×
25.08.2017
217.015.9ffc

Результат интеллектуальной деятельности: Ионный диод с магнитной самоизоляцией

Вид РИД

Изобретение

Аннотация: Изобретение относится к ускорительной технике и предназначено для получения мощных пучков заряженных частиц, которые используются для радиационно-пучкового модифицирования изделий из металлов с целью повышения их эксплуатационных характеристик. Ионный диод с магнитной самоизоляцией содержит потенциальный электрод (1), полосковый заземленный электрод (2), соединенный одной стороной с корпусом камеры, и установленный на заземленном электроде металлический экран (4), который выполнен замкнутым, коробчатой формы. При этом ширина потенциального электрода в 1,5-2 раза больше, чем ширина заземленного электрода. Технический результат - уменьшение расходимости ионного пучка, повышение плотности энергии МИП в фокусе и ее стабильности в серии импульсов. 8 ил.

Изобретение относится к ускорительной технике и предназначено для получения мощных пучков заряженных частиц, которые используются для радиационно-пучкового модифицирования изделий из металлов с целью повышения их эксплуатационных характеристик.

Известны диоды с внешней магнитной изоляцией, предназначенные для генерации импульсных мощных ионных пучков (МИП) [Быстрицкий В.М., Диденко А.Н. Мощные ионные пучки. М.: Энергоатомиздат, 1984. 152 с.], состоящие из анода, катода и источника внешнего магнитного поля. МИП формируются путем прямого ускорения ионов из плазмы, образованной на поверхности анода при импульсном пробое по поверхности диэлектрических вставок или при инжекции плазмы в прианодную область от внешнего плазменного источника. Недостатком известного устройства является ограниченный ресурс работы. Кроме того, в таких источниках можно получать пучки с ограниченным типом ионов, определяемым диэлектриком. Диоды с инжекцией плазмы от внешнего плазменного источника принципиально позволяют получать ионные пучки различного состава, но сложны в реализации, поскольку на аноде диода требуется создать достаточно однородный слой плазмы плотностью более 1013 см-3 с возможностью изменять состав плазмы. Дополнительный источник напряжения для создания магнитного поля в диоде, системы синхронизации и ввода плазмы в зазор усложняют конструкцию ионного диода, снижают надежность и эффективность генерации МИП.

Наиболее близким к предлагаемому устройству является выбранный нами за прототип полосковый ионный диод с магнитной самоизоляцией [G.E. Remnev, I.F. Isakov, et all, High-power ion sources for industrial application // Surf. and Coatings Technol., 1997, vol. 96, pp. 103-109]. Полосковый ионный диод с магнитной самоизоляцией состоит из потенциального электрода и заземленного электрода, соединенного с корпусом камеры с одной стороны. Потенциальный электрод изготовлен из графита длиной 24 см и шириной 4,5 см, заземленный электрод - из полосы нержавеющей стали длиной 28 см, шириной 4,5 см и толщиной 3 мм, с прорезями 0,4 см×5 см, прозрачность 60%. Ширина потенциального и заземленного электродов одинакова. На заземленном электроде установлены экраны, выполненные в виде продольных пластин с прорезями. Для создания плотной плазмы необходимого состава на поверхности потенциального электрода диода используется явление взрывной электронной эмиссии. Поперечное магнитное поле в анод-катодном зазоре формируется собственным током диода при протекании по заземленному электроду. В этой конструкции диода дополнительный источник магнитного поля, система синхронизации и ввода плазмы в зазор не требуются, что значительно упрощает конструкцию генератора МИП.

Ионный диод с магнитной самоизоляцией работает следующим образом. От генератора наносекундных импульсов к потенциальному электроду ионного диода прикладываются сдвоенные разнополярные импульсы - первый отрицательный и второй положительный. В течение первого импульса на поверхности потенциального электрода диода образуется взрывоэмиссионная плазма. В течение второго импульса из взрывоэмиссионной плазмы эмитируют ионы, которые ускоряются в анод-катодном зазоре. Через прорези в заземленном электроде основная часть ионов проходит в область транспортировки МИП. В течение генерации ионного пучка (второй импульс) электроны эмитируют с поверхности заземленного электрода и далее дрейфуют вдоль его поверхности от точки заземления к свободному концу электрода.

Недостатком устройства-прототипа является высокая расходимость ионного пучка при транспортировке от диода до мишени. Ток, протекающий по заземленному электроду, формирует магнитное поле не только в анод-катодном зазоре диода, но и в области транспортировки ионов до мишени. Продольные пластины с прорезями, установленные на заземленном электроде, не обеспечивают достаточное ослабление магнитного поля в области транспортировки МИП. Расходимость ионного пучка достигает 10-11° (половинный угол). Для получения мощных ионных пучков с высокой плотностью энергии при фокусировке необходимо снижать расходимость ионного пучка. Расходимость ионного пучка определяется влиянием паразитных электромагнитных полей в области транспортировки от диода до мишени и искажением электрического поля в А-К зазоре диода.

Технический результат предлагаемого изобретения заключается в снижении расходимости ионного пучка с 10° до 5° и повышении плотности энергии МИП в фокусе с 2-3 Дж/см2 до 10 Дж/см2. Дополнительный технический результат заключается в повышении стабильности работы ионного диода. Стандартная девиация плотности энергии МИП в фокусе диода снизилась в серии импульсов с 10-12% до 5-6%.

Технический результат достигается тем, что в ионном диоде с магнитной самоизоляцией, содержащем потенциальный электрод, полосковый заземленный электрод, который соединен одной стороной с корпусом камеры, и металлический экран, установленный на заземленном электроде, согласно предложенному решению, металлический экран выполнен замкнутым, коробчатой формы, а ширина потенциального электрода в 1,5-2 раза больше, чем ширина заземленного электрода.

Изобретение поясняется графическими материалами. Фиг. 1 - пример выполнения конструкции фокусирующего полоскового диода с магнитной самоизоляцией, где обозначено: 1 - потенциальный электрод, 2 - заземленной электрод, 3 - точка заземления, 4 - экран, 5 - конец диода. Фиг. 2 - сечение А-А фиг. 1. Фиг. 3 - представлено распределение плотности энергии МИП в фокусной плоскости для диода с широким потенциальным электродом и с коробчатым экраном - кривая 6, и узким потенциальным электродом с экранами в виде пластин с прорезями - кривая 7, абсолютные - Фиг. 3а и нормированные - Фиг. 3б значения. Фиг. 4 - представлено изменение плотности энергии МИП в фокусе в серии импульсов для фокусирующего диода с широким потенциальным электродом и с коробчатым экраном - Фиг. 4а, и узким потенциальным электродом с экранами в виде пластин с прорезями - Фиг. 4б. Фиг. 5 - представлен отпечаток МИП на термобумаге. Фиг. 6 - представлено распределение плотности энергии МИП для плоского полоскового диода с широким потенциальным электродом и с коробчатым экраном - Фиг. 6а, и узким потенциальным электродом с экранами в виде пластин с прорезями - Фиг. 6б. Фиг. 7 - ионный диод по прототипу с магнитной самоизоляцией плоской и фокусирующей геометрии. Фиг. 8 - пример конкретного выполнения заявляемого ионного диода с магнитной самоизоляцией плоской и фокусирующей геометрии.

Полосковый ионный диод с магнитной самоизоляцией содержит полосковый потенциальный электрод 1 и полосковый заземленный электрод 2 (фиг. 1). Заземленный электрод соединен с корпусом диодной камеры только с одной стороны в точке заземления 3. В ионном диоде с магнитной самоизоляцией для обеспечения снижения паразитных электромагнитных полей в области транспортировки ионного пучка до мишени на заземленный электрод установлен замкнутый металлический экран 4 (фиг. 1) коробчатой конструкции без прорезей. Для повышения однородности электрического поля в анод-катодном зазоре ионного диода ширина полоскового потенциального электрода 1 превышает в 1,5-2 раза ширину полоскового заземленного электрода 2 (фиг. 2).

При увеличении ширины потенциального электрода более чем в 2 раза по сравнению с заземленным электродом распределение электрического поля в анод-катодном зазоре диода не изменяется, но начинает развиваться электрический пробой между потенциальным электродом и корпусом диодной камеры.

Ионный диод с магнитной самоизоляцией работает следующим образом. От генератора наносекундных импульсов к потенциальному электроду 1 ионного диода прикладываются сдвоенные разнополярные импульсы - первый отрицательный (300-500 нс, 100-150 кВ) и второй положительный (120 нс, 250-300 кВ). В течение первого импульса на поверхности графитового потенциального электрода 1 образуется взрывоэмиссионная плазма. В течение второго импульса из взрывоэмиссионной плазмы потенциального электрода 1 эмитируют ионы, которые ускоряются в анод-катодном зазоре. Затем основная часть ионов проходит в область транспортировки МИП. В течение генерации ионного пучка (второй импульс) электроны эмитируют с поверхности заземленного электрода 2. При этом электроны движутся по заземленному электроду 2 от точки заземления 3 к точке эмиссии, формируя магнитное поле в зазоре, вектор магнитной индукции которого перпендикулярен вектору напряженности электрического поля. В скрещенных электрическом и магнитном полях (B⊥E) под действием силы Лоренца последующие электроны меняют направление движения от поперечного (с заземленного электрода к потенциальному) к продольному вдоль поверхности заземленного электрода 2 к концу диода 5.

Пример конкретного выполнения 1. Потенциальный электрод 1 фокусирующего полоскового диода изготовлен из графита длиной 22 см и шириной 9 см, рабочая сторона потенциального электрода имеет полуцилиндрическую поверхность радиусом 15 см. Заземленный электрод 2 выполнен из полосы нержавеющей стали длиной 24 см, толщиной 0,2 см и шириной 4,5 см. Рабочая поверхность заземленного электрода 2 выполнена полуцилиндрической с радиусом изгиба 14,5 см, с прорезями 0,4 см×2 см. На заземленный электрод 2 установлен экран 4 коробчатой конструкции, выполненный из нержавеющей стали толщиной 1 мм. Ширина экрана 4 (по радиусу) составляла 10 см. На фиг. 3 показано распределение плотности энергии МИП в ионном диоде с узким потенциальным электродом (по прототипу, Фиг. 7) и в ионном диоде с широким потенциальным электродом и с коробчатым экраном (по заявляемому устройству, Фиг. 8). Из фиг. 3 видно, что расходимость МИП в ионном диоде с широким потенциальным электродом и с коробчатым экраном ниже и составляет 5°. Плотность энергии МИП в фокусе при этом возросла до 10 Дж/см2. Изменение конструкции фокусирующего диода увеличило стабильность плотности энергии МИП в фокусе в серии импульсов. На фиг. 4 приведены результаты статистических исследований. Стандартная девиация плотности энергии МИП в серии импульсов снизилась с 10-15% до 5-6%.

Пример конкретного выполнения 2. Потенциальный электрод 1 плоского полоскового диода изготовлен из графита длиной 22 см и шириной 8 см. Заземленный электрод 2 выполнен из полосы нержавеющей стали длиной 24 см, толщиной 0,2 см и шириной 4,5 см. Рабочая поверхность заземленного электрода выполнена с прорезями 0,4 см×2 см, Фиг. 8. На заземленный электрод 2 установлен экран 4 коробчатой конструкции без прорезей, выполненный из нержавеющей стали толщиной 1 мм. Ширина экрана (по направлению движения ионов) составляла 6 см. На фиг. 5 приведены результаты измерения расходимости пучка камерой-обскурой. Отверстия в диафрагме 2 мм, расстояние от диафрагмы до термобумаги 50 мм, средний диаметр отпечатка МИП на термобумаге 5 мм. Измерения показали, что расходимость ионного пучка в области транспортировки не превышает 3° (половинный угол). На фиг. 6 приведено распределение плотности энергии мощного ионного пучка в плоском полосковом диоде. Изменение конструкции плоского полоскового диода увеличило однородность плотности энергии МИП в поперечном сечении.

Таким образом, установка на заземленный электрод металлического экрана коробчатой конструкции без прорезей и использование потенциального электрода шириной в 1,5-2 раза больше, чем ширина заземленного электрода, позволяют уменьшить расходимость ионного пучка, повысить плотность энергии МИП в фокусе и ее стабильность в серии импульсов.

Ионный диод с магнитной самоизоляцией, содержащий потенциальный электрод, полосковый заземленный электрод, который соединен одной стороной с корпусом камеры, и металлический экран, установленный на заземленном электроде, отличающийся тем, что металлический экран выполнен замкнутым, коробчатой формы, а ширина потенциального электрода в 1,5-2 раза больше, чем ширина заземленного электрода.
Ионный диод с магнитной самоизоляцией
Ионный диод с магнитной самоизоляцией
Ионный диод с магнитной самоизоляцией
Ионный диод с магнитной самоизоляцией
Источник поступления информации: Роспатент

Showing 191-200 of 259 items.
14.02.2019
№219.016.b9fd

Устройство ультразвуковой томографии

Использование: для ультразвуковой томографии. Сущность изобретения заключается в том, что устройство ультразвуковой томографии содержит персональный компьютер, соединенный с микроконтроллером, к которому последовательно подключены многоканальный генератор, антенная решетка, многоканальный...
Тип: Изобретение
Номер охранного документа: 0002679648
Дата охранного документа: 12.02.2019
14.02.2019
№219.016.ba28

Способ ультразвуковой томографии

Использование: для ультразвуковой томографии. Сущность изобретения заключается в том, что осуществляют размещение пьезопреобразователей антенной решетки на объекте контроля, циклическое ультразвуковое облучение объекта контроля поочередно каждым пьезопреобразователем антенной решетки и...
Тип: Изобретение
Номер охранного документа: 0002679647
Дата охранного документа: 12.02.2019
08.03.2019
№219.016.d2dd

Барабанная вращающаяся печь

Изобретение относится к вращающейся барабанной печи с малым наклоном, нагреваемой извне, для обработки минеральных и/или техногенных руд или концентратов фторидом и/или гидрофторидом аммония при переработке титансодержащего сырья. Барабанная вращающаяся печь содержит теплоизолированный изнутри...
Тип: Изобретение
Номер охранного документа: 0002681328
Дата охранного документа: 06.03.2019
08.03.2019
№219.016.d30e

Способ формирования покрытия на имплантате из сплава титана

Изобретение относится к области гальванотехники, в частности к анодированию сплавов титана, и может быть использовано в травматологии, ортопедии и стоматологии. Способ включает анодирование имплантата импульсным током в условиях искрового разряда при напряжении 170-200 В и температуре 10-20°С в...
Тип: Изобретение
Номер охранного документа: 0002681329
Дата охранного документа: 06.03.2019
08.03.2019
№219.016.d329

Устройство для ориентирования подвижных объектов

Изобретение относится к области навигационной техники и касается устройства для ориентирования подвижных объектов. Устройство для ориентирования подвижных объектов содержит замкнутый неметаллический корпус, в котором размещено симметричное твердое тело без точки подвеса, помещенное в объем,...
Тип: Изобретение
Номер охранного документа: 0002681422
Дата охранного документа: 06.03.2019
14.03.2019
№219.016.df07

Способ получения водного раствора бикарбоната магния

Изобретение может быть использовано в промышленности строительных материалов для получения жидкости затворения. Способ включает карбонизацию водной суспензии магнезиального сырья при температуре не более 20°C и давлении углекислого газа 0,2 МПа в течение 30 мин в автоклаве с мешалкой. В...
Тип: Изобретение
Номер охранного документа: 0002681622
Дата охранного документа: 11.03.2019
14.03.2019
№219.016.df09

Способ определения ртути в рыбе и рыбных продуктах

Изобретение относится к аналитической химии и может быть использовано для определения ртути в рыбе и рыбных продуктах. Для этого гомогенизируют мясо рыбы или рыбных продуктов и помещают образец в смесь 1% раствора перманганата калия, азотной, хлорной и серной кислот, деионизированной воды в...
Тип: Изобретение
Номер охранного документа: 0002681650
Дата охранного документа: 12.03.2019
14.03.2019
№219.016.df76

Резец для горных и дорожных машин

Изобретение относится к горной промышленности и может быть использовано на исполнительных органах горных и дорожных машин при проведении проходческих и добычных работ. Технический результат - повышение эффективности отбойки горной массы. Резец содержит державку, головку в виде тела вращения со...
Тип: Изобретение
Номер охранного документа: 0002681743
Дата охранного документа: 12.03.2019
14.03.2019
№219.016.df7c

Магнезиальное вяжущее

Изобретение относится к области строительных материалов и может быть использовано для получения магнезиального цемента и различных изделий на его основе. Магнезиальное вяжущее содержит 90-95 мас. % порошка каустического магнезита, полученного или из кристаллического/аморфного магнезита, или из...
Тип: Изобретение
Номер охранного документа: 0002681746
Дата охранного документа: 12.03.2019
16.03.2019
№219.016.e23a

Способ дегазации нанопорошка вольфрама

Изобретение относится к области порошковой металлургии, в частности к очистке нанопорошка вольфрама. Может быть использовано для удаления сорбированных газов и воды с поверхности и из объема порошка при ее подготовке к дальнейшему использованию в технологическом процессе. Дегазацию осуществляют...
Тип: Изобретение
Номер охранного документа: 0002681962
Дата охранного документа: 14.03.2019
Showing 151-151 of 151 items.
24.05.2023
№223.018.6faa

Способ генерации импульсного пучка легких ионов

Изобретение относится к способу генерации импульсного пучка легких ионов и может использоваться для технологий радиационно-пучкового модифицирования изделий, а также для инициирования ядерных реакций. Способ включает подачу сдвоенных разнополярных наносекундных импульсов напряжения к...
Тип: Изобретение
Номер охранного документа: 0002795950
Дата охранного документа: 15.05.2023
+ добавить свой РИД