×
25.08.2017
217.015.a4ee

Результат интеллектуальной деятельности: СИСТЕМЫ СЖАТИЯ ВЛАЖНОГО ГАЗА С ТЕРМОАКУСТИЧЕСКИМ РЕЗОНАТОРОМ

Вид РИД

Изобретение

№ охранного документа
0002607576
Дата охранного документа
10.01.2017
Аннотация: В настоящей заявке предложена система сжатия влажного газа, предназначенная для потока влажного газа, содержащего капли жидкости. Система сжатия влажного газа может включать трубу, компрессор, сообщающийся с трубой, и термоакустический резонатор, сообщающийся с трубой для разрушения капель жидкости в потоке влажного газа. Изобретение направлено на усовершенствование систем сжатия влажного газа и на снижение эрозии. 3 н. и 17 з.п. ф-лы, 7 ил.

ОБЛАСТЬ ТЕХНИКИ

[0101] Настоящая заявка и полученный на ее базе патент, в целом, относятся к системам сжатия влажного газа и, в частности, к системе сжатия влажного газа, в которой используется термоакустический резонатор для разрушения капель воды, присутствующих в потоке газа, перед тем как он достигнет компрессора.

ПРЕДПОСЫЛКИ К СОЗДАНИЮ ИЗОБРЕТЕНИЯ

[0102] Природный газ и другие виды топлива могут включать жидкий компонент. Такие «влажные» газы могут содержать значительный объем жидкости. В обычных компрессорах капли жидкости, присутствующие в таких влажных газах, могут вызывать эрозию или повышение хрупкости рабочих колес или других компонентов. Более того, в результате указанной эрозии может возникать разбалансировка ротора. В частности, может быть существенным негативное взаимодействие между каплями жидкости и такими поверхностями компрессора, как рабочие колеса, торцевые стенки, уплотнения и тому подобные. Известно, что эрозия зависит по существу от комбинации относительной скорости капель в процессе столкновения, массового размера капель и угла соударения. Эрозия может привести к ухудшению рабочих характеристик, уменьшенному сроку службы компрессора и компонентов, а также в целом повышает требования к техническому обслуживанию.

[0103] Для применяемых в настоящее время компрессоров влажного газа может использоваться расположенный выше по потоку газожидкостный сепаратор, обеспечивающий отделение капель воды от потока газа для ограничения или по меньшей мере локализации влияния эрозии и других разрушений, вызванных каплями воды. Однако оборудование, необходимое для сепарации, как правило, требует дополнительного энергопотребления. Другой подход состоит в использовании сужающегося-расширяющегося сопла, такого как сопло Лаваля и ему подобные устройства, для обеспечения ускорения потока газа до сверхзвуковой скорости. Возникающая в результате ускорения сверхзвуковая ударная волна может разрушать капли жидкости. Однако такая волна также может привести к перепаду давления перед компрессором и, таким образом, в целом к повышению нагрузки на компрессор.

[0104] Следовательно, существует необходимость в усовершенствовании систем сжатия влажного газа и способов предотвращения эрозии. Предпочтительно, такие системы и способы способны минимизировать влияние эрозии и других разрушений, вызванных крупными каплями воды, присутствующими в потоке влажного газа, при этом исключая или по меньшей мере уменьшая необходимость использования газожидкостных сепараторов, сверхзвуковых ударных волн и тому подобного.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

[0105] Таким образом, в настоящей заявке и полученном на ее базе патенте предложена система сжатия влажного газа, предназначенная для потока влажного газа, в котором присутствуют капли жидкости. Система сжатия влажного газа может содержать трубу, компрессор, сообщающийся с трубой, и термоакустический резонатор, сообщающийся с трубой с обеспечением разрушения капель жидкости, присутствующих в потоке влажного газа.

[0106] В настоящей заявке и полученном на ее базе патенте также предложен способ разрушения крупных капель жидкости, присутствующих в потоке влажного газа выше по течению от компрессора. Способ может включать этапы обеспечения протекания потока влажного газа по трубе, создания при помощи термоакустического резонатора акустических волн в потоке влажного газа, уменьшения относительной скорости газообразной и жидкой фаз в потоке влажного газа и преодоления поверхностного натяжения крупных капель жидкости для их разрушения на более мелкие капли. В настоящем документе могут быть описаны и другие способы.

[0107] В настоящей заявке и полученном на ее базе патенте дополнительно предложена система сжатия влажного газа, предназначенная для потока влажного газа, в котором присутствуют капли жидкости. Система сжатия влажного газа может содержать трубу, компрессор, сообщающийся с трубой, и термоакустический резонатор, сообщающийся с трубой и расположенный выше по течению от компрессора. Термоакустический резонатор может содержать теплообменник горячего контура, теплообменник холодного контура и расположенный между ними регенератор, предназначенный для создания акустических волн в потоке влажного газа. В настоящем документе также могут быть описаны и другие системы.

[0108] Указанные и другие признаки и усовершенствования в настоящей заявке и полученном на ее базе патенте станут понятными любому специалисту в данной области после обзора приведенного ниже подробного описания, выполненного со ссылкой на чертежи, и прилагаемой формулы изобретения.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

[0109] На фиг. 1 представлено схематическое изображение компрессора влажного газа, известного из уровня техники, с частью трубной секции.

[0110] На фиг. 2 представлено схематическое изображение примера системы сжатия влажного газа, выполненной согласно настоящему документу, с термоакустическим резонатором.

[0111] На фиг. 3 представлено схематическое изображение термоакустического резонатора системы сжатия влажного газа, изображенной на фиг. 2.

[0112] На фиг. 4 представлен график, изображающий относительную скорость жидкой и газообразной фаз потока влажного газа, протекающего около термоакустического резонатора системы сжатия влажного газа, изображенной на фиг. 2.

[0113] На фиг. 5 представлен частичный вид сбоку альтернативного примера системы сжатия влажного газа, выполненной с термоакустическим резонатором согласно настоящему документу.

[0114] На фиг. 6 представлен частичный вид сбоку альтернативного примера системы сжатия влажного газа с термоакустическим резонатором согласно настоящему документу.

[0115] На фиг. 7 представлен частичный вид сбоку альтернативного примера системы сжатия влажного газа с термоакустическим резонатором согласно настоящему документу.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

[0116] На чертежах подобными числовыми позициями обозначены подобные элементы. На фиг. 1 изображен пример известного компрессора 10, работающего на влажном газе. Компрессор 10 может иметь обычную конструкцию и содержать несколько ступеней с рабочими колесами 20, расположенными на валу 30 для вращения вместе с указанным валом между статорами. Кроме того, компрессор 10 может содержать впускную секцию 40. Впускная секция 40 может представлять собой улиточный впускной направляющий аппарат 50 и подобное устройство, расположенное вокруг рабочих колес 20. Также известны другие типы и конфигурации компрессора 10 влажного газа. С впускной секцией 40 компрессора 10 может сообщаться трубная секция 60. Трубная секция 60 может иметь любой размер, форму или длину. При этом можно использовать любое количество трубных секций 60, которые могут быть соединены обычным способом.

[0117] На фиг. 2 изображен пример системы 100 сжатия влажного газа, выполненной согласно настоящему документу. Система 100 может содержать компрессор 110, расположенный смежно с трубой 120. Компрессор 110 может быть подобен компрессору 10, описанному выше. В данном случае может быть применен любой тип или любое количество компрессоров 110. Аналогичным образом, труба 120 может иметь любые размер, форму, длину или любое количество секций. Труба 120 может сообщаться с устьевым оборудованием 130 скважины. Поток 140 влажного газа выходит из устьевого оборудования 130 скважины и протекает через компрессор 110, а затем далее вниз по потоку. Поток 140 влажного газа может включать газообразную фазу 145, а также крупные капли 150 жидкости в жидкой фазе 155. Поток 140 влажного газа может представлять собой природный газ, другие виды топлива и т.п. Другие компоненты и другие конфигурации тоже приемлемы.

[0118] Помимо прочего система 100 сжатия влажного газа может содержать термоакустический резонатор 160. По существу, для эффективного возбуждения акустических волн высокой амплитуды термоакустический резонатор 160 использует перепад внутренней температуры. Термоакустический резонатор 160 может быть соединен с трубой 120 ниже по потоку относительно устьевого оборудования 130 скважины и выше по потоку относительно компрессора 110. При этом может быть применено любое количество термоакустических резонаторов 160.

[0119] Термоакустический резонатор 160 может содержать акустическую камеру 170. Акустическая камера 170 может непосредственно сообщаться с трубой 120, так что указанная камера заполнена потоком 140 влажного газа. Камера 170 может иметь любой размер, форму или конфигурацию, учитывая, что конфигурация камеры 170 может оказывать влияние на волновую природу и длину волны акустических волн, образуемых в указанной камере.

[0120] Термоакустический резонатор 160 может содержать теплообменник 180 горячего контура, теплообменник 190 холодного контура и расположенный между ними пассивный регенератор 200 тепла. В теплообменнике 180 горячего контура источник 210 тепла отдает тепло в поток 140 влажного газа, протекающий рядом с ним. Источник 210 тепла может включать любой вид тепла и любой тип теплового источника. Например, может быть использовано сбросное тепло от компрессора 110 или другого объекта. В теплообменнике 190 холодного контура тепло может забираться от потока 140 влажного газа и передаваться к охлаждающему потоку или приемнику 220 отводимого тепла для отведения или использования в другом месте. Пассивный регенератор 200 тепла может включать набор пластин 230 и тому подобных элементов. При этом можно использовать любой тип регенератора, отличающегося высоким тепловым кпд.

[0121] Перепад температуры между теплообменником 180 горячего контура и теплообменником 190 холодного контура через пассивный тепловой регенератор 200 термоакустического резонатора может привести к образованию акустических волн 240. Акустические волны 240 работают как волны давления, которые распространяются по акустической камере 170 и в трубу 120. Причем длина волны и другие характеристики волн 240 могут быть разными. В этой связи также могут быть использованы другие типы термоакустических резонаторов и другие средства, предназначенные для создания акустических волн 240.

[0122] Как изображено на фиг. 4, ударный фронт, вызванный акустическими волнами 240, взаимодействует с потоком 140 влажного газа в трубе 120. Взаимодействие акустических волн 240 может вызвать быстрое изменение скорости в газообразной фазе 145 потока 140 влажного газа. Таким образом, когда поток 140 влажного газа проходит сквозь акустические волны 240, изменение относительной скорости между газообразной фазой 145 и жидкой фазой 155 потока 140 влажного газа может привести к разрушению крупных капель 150 жидкости на более мелкие капли 250.

[0123] Разрушение капель на более мелкие части может зависеть, главным образом, от относительной скорости между газообразной фазой 145 и жидкой фазой 155. Вероятность разрушения капель может быть оценена на основании числа Вебера для потока 140 влажного газа. В частности, применительно к потоку 140 влажного газа число Вебера может быть вычислено по следующей формуле:

[0124]

[0125] В приведенном уравнении Pg - плотность текучей среды (кг/м3), VR - относительная скорость (м/с), d - диаметр капель (м), σ - поверхностное натяжение (Н/м). В сущности, число Вебера представляет собой безразмерный показатель относительной роли инерционных свойств текучей среды по сравнению с поверхностным натяжением капель. Таким образом, крупные капли 150 жидкости могут быть разрушены на более мелкие капли 250, если число Вебера указывает, что кинетическая энергия газообразной фазы 145 может преодолеть поверхностное натяжение капель 150. Могут быть использованы другие виды формулы оценки капель и другие типы протоколов.

[0126] Часть энергии акустических волн 240 может идти на разрушение капель, а часть энергии рассеивается в потоке 140 влажного газа. Рассеивание энергии означает тепловыделение в потоке 140. Данное тепло вызывает, главным образом, испарение жидкости, а не повышение температуры и, таким образом, может быть преимущественным для общей производительности компрессора. После прохождения через волны 240 поток 140 продолжает следовать к впускной секции 40 компрессора, но уже вместе с находящимися в нем более мелкими каплями 250, что уменьшает опасную эрозию на лопастях 20 компрессора и подобных элементах.

[0127] Таким образом, система 100, выполненная с резонатором 160, должна увеличивать общий срок службы и улучшать эффективность компрессора 110. В частности, устранение крупных капель 150 жидкости может уменьшить степень повреждения, вызванного эрозией, тогда как за счет испарения может быть увеличена эффективность компрессора. Более того, поскольку в резонаторе 160 не использованы движущиеся части, указанный резонатор должен иметь продолжительный срок службы и низкий уровень требований, предъявляемых к техническому обслуживанию. Кроме того, поскольку резонатор 160 может работать на сбросном тепле, получаемом от компрессора 110 или из другого источника, применение указанного резонатора может не вызывать паразитных потерь энергии. Помимо этого, применяя резонатор 160, можно избежать перепада давления через него и, следовательно, увеличения нагрузки на главный компрессор.

[0128] Хотя описанная выше система 100 была приведена в контексте термоакустического резонатора 160, расположенного вокруг трубы 120, упомянутый резонатор также может быть расположен в другом месте Например, на фиг. 5 и фиг. 6 изображено применение термоакустического резонатора 160 вокруг сходящегося-расходящегося сопла 260 или сопла другого типа, имеющего переменное поперечное сечение. Как описано выше, сходящееся-расходящееся сопло 260, также известное как сопло Лаваля, и подобное сопло может включать сходящуюся часть 270, часть 280 горловины и расходящуюся часть 290. Сходящееся-расходящееся сопло 260 может обеспечить разрушение крупных капель 250 посредством сверхзвуковой ударной волны в месте 300 возникновения ударной нагрузки.

[0129] В примере, изображенном на фиг. 5, резонатор 160 может быть расположен в верхней по потоку секции трубы 310. В примере, изображенном на фиг. 6, резонатор 160 может быть расположен в нижней по потоку секции трубы 320. Резонатор 160 может быть расположен в любом другом месте вокруг или вдоль сходящегося-расходящегося сопла 260 для содействия и стимулирования разрушения капель способом, который подобен описанному выше. При этом может быть применено множество термоакустических резонаторов 160. Приемлемы другие виды труб и другие типы сопел. Также могут быть применены другие компоненты и другие конфигурации.

[0130] В качестве альтернативы термоакустическому резонатору 160, который непосредственно сообщается с потоком 140 влажного газа, протекающим внутри трубы 120, резонатор 160 может быть физическим образом отделен от указанного потока 140 в трубе 120. Как изображено на фиг. 7, резонатор 160 может быть связан с трубой 120 посредством подвижного поршня 330 и подобного устройства. Акустические волны 240 могут перемещать подвижный поршень 330 в положение контакта с трубой 120, так что посредством механического контакта волны проникают в трубу. Кроме того, применение поршня 330 позволяет использовать другую рабочую среду внутри резонатора 160. Можно использовать такие среды, как гелий, азот или другие газы. Использование альтернативной среды может быть преимущественным с точки зрения эффективности и устойчивого равновесия, то есть повышенной эффективности при преобразовании тепла в акустическую энергию. Также применимы механические системы другого типа.

[0131] Следует понимать, что вышеописанное относится лишь к некоторым вариантам выполнения настоящей заявки и созданного на ее базе патента. Любой специалист в данной области техники может выполнить многочисленные изменения и модификации, не выходящие за рамки основной сущности и объема изобретения, которые описаны в приведенной ниже формуле изобретения и ее эквивалентах.


СИСТЕМЫ СЖАТИЯ ВЛАЖНОГО ГАЗА С ТЕРМОАКУСТИЧЕСКИМ РЕЗОНАТОРОМ
СИСТЕМЫ СЖАТИЯ ВЛАЖНОГО ГАЗА С ТЕРМОАКУСТИЧЕСКИМ РЕЗОНАТОРОМ
СИСТЕМЫ СЖАТИЯ ВЛАЖНОГО ГАЗА С ТЕРМОАКУСТИЧЕСКИМ РЕЗОНАТОРОМ
СИСТЕМЫ СЖАТИЯ ВЛАЖНОГО ГАЗА С ТЕРМОАКУСТИЧЕСКИМ РЕЗОНАТОРОМ
Источник поступления информации: Роспатент

Showing 231-240 of 356 items.
25.08.2017
№217.015.bb20

Устройство для крепления лопатки и турбомашина, содержащая это устройство

Устройство крепления лопатки с крепежным элементом к крепежному пазу рабочего колеса содержит переходник и накладку. Переходник расположен между лопаткой и рабочим колесом и имеет крепежный паз, комплементарный крепежному элементу лопатки, и крепежный элемент, комплементарный крепежному пазу...
Тип: Изобретение
Номер охранного документа: 0002615788
Дата охранного документа: 11.04.2017
25.08.2017
№217.015.bce6

Элемент турбины газотурбинного двигателя с микроканальным охлаждением (варианты)

Элемент турбины газотурбинного двигателя содержит подложку, имеющую наружную поверхность, внутреннюю поверхность и торец. Внутренняя поверхность ограничивает по меньшей мере одно полое внутреннее пространство. Наружная поверхность ограничивает одну или несколько канавок, причем каждая канавка...
Тип: Изобретение
Номер охранного документа: 0002616335
Дата охранного документа: 14.04.2017
25.08.2017
№217.015.bdda

Борсодержащее покрытие для детектирования нейтронов

Изобретение относится к борным покрытиям для детектирования нейтронов и особенно относится к нанесению борных покрытий для детектирования нейтронов с помощью электростатического напыления. Детектор нейтронов содержит внешнюю оболочку, ограничивающую внутренний объем, по меньшей мере участок...
Тип: Изобретение
Номер охранного документа: 0002616769
Дата охранного документа: 18.04.2017
25.08.2017
№217.015.bf10

Уплотнение для газовой турбины, расположенное вблизи проточного тракта

В настоящем изобретении предложено уплотнение (100) для газовой турбины (10), расположенное вблизи проточного тракта и содержащее основание (130), пару плеч (110, 120), проходящих от основания (130), и криволинейную выемку (160), расположенную между парой плеч (110, 120). 14 з.п. ф-лы, 6 ил.
Тип: Изобретение
Номер охранного документа: 0002617037
Дата охранного документа: 19.04.2017
25.08.2017
№217.015.bf12

Система очистки канала турбомашины, турбомашина и способ фильтрации воздушного потока, проходящего от компрессора к турбине турбомашины

Система очистки канала турбомашины содержит первый канал для воздушного потока, имеющий первое впускное отверстие, первое выпускное отверстие и первую промежуточную часть, содержащую первый фильтр грубой очистки. Второй канал для воздушного потока проточно соединен с первым каналом для...
Тип: Изобретение
Номер охранного документа: 0002617038
Дата охранного документа: 19.04.2017
25.08.2017
№217.015.c4ae

Система управления потоком, электрогенераторная система и способ восстановления турбинного двигателя в такой системе

Изобретение относится к энергетике. Система управления потоком включает по меньшей мере один управляющий клапан, связанный по меньшей мере с одним соплом турбинного двигателя, при этом упомянутый управляющий клапан сконфигурирован для регулирования потока текучей среды в первом направлении или...
Тип: Изобретение
Номер охранного документа: 0002618133
Дата охранного документа: 02.05.2017
25.08.2017
№217.015.c60e

Система для подачи топлива в камеру сгорания (варианты)

Система для подачи топлива в камеру сгорания содержит камеру горения и топливную форсунку, которая находится в проточном сообщении с камерой горения. Несколько каналов расположены в окружном направлении вокруг камеры горения для обеспечения с ней проточного сообщения. Камера для жидкого топлива...
Тип: Изобретение
Номер охранного документа: 0002618765
Дата охранного документа: 11.05.2017
25.08.2017
№217.015.c6d0

Держатель уплотнения и сопловая лопатка для газовой турбины (варианты)

В настоящей заявке описан держатель уплотнения, используемый вокруг ряда отверстий в платформе сопловой лопатки турбины, предназначенных для прохождения воздуха. Держатель уплотнения может иметь внутреннюю поверхность, обращенную к платформе и имеющую выполненные на ней пазы, совмещенные с...
Тип: Изобретение
Номер охранного документа: 0002618805
Дата охранного документа: 11.05.2017
25.08.2017
№217.015.c74a

Топливная форсунка с осевым потоком (варианты) и способ предварительного смешивания топлива и воздуха

Группа изобретений относится к топливным форсункам. Топливная форсунка с осевым потоком для газовой турбины содержит кольцевые каналы, предназначенные для доставки продуктов для сжигания. Кольцевой воздушный канал 62 предназначен для приема нагнетаемого компрессором воздуха. Смежно с осевым...
Тип: Изобретение
Номер охранного документа: 0002618799
Дата охранного документа: 11.05.2017
25.08.2017
№217.015.c757

Топливная форсунка, концевой узел топливной форсунки и газовая турбина

Изобретение относится к энергетике. Топливная форсунка для камеры сгорания содержит топочную трубу и кольцевой центральный элемент, расположенный концентрически в указанной топочной трубе. Указанный кольцевой центральный элемент проходит вдоль продольной оси топливной форсунки и по меньшей мере...
Тип: Изобретение
Номер охранного документа: 0002618801
Дата охранного документа: 11.05.2017
Showing 231-240 of 299 items.
25.08.2017
№217.015.b7ae

Способ изготовления узла топливной форсунки, способ изготовления кольца топливной форсунки и кольцо топливной форсунки

Группа изобретений относится к способам изготовления узла топливной форсунки и кольца топливной форсунки и к кольцу топливной форсунки. Способ изготовления узла 100 топливной форсунки включает использование торцевой заглушки 104 топливной форсунки, расположение кольца топливной форсунки в...
Тип: Изобретение
Номер охранного документа: 0002614894
Дата охранного документа: 30.03.2017
25.08.2017
№217.015.b92b

Система и способ обнаружения утечки топлива и способ обнаружения утечки текучей среды

Описаны системы и способы обнаружения утечек топлива в газотурбинных двигателях. В соответствии с одним вариантом осуществления изобретения предлагается способ обнаружения утечки топлива в газотурбинном двигателе. Способ может включать регулирование клапана управления для соответствия...
Тип: Изобретение
Номер охранного документа: 0002615303
Дата охранного документа: 04.04.2017
25.08.2017
№217.015.b96b

Уплотнение, уплотнение турбинного двигателя и способ изготовления уплотнения

Группа изобретений относится к уплотнению, уплотнению турбинного двигателя и способу изготовления уплотнения. Материал основы уплотнения имеет первый участок с первой степенью истираемости и второй участок со второй степенью истираемости, причем первый участок имеет меньшую степень...
Тип: Изобретение
Номер охранного документа: 0002615088
Дата охранного документа: 03.04.2017
25.08.2017
№217.015.ba3d

Удерживающий кронштейн для поддержания трубок рабочего колеса турбомашины и элемент турбомашины (варианты)

Изобретение относится к энергетике. Предложен удерживающий кронштейн, содержащий кольцевой корпус, который содержит кольцевую удерживающую скобу, ограничивающую первые сквозные отверстия, и кольцевое основание, ограничивающее вторые сквозные отверстия. Профиль удерживающей скобы имеет фланец,...
Тип: Изобретение
Номер охранного документа: 0002615567
Дата охранного документа: 05.04.2017
25.08.2017
№217.015.ba7f

Узел инжекционного охлаждения и способ его установки

Узел инжекционного охлаждения для использования во внутренней платформе сопловой лопатки турбины содержит вставку инжекционного охлаждения, камеру инжекционного охлаждения и трубный элемент. Вставка инжекционного охлаждения расположена в полости аэродинамической части сопловой лопатки. Камера...
Тип: Изобретение
Номер охранного документа: 0002615620
Дата охранного документа: 05.04.2017
25.08.2017
№217.015.bb18

Способ контроля разделения текучих сред, топливная система, способ контроля состояния клапана и газовая турбина

Изобретение относится к топливным системам для газовой турбины и соответствующим способам контроля разделения текучих сред в топливных системах. В частности, системы и способы включают измерение перепадов давления и сравнение результатов измерений с заранее заданным значением. Технический...
Тип: Изобретение
Номер охранного документа: 0002615876
Дата охранного документа: 11.04.2017
25.08.2017
№217.015.bb20

Устройство для крепления лопатки и турбомашина, содержащая это устройство

Устройство крепления лопатки с крепежным элементом к крепежному пазу рабочего колеса содержит переходник и накладку. Переходник расположен между лопаткой и рабочим колесом и имеет крепежный паз, комплементарный крепежному элементу лопатки, и крепежный элемент, комплементарный крепежному пазу...
Тип: Изобретение
Номер охранного документа: 0002615788
Дата охранного документа: 11.04.2017
25.08.2017
№217.015.bce6

Элемент турбины газотурбинного двигателя с микроканальным охлаждением (варианты)

Элемент турбины газотурбинного двигателя содержит подложку, имеющую наружную поверхность, внутреннюю поверхность и торец. Внутренняя поверхность ограничивает по меньшей мере одно полое внутреннее пространство. Наружная поверхность ограничивает одну или несколько канавок, причем каждая канавка...
Тип: Изобретение
Номер охранного документа: 0002616335
Дата охранного документа: 14.04.2017
25.08.2017
№217.015.bdda

Борсодержащее покрытие для детектирования нейтронов

Изобретение относится к борным покрытиям для детектирования нейтронов и особенно относится к нанесению борных покрытий для детектирования нейтронов с помощью электростатического напыления. Детектор нейтронов содержит внешнюю оболочку, ограничивающую внутренний объем, по меньшей мере участок...
Тип: Изобретение
Номер охранного документа: 0002616769
Дата охранного документа: 18.04.2017
25.08.2017
№217.015.bf10

Уплотнение для газовой турбины, расположенное вблизи проточного тракта

В настоящем изобретении предложено уплотнение (100) для газовой турбины (10), расположенное вблизи проточного тракта и содержащее основание (130), пару плеч (110, 120), проходящих от основания (130), и криволинейную выемку (160), расположенную между парой плеч (110, 120). 14 з.п. ф-лы, 6 ил.
Тип: Изобретение
Номер охранного документа: 0002617037
Дата охранного документа: 19.04.2017
+ добавить свой РИД