×
25.08.2017
217.015.a307

Результат интеллектуальной деятельности: УСТРОЙСТВО КОМПЕНСАЦИИ ТЕРМИЧЕСКОГО РАСШИРЕНИЯ ОХЛАЖДАЮЩЕЙ ЖИДКОСТИ АКТИВНОГО ЭЛЕМЕНТА ТВЕРДОТЕЛЬНОГО ЛАЗЕРА (ВАРИАНТЫ)

Вид РИД

Изобретение

Аннотация: Устройство компенсации термического расширения охлаждающей жидкости активного элемента твердотельного лазера содержит входной, выходной коллекторы, соединенные с каналами и кольцевым каналом, образованным трубкой, охватывающей активный элемент. Устройство снабжено дополнительными входным и выходным коллекторами, соединенными с каналами, которые выполнены капиллярными. Охлаждающая жидкость имеет стационарный объем, ее уровень всегда превышает место соединения капиллярных каналов с дополнительными входным, выходным коллекторами. Технический результат заключается в обеспечении надёжной работы системы охлаждения активного элемента в жёстких условиях эксплуатации. 2 н.п. ф-лы, 2 ил.

Изобретение относится к твердотельным лазерам с диодной накачкой, в частности к элементам конструкции систем охлаждения твердотельных лазеров, и может быть использовано при изготовлении лазерной техники.

Известно изобретение под названием «Устройство лазера», заявка США №2004247003, МПК H01S 3/04, S3/042, 3/06, опубл. 2004 г., в котором описано устройство охлаждения активного элемента (АЭ), которое содержит каналы, соединенные с кольцевым каналом, образованным трубкой, охватывающей активный элемент. В качестве ОЖ используется хладагент D2O, который имеет низкий коэффициент оптического поглощения.

Данное устройство может применяться для твердотельных лазеров высокой и средней мощности, осветителей различной конфигурации, при размещении охлаждающей жидкости между источником накачки и активной средой.

В данном устройстве охлаждения АЭ лазера предлагается эффективное охлаждение прокачкой хладагента D2O вдоль поверхности АЭ, что предусматривает отдельную систему охлаждения лазера с применением насоса, что значительно увеличивает массогабаритные характеристики лазера.

Известно изобретение под названием «Устройство твердотельного лазера», заявка Японии №2001185785, МПК H01S 3/042, 3/094, 3/23, опубл. 2001 г., в котором описано устройство охлаждения активного элемента твердотельного лазера. Данное устройство является наиболее близким аналогом заявляемого изобретения и выбрано в качестве прототипа.

Устройство охлаждения твердотельного лазера содержит входной, выходной коллекторы, соединенные с каналами и кольцевым каналом, образованным трубкой, охватывающей активный элемент.

Каналы направлены в разные стороны с целью уменьшения зон застоя в направлении движения ОЖ. На внутренней поверхности трубки размещена спиралевидная канавка.

Данное устройство позволяет эффективно выравнивать температурные градиенты, возникающие в АЭ, а также позволяет избежать застойных зон в кольцевом канале охлаждения АЭ. Однако оно предназначено для охлаждения АЭ прокачкой теплоносителя, что предполагает использование системы охлаждения с применением насоса, что также соответственно увеличивает массогабаритные характеристики лазера.

Технический результат, получаемый при использовании предлагаемого технического решения, - снижение массогабаритных характеристик устройства охлаждения, обеспечение надежной работы системы охлаждения активного элемента в жестких условиях эксплуатации (при воздействии широкого диапазона рабочих температур, вибраций и ударов).

Сущность первого варианта заключается в том, что устройство компенсации термического расширения охлаждающей жидкости активного элемента твердотельного лазера, содержащее входной, выходной коллекторы, соединенные с каналами и кольцевым каналом, образованным трубкой, охватывающей активный элемент, согласно изобретению снабжено дополнительными входным и выходным коллекторами, соединенными с каналами, которые выполнены капиллярными, охлаждающая жидкость имеет стационарный объем, ее уровень всегда превышает место соединения капиллярных каналов с дополнительными входным, выходным коллекторами.

Известно, что срок эксплуатации лазера достаточно длителен. Все его составляющие части (элементы, компоненты) при условии герметичности (закрытое состояние) должны надежно работать без обслуживания в течение длительного срока. Защита целостности и сохранности лазера на протяжении всего срока службы весьма важны не только по причине высоких финансовых затрат на создание (обслуживание), но также и в целях предотвращения дополнительных затрат на проведение технического обслуживания лазера и замены его составных частей в результате потери работоспособности.

В целях снижения массогабаритных характеристик лазера авторами было предложено применение устройства надежной системы охлаждения активного элемента без прокачки охлаждающей жидкости (стационарной). Однако в ходе экспериментов по отработке стационарного блока охлаждения лазерного кристалла специалисты столкнулись с рядом серьезных трудностей. Это связано со следующим.

При работе лазера в результате нагрева активного элемента и изменении температуры окружающей среды в объеме с охлаждающей жидкостью стационарной системы охлаждения активного элемента в результате температурного расширения возрастает внутреннее давление. Вследствие этого происходит выдавливание жидкости через уплотнения, герметизирующие активный элемент и трубку, вследствие этого в системе охлаждения активного элемента уменьшается объем жидкости и при последующем сжатии охлаждающей жидкости после остывания возникают паровые пузырьки, приводящие к неработоспособности осветителя и стационарного охлаждения.

В охлаждающей жидкости стационарной системы охлаждения активного элемента твердотельного лазера с диодной накачкой в течение длительного срока службы лазера происходят оптотермодинамические и физико-химические процессы под воздействием мощного излучения диодной накачки. Применение лазера в жестких условиях эксплуатации способствует тому, что охлаждающая жидкость в стационарном блоке при воздействии широкого диапазона рабочих температур, ударов и вибраций может вести себя непредсказуемым образом. В результате может произойти уменьшение объема охлаждающей жидкости по причине разгерметизации блока стационарного охлаждения, а следовательно, и падение энергетики лазера. Для определения причин, состояния и уровня охлаждающей жидкости необходимо было останавливать работу лазера, выполнять сложную разборку, сборку с последующей заменой деталей. В ходе решения проблемы возникла необходимость разработки такой стационарной системы охлаждения, которая обеспечила бы надежную работу лазера в течение всего срока службы.

Для решения этой проблемы существует практика создания дополнительного объема (полости), либо заполненного газом (обычно воздухом), либо вакуумируемого. Однако в случае применения газа при транспортировании, а также работе лазера в условиях воздействия внешних факторов (при воздействии широкого диапазона рабочих температур, вибраций и ударов) происходит образование пузырьков газа в жидкости, попадающих в кольцевой канал охлаждения (зазор, образованный активным элементом и трубкой, его охватывающей). Возникшие пузырьки газа не имеют возможности выйти из зазора, так как его размер невелик. В результате возникновения пузырей между элементами накачки и активным элементом уменьшается коэффициент пропускания охлаждающей жидкости, снижается кпд осветителя. При использовании вакуумированного объема происходит образование пузырьков пара с аналогичными последствиями.

В свете этого легко увидеть, что предшествующие усилия не привели к созданию стационарной системы охлаждения АЭ с необходимым качеством: не обеспечена надежная работа системы охлаждения в жестких условиях эксплуатации. Существующие средства нуждаются в усовершенствовании и не позволяют использовать требуемой стационарной системы для охлаждения активного элемента.

Однако авторами настоящего изобретения сделан важный шаг по направлению к лучшему пониманию тех процессов, которые происходят в стационарной системе охлаждения активного элемента твердотельного лазера с диодной накачкой, работающего в жестких режимах эксплуатации. Это потребовало неординарного подхода к существующей проблеме, поскольку если бы уже существовали эффективные методы и средства, на практике признанные полезными, они имели бы в настоящее время известность и промышленное применение.

Для того чтобы такое усовершенствование существующих средств стало эффективным инструментом, оно должно обеспечить бесперебойную работу стационарной системы охлаждения активного элемента в течение всего срока службы лазера.

В основу данного изобретения положена задача исключить эти проблемы. Для того чтобы дополнительный объем мог выполнять свои функции должным образом, вместе с введением дополнительных коллекторов, вводят и капиллярные каналы. В этом случае (при условии правильного подбора охлаждающей жидкости с учетом рабочих режимов лазера) граница жидкость-газ находится в дополнительном коллекторе и отделена от основного объема капилляром, при этом капилляр препятствует перемешиванию жидкости между объемом охлаждения и дополнительным коллектором, предотвращая попадание пузырьков в основной объем. Поскольку движение жидкости в капилляре обусловлено только тепловым расширением жидкости, а длина капилляра достаточно велика, чтобы случайно попавший в капилляр пузырек в результате сжатия жидкости при охлаждении, а также при расширении охлаждающей жидкости в результате нагрева удалился обратно в дополнительный коллектор. Поэтому, в результате воздействия внешних факторов, при образовании пузырьков в дополнительном коллекторе, пузырьки не имеют возможности попасть в кольцевой канал охлаждения активного элемента.

При этом охлаждающая жидкость имеет такой стационарный объем, что ее уровень всегда превышает место соединения капиллярного канала с дополнительным коллектором таким образом, чтобы при охлаждении до минимальной рабочей температуры случайно попавший пузырек не доходил до конца капилляра.

В настоящем изобретении удалось избежать возникновения пузырей в объеме с охлаждающей жидкостью и таким образом обеспечить надежную работу системы охлаждения активного элемента в жестких условиях эксплуатации, создав компактное герметичное устройство при снижении массогабаритных характеристик лазера в целом.

Таким образом, указанные выше ограничения и недостатки существующих средств преодолеваются настоящим изобретением, при этом предложено новое устройство именно компенсации термического расширения охлаждающей жидкости стационарной системы охлаждения активного элемента. Такое усовершенствованное средство для гарантированно надежной работы стационарной системы охлаждения АЭ твердотельного лазера с диодной накачкой не было известно ранее.

Сущность второго варианта изобретения заключается в том, что устройство компенсации термического расширения охлаждающей жидкости активного элемента твердотельного лазера, содержащее входной, выходной коллекторы, соединенные с каналом и кольцевым каналом, образованным трубкой, охватывающей активный элемент, согласно изобретению снабжено дополнительным коллектором, соединенным с каналом, который выполнен капиллярным, охлаждающая жидкость имеет стационарный объем, ее уровень всегда превышает место соединения капиллярного канала с дополнительным коллектором.

Принцип действия устройства компенсации по второму варианту аналогичен работе устройства компенсации по первому варианту. А достигаемый при этом технический результат такой же, как и при осуществлении устройства по первому варианту. Отличие заключается в том, что устройство по второму варианту позволяет снизить количество герметизируемых соединений.

Несмотря на простоту изобретение имеет изобретательский уровень, поскольку приводит к техническому результату, который не был очевиден при новой конструкции устройства.

При проведении анализа уровня техники, включающего поиск по патентным и научно-техническим источникам информации, и выявлении источников, содержащих сведения об аналогах заявленного изобретения, не обнаружено аналогов, характеризующихся признаками, тождественными всем существенным признакам данного изобретения. Определение из перечня выявленных аналогов прототипа как наиболее близкого по совокупности существенных признаков аналога позволило выявить совокупность существенных отличительных признаков от прототипа, изложенных в формуле изобретения. При этом устройство в соответствии с настоящим изобретением явно демонстрирует новизну и обеспечивает надежную работу лазера в течение всего срока его службы, что весьма актуально с точки зрения промышленной экономики. Следовательно, заявленное изобретение соответствует условию «новизна».

Несмотря на простоту изобретение имеет изобретательский уровень, поскольку приводит к техническому результату, который не был очевиден при новой конструкции устройства. Следовательно, заявленное изобретение соответствует условию «изобретательский уровень».

На фиг. 1 представлен общий вид устройства по первому варианту.

На фиг. 2 представлен общий вид устройства по второму варианту.

Устройство компенсации термического расширения охлаждающей жидкости активного элемента твердотельного лазера по первому варианту содержит входной, выходной коллекторы 1, кольцевой канал δ, капиллярные каналы а и дополнительные входной, выходной коллекторы 2 (фиг. 1). Кольцевой канал δ образован трубкой 3, которая охватывает активный элемент (АЭ) 4, и формирует слой жидкости, охлаждающий АЭ. Трубка 3 выполнена из материала, оптически прозрачного для излучения накачки (например, стекло, плавленый кварц, лейкосапфир и т.д.). Диаметр и толщина трубки рассчитываются, исходя из требуемой фокусировки излучения накачки.

Входной, выходной коллекторы 1 соединены между собой кольцевым каналом δ, а с дополнительными входным, выходным коллекторами 2 - капиллярными каналами а. Объем охлаждающей жидкости (ОЖ) в устройстве компенсации стационарный, а ее уровень в системе охлаждения АЭ всегда превышает место соединения b капиллярных каналов а с дополнительным входным, выходным коллекторами 2. Кольцевой канал δ и входной, выходной коллекторы 1 образуют блок охлаждения АЭ 4.

АЭ 4 и трубка 3 конструктивно установлены в корпусе оптической усилительной головки либо квантового генератора герметично при помощи уплотнений (не показано).

Устройство компенсации термического расширения охлаждающей жидкости активного элемента твердотельного лазера по второму варианту содержит входной, выходной коллекторы 1, кольцевой канал δ, капиллярный канал а и дополнительный коллектор 2 (фиг. 2). Кольцевой канал δ образован трубкой 3, которая охватывает активный элемент (АЭ) 4, и формирует слой жидкости, охлаждающий АЭ. Трубка 3 выполнена из материала, оптически прозрачного для излучения накачки (например, стекло, плавленый кварц, лейкосапфир и т.д.). Диаметр и толщина трубки рассчитываются исходя из требуемой фокусировки излучения накачки.

Входной и выходной коллекторы 1 соединены между собой кольцевым каналом δ и соединены с дополнительным коллектором 2 капиллярным каналом а. Объем ОЖ в устройстве компенсации стационарный, а уровень ОЖ в системе охлаждения АЭ всегда превышает место соединения b капиллярного канала а с дополнительным коллектором 2. Кольцевой канал δ и входной, выходной коллекторы 1 образуют блок охлаждения АЭ 4.

АЭ 4 и трубка 3 конструктивно установлены в корпусе оптической усилительной головки либо квантового генератора герметично при помощи уплотнений (не показано).

Устройство компенсации термического расширения по первому варианту работает следующим образом. При заполнении устройства в дополнительный входной коллектор 2 подается ОЖ, объем VОЖ которой фиксирован и получен расчетным путем с учетом диапазона рабочих температур твердотельного лазера. VОЖ из дополнительного входного коллектора 2 проходит по капиллярному каналу а, попадает во входной коллектор 1, позволяющий равномерно заполнить кольцевой канал шириной δ охлаждения АЭ 4. ОЖ заполняет весь объем блока охлаждения АЭ 4 вдоль всей поверхности АЭ и контактирует с ней. На выходе из кольцевого канала δ противоположного конца АЭ 4 ОЖ в обратном порядке собирается в выходной коллектор 1, затем через капиллярный канал а выходит в дополнительный выходной коллектор 2 на выходе устройства и образует в дополнительных коллекторах 2 с двух сторон симметрично АЭ объем жидкости Vжидк и объем воздуха Vвозд.

При работе лазера на элементы накачки 5 (фиг. 1) подается ток накачки с заданной амплитудой, возникает излучение накачки, проходящее сквозь трубку 3 и ОЖ кольцевого канала δ, при этом большая часть излучения поглощается АЭ 4, часть поглощенной энергии накачки идет на тепловые потери, нагревая АЭ 4. При нагреве ОЖ от АЭ 4, а также при повышении температуры окружающей среды происходит расширение объема VОЖ, при этом объем Vжидк в дополнительном коллекторе 2 увеличивается, а Vвозд уменьшается. При понижении температуры окружающей среды происходит сокращение объема VОЖ, при этом объем Vжидк в дополнительном коллекторе 2 уменьшается, а Vвозд увеличивается. Охлаждающая жидкость, подобранная с учетом температурных режимов работы лазера, обеспечивает эффективное стационарное охлаждение АЭ во всех режимах эксплуатации лазера. Капиллярный канал а предотвращает образование пузырьков воздуха в блоке охлаждения АЭ 4, которые могут возникнуть при воздействии внешних факторов (повышении или понижении температуры окружающей среды, вибраций и ударов) и в результате снизить эффективность накачки, особенно в кольцевом канале δ, а следовательно, и кпд осветителя.

Устройство по второму варианту работает аналогично устройству по первому варианту, отличие заключается в том, что внутренний объем устройства по второму варианту, содержащего один капиллярный канал а и дополнительный коллектор 2, сначала вакуумируется, затем в дополнительный входной коллектор 2 подается ОЖ, объем VОЖ которой фиксирован и получен расчетным путем с учетом диапазона рабочих температур твердотельного лазера. VОЖ из дополнительного входного коллектора 2 проходит по капиллярному каналу а, попадает во входной коллектор 1, позволяющий равномерно заполнить кольцевой канал шириной δ охлаждения АЭ 4. ОЖ заполняет весь объем блока охлаждения АЭ 4 вдоль всей поверхности АЭ и контактирует с ней. На выходе из кольцевого канала δ противоположного конца АЭ 4 ОЖ собирается в выходной коллектор 1.

Таким образом, представленные данные свидетельствуют о выполнении при использовании заявляемого изобретения следующей совокупности условий:

- средство, воплощающее заявленное устройство при его осуществлении, предназначено для использования в электронной и оптико-механической промышленности при изготовлении лазерных устройств;

- для заявляемого устройства в том виде, в котором оно охарактеризовано в формуле изобретения, подтверждена возможность его осуществления.

Следовательно, заявляемое изобретение соответствует условию «промышленная применимость».


УСТРОЙСТВО КОМПЕНСАЦИИ ТЕРМИЧЕСКОГО РАСШИРЕНИЯ ОХЛАЖДАЮЩЕЙ ЖИДКОСТИ АКТИВНОГО ЭЛЕМЕНТА ТВЕРДОТЕЛЬНОГО ЛАЗЕРА (ВАРИАНТЫ)
УСТРОЙСТВО КОМПЕНСАЦИИ ТЕРМИЧЕСКОГО РАСШИРЕНИЯ ОХЛАЖДАЮЩЕЙ ЖИДКОСТИ АКТИВНОГО ЭЛЕМЕНТА ТВЕРДОТЕЛЬНОГО ЛАЗЕРА (ВАРИАНТЫ)
Источник поступления информации: Роспатент

Showing 391-400 of 706 items.
29.03.2019
№219.016.ed2c

Фильтр нижних частот с гальванической развязкой

Изобретение относится к средствам измерения низкочастотных дифференциальных сигналов на фоне синфазных напряжений и электромагнитных помех большой мощности в широкой полосе частот с использованием гальванической развязки. Технический результат заключается в обеспечении высоких нормированных...
Тип: Изобретение
Номер охранного документа: 0002682924
Дата охранного документа: 22.03.2019
30.03.2019
№219.016.f99a

Складываемая аэродинамическая поверхность

Изобретение относится к летательным аппаратам, стартующим из ограниченного объема носителя при высоких аэродинамических нагрузках. Складываемая аэродинамическая поверхность содержит основание и шарнирно соединенную с ним поворотную лопасть, расположенные соосно оси складывания два цилиндра и...
Тип: Изобретение
Номер охранного документа: 0002683407
Дата охранного документа: 28.03.2019
30.03.2019
№219.016.f9cc

Способ неразрушающего контроля объекта из магнитного материала

Изобретение относится к контрольно-измерительной технике, а именно к способам неразрушающего контроля магнитных материалов. Способ неразрушающего контроля объекта из магнитного материала заключается в том, что контролируемый объект помещают в постоянное магнитное поле и подвергают механическому...
Тип: Изобретение
Номер охранного документа: 0002683419
Дата охранного документа: 28.03.2019
04.04.2019
№219.016.fb1a

Способ температурно-механических испытаний

Изобретение относится к испытательному оборудованию. Способ включает нагрев воздушного потока до заданной температуры, подачу его во внутреннюю полость объекта испытаний (ОИ) с заданным уровнем избыточного давления, разогрев ОИ до заданной температуры, воздействие вибрационных нагрузок на ОИ,...
Тип: Изобретение
Номер охранного документа: 0002683881
Дата охранного документа: 02.04.2019
04.04.2019
№219.016.fb3d

Способ изготовления светопоглощающих элементов оптических систем на подложках из нержавеющей стали

Использование: для изготовления светопоглощающих элементов оптико-электронных приборов и оптических систем. Сущность изобретения заключается в том, что способ изготовления светопоглощающих элементов оптических систем на подложках из нержавеющей стали включает предварительную подготовку подложек...
Тип: Изобретение
Номер охранного документа: 0002683883
Дата охранного документа: 02.04.2019
05.04.2019
№219.016.fd3d

Способ сварки горловины с тонкостенной оболочкой

Способ предназначен для автоматической лазерной двусторонней сварки горловины с тонкостенной оболочкой. Горловину выполняют с внешним и внутренним буртами. Контактирующие поверхности оболочки и горловины промывают в бензине, в этиловом спирте. Устанавливают горловину в отверстие оболочки до...
Тип: Изобретение
Номер охранного документа: 0002684010
Дата охранного документа: 03.04.2019
05.04.2019
№219.016.fd52

Способ охлаждения выходного окна ускорителя электронов

Изобретение относится к способу охлаждения выпускных окон электронных ускорителей непрерывного действия и может быть применено при создании ускорителей с выводом в атмосферу пучков ускоренных электронов различной мощности. Принцип охлаждения выбирают в зависимости от режима работы ускорителя,...
Тип: Изобретение
Номер охранного документа: 0002683959
Дата охранного документа: 03.04.2019
05.04.2019
№219.016.fd64

Отпаянная камера для генератора высокочастотных импульсов на основе разряда с полым катодом

Изобретение относится к области высокочастотной техники и может быть использовано при создании генераторов высокочастотного (ВЧ) излучения. Отпаянная камера для генератора высокочастотных импульсов на основе разряда с полым катодом содержит газоразрядную камеру и вспомогательную камеру,...
Тип: Изобретение
Номер охранного документа: 0002683962
Дата охранного документа: 03.04.2019
06.04.2019
№219.016.fdb8

Способ нарезания конических зубчатых колес для роторного двигателя

Изобретение относится к станкостроению, а именно к способу нарезания конических колес. Способ включает настройку относительно друг друга червячной фрезы 2 конической формы и нарезаемого колеса 1, которые устанавливают относительно друг друга соприкасающимися поверхностями предварительно...
Тип: Изобретение
Номер охранного документа: 0002684141
Дата охранного документа: 04.04.2019
06.04.2019
№219.016.fe14

Пьезоэлектрический датчик

Изобретение относится к измерительной технике и предназначено для определения параметров ударных и вибрационных ускорений. Сущность изобретения заключается в том, что пьезоэлектрический датчик содержит корпус, опору, при этом в месте закрепления опоры формируется механический фильтр из...
Тип: Изобретение
Номер охранного документа: 0002684139
Дата охранного документа: 04.04.2019
Showing 261-262 of 262 items.
04.04.2018
№218.016.3700

Способ определения показателей однородности дисперсного материала спектральным методом и способ определения масштабных границ однородности дисперсного материала спектральным методом

Изобретения относятся к области определения однородности дисперсных материалов и могут найти применение в порошковой металлургии, в самораспространяющемся высокотемпературном синтезе, в материаловедении и аналитической химии. Способ определения показателей однородности дисперсного материала...
Тип: Изобретение
Номер охранного документа: 0002646427
Дата охранного документа: 05.03.2018
29.05.2018
№218.016.5700

Способ герметизации блока охлаждения активного элемента в твердотельном лазере

Изобретение относится к лазерной технике. Способ герметизации блока охлаждения активного элемента в твердотельном лазере включает два этапа: установку трубки для активного элемента и установку активного элемента в трубку, на первом этапе устанавливают трубку с прижимами и уплотнениями, на...
Тип: Изобретение
Номер охранного документа: 0002655045
Дата охранного документа: 23.05.2018
+ добавить свой РИД