фармацевтически приемлемом жидком векторе, причем фармацевтически активное вещество микросферы нерастворимо в указанной жидкой среде.

Недостатки предложенного способа: сложность и длительность процесса, применение специального оборудования.

В пат. 2101010 МПК A61K 9/52, A61K 9/50, A61K 9/22, A61K 9/20, A61K 31/19, Российская Федерация, опубликован 10.01.1998, предложена жевательная форма лекарственного препарата со вкусовой маскировкой, обладающая свойствами контролируемого высвобождения лекарственного препарата, содержит микрокапсулы размером 100-800 мкм в диаметре и состоит из фармацевтического ядра с кристаллическим ибупрофеном и полимерного покрытия, включающего пластификатор, достаточно эластичного, чтобы противостоять жеванию. Полимерное покрытие представляет собой сополимер на основе метакриловой кислоты.

Недостатки изобретения: использование сополимера на основе метакриловой кислоты, так как данные полимерные покрытия способны вызывать раковые опухоли; сложность исполнения; длительность процесса.

В пат. 2159037 МПК A01N 25/28, A01N 25/30, Российская Федерация, опубликован 20.11.2000, предложен способ получения микрокапсул реакцией полимеризации на границе раздела фаз, содержащие твердый агрохимический материал 0,1-55 мас. %, суспендированный в перемешивающейся с водой органической жидкости, 0,01-10 мас. % неионного диспергатора, активного на границе раздела фаз и не действующего как эмульгатор.

Недостатки предложенного метода: сложность, длительность, использование высокосдвигового смесителя.

В статье «Разработка микрокапсулированных и гелеобразных продуктов и материалов для различных отраслей промышленности», Российский химический журнал, 2001, т. XLV, №5-6, с. 125-135, описан способ получения микрокапсул лекарственных препаратов методом газофазной полимеризации, так как авторы статьи считают непригодным метод химической коацервации из водных сред для микрокапсулирования лекарственных препаратов вследствие того, что большинство из них являются водорастворимыми. Процесс микрокапсулирования по методу газофазной полимеризации с использованием n-ксилилена включает следующие основные стадии: испарение димера n-ксилилена (170°C), термическое разложение его в пиролизной печи (650°C при остаточном давлении 0,5 мм рт. ст.), перенос продуктов реакции в «холодную» камеру полимеризации (20°C, остаточное давление 0,1 мм рт. ст.), осаждение и полимеризация на поверхности защищаемого объекта. Камера полимеризации выполнена в виде вращающегося барабана, оптимальная скорость для покрытия порошка 30 об/мин. Толщина оболочки регулируется временем нанесения покрытия. Этот метод пригоден для капсулирования любых твердых веществ (за исключением склонных к интенсивной сублимации). Получаемый поли-n-ксилилен высококристаллический полимер, отличающийся высокой ориентацией и плотной упаковкой, обеспечивает конформное покрытие.

Недостатками предложенного способа являются сложность и длительность процесса, использование метода газофазной полимеризации, что делает способ неприменимым для получения микрокапсул лекарственных препаратов в полимерах белковой природы вследствие денатурации белков при высоких температурах.

В статье «Разработка микро- и наносистем доставки лекарственных средств», Российский химический журнал, 2008, т. LII, №1, с. 48-57 представлен метод получения микрокапсул с включенными белками, который существенно не снижает их биологической активности, осуществляемый процессом межфазного сшивания растворимого крахмала или гидроксиэтилкрахмала и бычьего сывороточного альбумина (БСА) с помощью терефталоил хлорида. Ингибитор протеиназ - апротинин, либо нативный, либо с защищенным активным центром был микрокапсулирован при его введении в состав водной фазы. Сплющенная форма лиофилизованных частиц свидетельствует о получении микрокапсул или частиц резервуарного типа. Приготовленные таким образом микрокапсулы не повреждались после лиофилизации и легко восстанавливали свою сферическую форму после регидратации в буферной среде. Величина рН водной фазы являлась определяющей при получении прочных микрокапсул с высоким выходом.

Недостатком предложенного способа получения микрокапсул является сложность процесса, что, в свою очередь, приводит к уменьшению выхода конечных капсул.

В пат. 2173140 МПК A61K 009/50, A61K 009/127, Российская Федерация, опубликован 10.09.2001, предложен способ получения кремнийорганолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования.

Недостатком данного способа является применение специального оборудования - роторно-кавитационной установки, которая обладает ультразвуковым действием, что оказывает влияние на образование микрокапсул и при этом может вызывать побочные реакции в связи с тем, что ультразвук разрушающе действует на полимеры белковой природы, поэтому предложенный способ применим при работе с полимерами синтетического происхождения.

В пат. 2359662 МПК A61K 009/56, A61J 003/07, B01J 013/02, A23L 001/00, опубликован 27.06.2009, Российская Федерация, предложен способ получения микрокапсул с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 оборотов/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.

Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 оборотов/мин).

В пат. WO/2009/148058 JP, МПК B01J 13/04, A23L 1/00, A61K 35/20, A61K 45/00, A61K 47/08, A61K 47/26, A61K 47/32, A61K 47/34, A61K 47/36, A61K 9/50, B01J 2/04, B01J 2/06, опубликован 10.12.2009, описан процесс получения микрокапсул, применимый для промышленного производства, в которых высокое содержание гидрофильного биологически активного вещества, заключенного в оболочку. Предлагаемые микрокапсулы могут быть использованы в пищевой, фармацевтической и в других областях промышленности. В процесс производства применяются диспергирующие композиции, состоящие из гидрофильных биологически активных веществ и ПАВ в твердом жире. Температура не ниже, чем температура плавления твердого жира.

Недостатками данного способа являются сложность и длительность процесса получения микрокапсул.

В пат. WO/2010/076360 ES, МПК B01J 13/00; A61K 9/14; A61K 9/10; A61K 9/12, опубликован 08.07.2010, предложен новый способ получения твердых микро- и наночастиц с однородной структурой с размером частиц менее 10 мкм, где обработанные твердые соединения имеют естественное кристаллическое, аморфное, полиморфное и другие состояния, связанные с исходным соединением. Метод позволяет получить твердые микро- и наночастицы с существенно сфероидальной морфологией.

Недостатком предложенного способа является сложность процесса, а отсюда низкий выход конечного продукта.

В пат. WO/2010/014011 NL, МПК A61K 9/50; B01J 13/02; A61K 9/50; B01J 13/02, опубликован 4.02.2010, описан способ получения микрокапсул диаметром от 0,1 мкм до 25 мкм, включающих: ядро частицы диаметром 90 нм до 23 мкм, содержащего не менее 3% активного компонента по весу частицы; покрытие, которое полностью охватывает основные частицы, содержащие не менее 20% от веса гидрофобного полимера, выбранного из целлюлозных эфиров, сложных эфиров целлюлозы, шеллака, клейковины, полилактида, гидрофобных производных крахмала, поливинилацетата, полимеров или сополимеров на основе эфира акриловой кислоты и/или метакриловой кислоты эфир и их комбинации. Активный компонент не высвобождается при введении в водосодержащие продукты питания, напитки, пищевые или фармацевтические композиции. После приема внутрь, однако, активный компонент выделяется быстро.

Недостатками данного способа являются сложность, длительность процесса, а также применение ультразвука и специального оборудования, использование в качестве оболочек микрокапсул сополимеров акриловой или метакриловой кислоты, которые способны вызывать раковые опухоли.

В пат. WO/2011/003805 ЕР, МПК B01J 13/18; B65D 83/14; C08G 18/00, опубликован 13.01.2011 описан способ получения микрокапсул, которые подходят для использования в композициях, образующих герметики, пены, покрытия или клеи.

Недостатком предложенного способа является применение центрифугирования для отделения от технологической жидкости, длительность процесса, а также применение данного способа не в фармацевтической промышленности.

В пат. 20110223314 МПК, B05D 7/00 20060101; B05D 007/00; В05С 3/02 20060101; В05С 003/02; В05С 11/00 20060101; В05С 011/00; B05D 1/18 20060101; B05D 001/18; B05D 3/02 20060101; B05D 003/02; B05D 3/06 20060101; B05D 003/06 от 10.03.2011 US, описан способ получения микрокапсул методом суспензионной полимеризации, относящийся к группе химических методов с применением нового устройства и ультрафиолетового облучения.

Недостатком данного способа являются сложность и длительность процесса, применение специального оборудования, использование ультрафиолетового облучения.

В пат. WO/2011/127030 US, МПК A61K 8/11; B01J 2/00; B01J 13/06; C11D 3/37; C11D 3/39; C11D 17/00, опубликован 13.10.2011, предложено несколько способов получения микрокапсул: межфазной полимеризацией, термоиндуцированным разделением фаз, распылительной сушкой, выпариванием растворителя и др.

Недостатками предложенных способов является сложность, длительность процессов, а также применение специального оборудования (фильтр (Albet, Dassel, Германия), распылительная сушилка для сбора частиц (Spray-4М8 Сушилка от ProСерТ, Бельгия)).

В пат. WO/2011/160733 ЕР, МПК B01J 13/16, опубликован 29.12.2011, описан способ получения микрокапсул, которые содержат оболочки и ядра нерастворимых в воде материалов. Водный раствор защитного коллоида и раствор смеси по меньшей мере двух структурно различных бифункциональных диизоцианатов (А) и (В), нерастворимых в воде, собираются вместе до образования эмульсии, затем добавляются к смеси бифункциональных аминов и нагреваются до температуры не менее 60°C до формирования микрокапсул.

Недостатками предложенного способа являются сложность, длительность процесса, использование в качестве оболочек микрокапсул полимеров синтетического происхождения и их смесей.

В пат. WO/2012/007438 ЕР, МПК A61K 8/11; A61Q 13/00; B01J 13/16; B01J 13/18, опубликован 19.01.2012, описан способ получения частиц со средним диаметром менее 50 микрон, состоящих по крайней мере из одной оболочки, методом ступенчатой полимеризации с участием мономера изоцианата. По крайней мере одна оболочка образована цепной реакцией полимеризации роста (желательно свободно-радикальной полимеризации), которая не связана с изоцианатом. Изобретение также относится к способу получения таких частиц, в которых оболочка формируется до цепного роста полимеризации при температуре, при которой цепная реакция роста подавляется. Изобретение также обеспечивает полностью сформулированные продукты, предпочтительно жидкости и гели, которые содержат указанные частицы.

Недостатками предложенного способа являются сложность и длительность процесса, получение микрокапсул химическим методом ступенчатой полимеризации. Получаемые данным способом частицы имеют достаточно большой размер - 50 мкм.

Наиболее близким методом является способ, предложенный в пат. 2134967 МПК, A01N 53/00, A01N 25/28, опубликован 27.08.1999, Российская Федерация (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.

Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения нанокапсул водорастворимых препаратов в водорастворимых полимерах.

Техническая задача - упрощение и ускорение процесса получения нанокапсул водорастворимых сельскохозяйственных препаратов группы цитокининов в каррагинане, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).

Решение технической задачи достигается способом получения нанокапсул аденина, характеризующимся тем, что в качестве оболочки нанокапсул используется каррагинан, а также получение нанокапсул физико-химическим способом осаждения нерастворителем с использованием осадителя - петролейного эфира.

На Рисунке 1 приводится распределение частиц по размерам в образце нанокапсул аденина в каррагинане, ниже – статические характеристики распределений.

Результатом предлагаемого метода является получение нанокапсул аденина в каррагинане в течение 15 минут. Выход нанокапсул составляет более 90%.

ПРИМЕР 1.

Получение нанокапсул аденина в соотношении ядро:оболочка 1:3

К 1,5 г каррагинана в бензоле добавляют 0,01 г препарата Е472с (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота, как трехосновная, может быть этерифицирована другими глицеридами, и, как оксокислота, - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием в качестве поверхностно-активного вещества. Полученную смесь ставят на магнитную мешалку и включают перемешивание. 0,5 г порошка аденина по порциям добавляют в суспензию каррагинана в бензоле. После образования самостоятельной твердой фазы очень медленно по каплям добавляют 5 мл петролейного эфира. Полученную суспензию нанокапсул отфильтровывают на фильтре, промывают петролейным эфиром и сушат.

Получено 2 г белого порошка. Выход составил 100%.

ПРИМЕР 2.

Получение нанокапсул аденина в соотношении ядро:оболочка 1:1

К 0,5 г каррагинана в бензоле добавляют 0,01 г препарата Е472с в качестве поверхностно-активного вещества. Полученную смесь ставят на магнитную мешалку и включают перемешивание. 0,5 г порошка аденина по порциям добавляют в суспензию каррагинана в бензоле. После образования самостоятельной твердой фазы очень медленно по каплям добавляют 5 мл петролейного эфира. Полученную суспензию нанокапсул отфильтровывают на фильтре, промывают петролейным эфиром и сушат.

Получено 0,98 г белого порошка. Выход составил 98%.

ПРИМЕР 3.

Получение нанокапсул аденина в соотношении ядро:оболочка 5:1

К 0,1 г каррагинана в бензоле добавляют 0,01 г препарата Е472с в качестве поверхностно-активного вещества. Полученную смесь ставят на магнитную мешалку и включают перемешивание. 0,5 г порошка аденина по порциям добавляют в суспензию каррагинана в бензоле. После образования самостоятельной твердой фазы очень медленно по каплям добавляют 3 мл петролейного эфира. Полученную суспензию нанокапсул отфильтровывают на фильтре, промывают петролейным эфиром и сушат.

Получено 0,6 г белого порошка. Выход составил 100%.

ПРИМЕР 4.

Определение размеров нанокапсул методом NTA

Измерения проводили на мультипараметрическом анализаторе наночастиц Nanosight LM0 производства Nanosight Ltd (Великобритания) в конфигурации HS-BF (высокочувствительная видеокамера Andor Luca, полупроводниковый лазер с длиной волны 405 нм и мощностью 45 мВт). Прибор основан на методе анализа траекторий наночастиц (Nanoparticle Tracking Analysis, NTA), описанном в ASTM E2834.

Оптимальным разведением для разведения было выбрано 1:100. Для измерения были выбраны параметры прибора: Camera Level = 16, Detection Threshold = 10 (multi), Min Track Length:Auto, Min Expected Size:Auto. Длительность единичного измерения 215s, использование шприцевого насоса.

Способ получения нанокапсул аденина, характеризующийся тем, что к каррагинану в бензоле добавляют сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты в качестве поверхностно-активного вещества, полученную смесь перемешивают, добавляют порошок аденина, после образования самостоятельной твердой фазы медленно добавляют петролейный эфир, полученную суспензию нанокапсул отфильтровывают, промывают петролейным эфиром и сушат, при этом соотношение ядро / оболочка в нанокапсулах составляет 1:3, 1:1 или 5:1.
Способ получения нанокапсул аденина в каррагинане
Источник поступления информации: Роспатент

Showing 291-300 of 673 items.
13.01.2017
№217.015.8ea4

Способ получения нанокапсул лекарственных растений, обладающих седативным действием в каррагинане

Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул лекарственных растений, обладающих седативным действием. Способ характеризуется тем, что 5 мл настойки валерьяны, пустырника или 10 мл пиона уклоняющего добавляют...
Тип: Изобретение
Номер охранного документа: 0002605273
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.8f25

Способ получения нанокапсул лекарственных растений, обладающих спазмолитическим действием

Изобретение относится к способу получения нанокапсул лекарственных растений, обладающих спазмолитическим действием. Указанный способ характеризуется тем, что настойку мяты добавляют в суспензию натрий карбоксиметилцеллюлозы в метилэтилкетоне в присутствии 0,01 г препарата Е472с в качестве...
Тип: Изобретение
Номер охранного документа: 0002605594
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.8f44

Способ получения нанокапсул витаминов группы в

Изобретение относится к способу получения нанокапсул витаминов группы B в альгинате натрия. Указанный способ характеризуется тем, что в качестве оболочки используется альгинат натрия, а в качестве ядра - витамины группы В, при массовом соотношении ядро:оболочка 1:3 или 1:1, при этом витамин...
Тип: Изобретение
Номер охранного документа: 0002605596
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.9115

Способ получения нанокапсул танина

Изобретение относится к области инкапсуляции. Описан способ получения нанокапсул танина. В качестве оболочки нанокапсул используют каррагинан. Согласно способу по изобретению танин добавляют в суспензию каррагинана в бензоле в присутствии препарата Е472с, при массовом соотношении танина и...
Тип: Изобретение
Номер охранного документа: 0002605850
Дата охранного документа: 27.12.2016
13.01.2017
№217.015.9147

Способ получения нанокапсул сухого экстракта топинамбура

Изобретение относится к способу получения нанокапсул сухого экстракта топинамбура в натрий карбоксиметилцеллюлозе. Указанный способ характеризуется тем, что к суспензии натрий карбоксиметилцеллюлозы в бензоле добавляют препарат Е472с в качестве поверхностно-активного вещества, полученную смесь...
Тип: Изобретение
Номер охранного документа: 0002605614
Дата охранного документа: 27.12.2016
13.01.2017
№217.015.9172

Способ получения нанокапсул лекарственных растений, обладающих седативным действием, в агар-агаре

Изобретение относится к способу получения нанокапсул лекарственных растений, обладающих седативным действием. Указанный способ характеризуется тем, что 5 мл настойки пустырника или валерьяны или 10 мл настойки пиона уклоняющегося добавляют в суспензию агар-агара в бензоле, содержащую 1 или 3 г...
Тип: Изобретение
Номер охранного документа: 0002605613
Дата охранного документа: 27.12.2016
13.01.2017
№217.015.9176

Способ получения нанокапсул розувастатина в альгинате натрия

Изобретение относится к способу получения нанокапсул розувастатина, характеризующемуся тем, что розувастатин медленно добавляют в суспензию альгината натрия в гексане, в присутствии 0,005 г препарата Е472с при перемешивании 1000 об/мин, при массовом соотношении оболочка:ядро 3:1 или 1:5, затем...
Тип: Изобретение
Номер охранного документа: 0002605846
Дата охранного документа: 27.12.2016
13.01.2017
№217.015.91a4

Способ получения нанокапсул розувастатина в конжаковой камеди

Изобретение относится к способу получения нанокапсул розувастатина, характеризующемуся тем, что розувастатин медленно добавляют в суспензию конжаковой камеди в гексане, в присутствии 0,005 г препарата Е472с при перемешивании 1000 об/мин, при массовом соотношении оболочка:ядро 3:1 или 1:5, затем...
Тип: Изобретение
Номер охранного документа: 0002605847
Дата охранного документа: 27.12.2016
13.01.2017
№217.015.9214

Способ получения нанокапсул лекарственных препаратов группы цефалоспоринов в интерфероне

Изобретение относится к медицине и заключается в способе получения нанокапсул лекарственных препаратов группы цефалоспоринов, в которых в качестве оболочки используется интерферон, а в качестве ядра используются препараты группы цефалоспоринов. При осуществлении способа к водному раствору...
Тип: Изобретение
Номер охранного документа: 0002605848
Дата охранного документа: 27.12.2016
25.08.2017
№217.015.980e

Способ получения нанокапсул экстракта зеленого чая в хитозане

Изобретение относится к способу получения нанокапсул экстракта зеленого чая. Указанный способ характеризуется тем, что экстракт зеленого чая добавляют в суспензию хитозана в петролейном эфире в присутствии сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя...
Тип: Изобретение
Номер охранного документа: 0002609195
Дата охранного документа: 30.01.2017
Showing 291-300 of 687 items.
25.08.2017
№217.015.a8e5

Способ получения нанокапсул антибиотиков тетрациклинового ряда в альгинате натрия

Изобретение относится к способу получения нанокапсул антибиотиков тетрациклинового ряда, выбранных из тетрациклина, доксициклина или миноциклина. Указанный способ характеризуется тем, что в суспензию альгината натрия в петролейном эфире и 0,01 г препарата Е472с, используемого в качестве...
Тип: Изобретение
Номер охранного документа: 0002611367
Дата охранного документа: 21.02.2017
25.08.2017
№217.015.a8fb

Способ получения нанокапсул метронидазола в альгинате натрия

Изобретение относится к способу получения нанокапсул метронидазола в альгинате натрия. Указанный способ характеризуется тем, что в суспензию альгината натрия в гексане и 0,01 г препарата Е472с добавляют порошок метронидазола, затем добавляют ацетон, полученную суспензию нанокапсул...
Тип: Изобретение
Номер охранного документа: 0002611368
Дата охранного документа: 21.02.2017
25.08.2017
№217.015.ab59

Способ получения нанокапсул гидрокарбоната натрия

Изобретение относится к области нанотехнологии, фармацевтики и пищевой промышленности и раскрывает способ получения нанокапсул гидрокарбоната натрия в альгинате натрия. Способ характеризуется тем, что гидрокарбонат натрия диспергируют в суспензию альгината натрия в петролейном эфире в...
Тип: Изобретение
Номер охранного документа: 0002612348
Дата охранного документа: 07.03.2017
25.08.2017
№217.015.ab8b

Способ получения нанокапсул солей металлов в агар-агаре

Изобретение относится к области нанотехнологии, ветеринарии и растениеводства. Способ получения нанокапсул солей металлов в агар-агаре характеризуется тем, что в качестве оболочки нанокапсул используется агар-агар, а в качестве ядра - соль металла при массовом соотношении ядро : оболочка 1:3,...
Тип: Изобретение
Номер охранного документа: 0002612346
Дата охранного документа: 07.03.2017
25.08.2017
№217.015.abd2

Способ получения нанокапсул солей металлов в агар-агаре

Изобретение относится к области нанотехнологии, в частности к фармацевтике, и раскрывает способ получения нанокапсул солей металлов в агар-агаре. Способ характеризуется тем, что 100 мг соли металла (иодид калия, карбонат магния, цинка или кальция, хлорид кальция) диспергируют в суспензию 100...
Тип: Изобретение
Номер охранного документа: 0002612025
Дата охранного документа: 01.03.2017
25.08.2017
№217.015.abed

Способ получения нанокапсул антисептика-стимулятора дорогова (асд) 2 фракция в конжаковой камеди

Изобретение относится в области нанотехнологии, в частности к способу получения нанокапсул АСД в конжаковой камеди. Способ получения нанокапсул антисептика-стимулятора Дорогова (АСД) 2 фракция в конжаковой камеди характеризуется тем, что АСД 2 фракция диспергируют в суспензию конжаковой камеди...
Тип: Изобретение
Номер охранного документа: 0002612347
Дата охранного документа: 07.03.2017
25.08.2017
№217.015.afb6

Способ получения нанокапсул гидрокарбоната натрия в геллановой камеди

Изобретение относится к области фармацевтики и пищевой промышленности и описывает способ получения нанокапсул гидрокарбоната натрия в геллановой камеди. Способ характеризуется тем, что гидрокарбонат натрия диспергируют в суспензию геллановой камеди в бутаноле в присутствии 0,01 г препарата...
Тип: Изобретение
Номер охранного документа: 0002611036
Дата охранного документа: 20.02.2017
25.08.2017
№217.015.b1a8

Способ получения нанокапсул метронидазола в конжаковой камеди

Изобретение относится к способу получения нанокапсул метронидазола в конжаковой камеди. Указанный способ характеризуется тем, что в суспензию конжаковой камеди в бутаноле и 0,01 г препарата Е472с, используемого в качестве поверхностно-активного вещества, добавляют порошок метронидазола, затем...
Тип: Изобретение
Номер охранного документа: 0002613108
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.b359

Способ получения нанокапсул розмарина в альгинате натрия

Изобретение относится к способу получения нанокапсул розмарина в альгинате натрия. Указанный способ характеризуется тем, что в качестве оболочки нанокапсул используют альгинат натрия, при этом порошок розмарина медленно добавляют в суспензию альгината натрия в петролейном эфире в присутствии...
Тип: Изобретение
Номер охранного документа: 0002613883
Дата охранного документа: 21.03.2017
25.08.2017
№217.015.b3fb

Способ получения нанокапсул вакцины "кс" от чумы свиней в альгинате натрия

Изобретение относится к способу получения нанокапсул вакцины «КС» от чумы свиней в альгинате натрия. Указанный способ характеризуется тем, что 55 мг вакцины «КС» растворяют в 3 мл петролейного эфира и диспергируют в суспензию альгината натрия в петролейном эфире, содержащую 550 мг указанного...
Тип: Изобретение
Номер охранного документа: 0002613795
Дата охранного документа: 21.03.2017
+ добавить свой РИД