×
25.08.2017
217.015.9ef6

СПОСОБ ГЛУБОКОЙ УТИЛИЗАЦИИ ТЕПЛА ДЫМОВЫХ ГАЗОВ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к теплоэнергетике. Способ глубокой утилизации тепла дымовых газов включает предварительное охлаждение дымовых газов в газо-газовом поверхностном пластинчатом теплообменнике, нагревая противотоком осушенные дымовые газы, для создания температурного запаса, предотвращающего конденсацию остаточных водяных паров в дымовой трубе. Дальнейшее охлаждение дымовых газов до температуры, близкой к точке росы водяных паров, осуществляется в контактном газоводяном водоподогревателе, который нагревает воду. Охлажденные влажные дымовые газы подают в газовоздушный поверхностный пластинчатый теплообменник - конденсатор, где конденсируются содержащиеся в дымовых газах водяные пары, нагревая воздух. Осушенные дымовые газы подают дополнительным дымососом в газо-газовый поверхностный пластинчатый теплообменник, где нагревают для предотвращения возможной конденсации водяных паров в газоходах и дымовой трубе и направляются в дымовую трубу. Технический результат: повышение эффективности утилизации тепла дымовых газов за счет использования скрытого тепла конденсации водяных паров и повышенной температуры самих дымовых газов. 1 ил., 1 табл.
Реферат Свернуть Развернуть

Изобретение относится к теплоэнергетике и может найти применение на любом предприятии, эксплуатирующем котлы на углеводородном топливе.

Известны серийно выпускаемые Костромским калориферным заводом калориферы типа КСк (Кудинов А.А. Энергосбережение в теплогенерирующих установках. - Ульяновск: УлГТУ, 2000. - 139, стр. 33), состоящие из газоводяного поверхностного теплоутилизатора, поверхность теплообмена которого выполнена из оребренных биметаллических трубок, сетчатого фильтра, распределительного клапана, каплеуловителя и гидропневматического обдувочного устройства.

Калориферы типа КСк работают следующим образом. Дымовые газы попадают на распределительный клапан, который делит их на два потока, основной поток газа направляется через сетчатый фильтр в теплоутилизатор, второй - по обводной линии газохода. В теплоутилизаторе водяные пары, содержащиеся в дымовых газах, конденсируются на оребренных трубках, нагревая текущую в них воду. Образующийся конденсат собирается в поддоне и подается насосами в схему подпитки теплосети. Нагретая в теплоутилизаторе вода подается потребителю. На выходе из теплоутилизатора осушенные дымовые газы смешиваются с исходными дымовыми газами из обводной линии газохода и направляются через дымосос в дымовую трубу.

Для работы теплоутилизатора в режиме конденсации всей его конвективной части требуется, чтобы температура нагрева воды в конвективном пакете не превышала 50°С. Для использования такой воды в системах отопления ее нужно дополнительно догревать.

Для предотвращения конденсации остаточных водяных паров дымовых газов в газоходах и дымовой трубе, часть исходных газов через обводной канал подмешиваются к осушенным дымовым газам, повышая их температуру. При таком подмесе увеличивается и содержание водяных паров в уходящих дымовых газах, снижая эффективность утилизации тепла.

Известен теплоутилизатор (RU 2323384 С1, МПК F22B 1/18 (2006.01), опубл. 27.04.2008), содержащий контактный теплообменник, каплеуловитель, газо-газовый теплообменник, включенный по схеме прямотока, газоходы, трубопроводы, насос, датчики температуры, клапаны-регуляторы. По ходу оборотной воды контактного теплообменника последовательно расположены водо-водяной теплообменник и водовоздушный теплообменник с обводным каналом по ходу воздуха.

Известен способ работы этого теплоутилизатора. Уходящие газы по газоходу поступают на вход газо-газового теплообменника, последовательно проходя три его секции, затем на вход контактного теплообменника, где, проходя через насадку, омываемую оборотной водой, охлаждаются ниже точки росы, отдавая явное и скрытое тепло оборотной воде. Далее охлажденные и влажные газы освобождаются от большей части унесенной потоком жидкой воды в каплеуловителе, нагреваются и подсушиваются, по меньшей мере, в одной секции газо-газового теплообменника, дымососом направляются в трубу и выбрасываются в атмосферу. Одновременно нагретая оборотная вода из поддона контактного теплообменника насосом подается в водо-водяной теплообменник, где нагревает холодную воду из трубопровода. Нагретая в теплообменнике вода поступает на нужды технологического и бытового горячего водоснабжения или в низкотемпературный отопительный контур.

Далее оборотная вода поступает в водовоздушный теплообменник, нагревает, по меньшей мере, часть дутьевого воздуха, поступающего из-за пределов помещения по воздуховоду, охлаждаясь до минимально возможной температуры, и поступает в контактный теплообменник через водораспределитель, где отбирает тепло от газов, попутно промывая их от взвешенных частиц, и поглощает часть оксидов азота и серы. Нагретый воздух из теплообменника дутьевым вентилятором подается в штатный воздухоподогреватель или непосредственно в топку. Оборотная вода по необходимости фильтруется и обрабатывается известными способами.

Для осуществления такого способа необходима система регулирования вследствие использования утилизируемого тепла для целей горячего водоснабжения из-за непостоянства суточного графика потребления горячей воды.

Нагретая в теплообменнике вода, поступающая на нужды горячего водоснабжения или в низкотемпературный отопительный контур, требует ее доведения до необходимой температуры, так как не может быть нагрета в теплообменнике выше температуры воды оборотного контура, которая определяется температурой насыщения водяных паров в дымовых газах. Низкий нагрев воздуха в водовоздушном теплообменнике не позволяет использовать этот воздух для отопления помещений.

Наиболее близкими к заявляемому изобретению являются устройство и способ утилизации тепла дымовых газов (RU 2436011 С1, МПК F22B 1/18 (2006.01), опубл. 10.12.2011).

Устройство утилизации тепла дымовых газов содержит газо-газовый поверхностный пластинчатый теплообменник, выполненный по схеме противотока, поверхностный газовоздушный пластинчатый конденсатор, инерционный каплеуловитель, газоходы, дымосос, воздуховоды, вентиляторы и трубопровод.

Исходные дымовые газы охлаждаются в газо-газовом поверхностном пластинчатом теплообменнике, нагревая осушенные дымовые газы. Греющая и нагреваемая среда движутся противотоком. При этом происходит глубокое охлаждение влажных дымовых газов до температуры, близкой к точке росы водяных паров. Далее содержащиеся в дымовых газах водяные пары конденсируются в газовоздушном поверхностном пластинчатом теплообменнике - конденсаторе, нагревая воздух. Нагретый воздух используется для отопления помещений и покрытия потребности процесса горения. Конденсат после дополнительной обработки используют для восполнения потерь в теплосети или паротурбинном цикле. Для исключения конденсации остаточных водяных паров, уносимых потоком из конденсатора, перед дополнительным дымососом подмешивается часть подогретых осушенных дымовых газов. Осушенные дымовые газы подаются дымососом в описанный выше подогреватель, где нагреваются для предотвращения возможной конденсации водяных паров в газоходах и дымовой трубе и направляются в дымовую трубу.

Недостатками этого способа является то, что утилизируется преимущественно скрытая теплота конденсации водяных паров, содержащихся в дымовых газах. Если рекуперативный теплообменник охлаждает исходные дымовые газы до температуры, близкой к точке росы водяных паров, то нагрев уходящих осушенных дымовых газов будет избыточным, что снижает эффективность утилизации. Недостатком является и использование для нагрева только одной среды - воздуха.

Задачей изобретения является повышение эффективности утилизации тепла дымовых газов за счет использования скрытого тепла конденсации водяных паров и повышенной температуры самих дымовых газов.

В предложенном способе глубокой утилизации тепла дымовых газов, также как в прототипе, дымовые газы предварительно охлаждают в газо-газовом поверхностном пластинчатом теплообменнике, нагревая осушенные дымовые газы, конденсируют водяные пары, содержащиеся в дымовых газах в конденсаторе, нагревая воздух.

Согласно изобретению между теплообменником и конденсатором дымовые газы доохлаждают до температуры, близкой к точке росы водяных паров, нагревая воду.

Газовые котлы имеют высокую температуру уходящих дымовых газов (130°С для больших энергетических котлов, 150°С-170°С для малых котлов). Для охлаждения дымовых газов перед конденсацией используют два устройства: рекуперативный газо-газовый теплообменник и утилизационный водоподогреватель.

Исходные дымовые газы предварительно охлаждают в газо-газовом поверхностном пластинчатом теплообменнике, нагревая осушенные дымовые газы на 30-40°С выше, чем температура насыщения содержащихся в них водяных паров, для создания запаса по температуре при возможном охлаждении дымовых газов в трубе. Это позволяет уменьшить площадь теплообмена рекуперативного теплообменника по сравнению с прототипом и полезно использовать оставшееся тепло дымовых газов.

Существенным отличием является использование контактного газоводяного водоподогревателя для окончательного охлаждения влажных дымовых газов до температуры, близкой к точке росы водяных паров. На входе в водоподогреватель дымовые газы имеют достаточно высокую температуру (130°С-90°С), что позволяет нагревать воду до 50°С-65°С с частичным ее испарением. На выходе из контактного газоводяного водоподогревателя дымовые газы имеют температуру близкую к точке росы содержащихся в них водяных паров, что повышает эффективность использования поверхности теплообмена в конденсаторе, исключает образование сухих зон конденсатора и повышает коэффициент теплопередачи.

Способ утилизации тепла дымовых газов изображен на фиг.1.

В таблице 1 приведены результаты проверочного расчета варианта установки для котла на природном газе мощностью 11 МВт.

Способ глубокой утилизации тепла дымовых газов осуществляют следующим образом. Исходные дымовые газы 1 предварительно охлаждают в газо-газовом поверхностном пластинчатом теплообменнике 2, нагревая осушенные дымовые газы. Далее дымовые газы 3 окончательно охлаждают в контактном газоводяном водоподогревателе 4 до температуры, близкой к точке росы водяных паров, разбрызгивая воду, в качестве которой целесообразно использовать полученный в конденсаторе конденсат. При этом часть воды испаряется, повышая влагосодержание дымовых газов, а остальная нагревается до этой же температуры. Содержащиеся в дымовых газах 5 водяные пары конденсируют в газовоздушном поверхностном пластинчатом теплообменнике - конденсаторе 6 с каплеуловителем 7, нагревая воздух. Конденсат 8 подается для подогрева в контактный газоводяной водоподогреватель 4. Теплота конденсации используется для подогрева холодного воздуха, который подают вентиляторами 9 из окружающей среды по воздуховоду 10. Нагретый воздух 11 направляют в производственное помещение котельного цеха для его вентиляции и отопления. Из этого помещения воздух подают в котел для обеспечения процесса горения. Осушенные дымовые газы 12 дымососом 13 подают в газо-газовый поверхностный пластинчатый теплообменник 2 для подогрева и направляют в дымовую трубу 14.

Для исключения конденсации остаточных водяных паров, уносимых потоком из конденсатора, перед дымососом 13 подмешивают часть подогретых осушенных дымовых газов 15 (до 10%), величина которой первоначально настраивается заслонкой 16.

Регулирование температуры нагреваемого воздуха 11 осуществляют изменением расхода осушаемых дымовых газов 1 или изменением расхода воздуха, при помощи регулирования числа оборотов дымососа 13 или вентиляторов 9 в зависимости от температуры наружного воздуха.

Теплообменник 2 и конденсатор 6 представляют собой поверхностные пластинчатые теплообменники, выполненные из унифицированных модульных пакетов, которые скомпонованы таким образом, чтобы движение теплоносителей осуществлялось противотоком. В зависимости от объема осушаемых дымовых газов, подогреватель и конденсатор формируются из рассчитываемого количества пакетов. Водоподогреватель 4 представляет собой контактный газоводяной теплообменник, обеспечивающий дополнительное охлаждение дымовых газов и нагрев воды. Нагретая вода 17 после дополнительной обработки используется для восполнения потерь в теплосети или паротурбинном цикле. Блок 9 формируется из нескольких вентиляторов для изменения расхода подогреваемого воздуха.

В таблице 1 приведены результаты поверочного расчета варианта исполнения установки для котла на природном газе мощностью 11 МВт. Расчеты проводились для температуры наружного воздуха -20°С. Расчет показывает, что использование контактного газоводяного водоподогревателя 4 приводит к исчезновению сухой зоны в конденсаторе 6, интенсифицирует теплообмен и увеличивает мощность установки. Процент утилизированного тепла увеличивается с 14,52 до 15,4%, при этом температура точки росы водяных паров в осушенных дымовых газах снижается до 17°С. Примерно 2% тепловой мощности не утилизируется, а используется для рекуперации - нагрева осушенных дымовых газов до температуры 70°С.

Способ глубокой утилизации тепла дымовых газов, по которому дымовые газы предварительно охлаждают в газо-газовом поверхностном пластинчатом теплообменнике, нагревая осушенные дымовые газы, доохлаждают в водоподогревателе до температуры, близкой к точке росы водяных паров, нагревая воду, конденсируют водяные пары, содержащиеся в дымовых газах в конденсаторе, нагревая воздух, отличающийся тем, что между теплообменником и конденсатором установлен поверхностный трубчатый газоводяной водоподогреватель для охлаждения влажных дымовых газов и нагрева воды, при этом основная утилизация тепла происходит в конденсаторе при нагреве воздуха, а дополнительная - в водоподогревателе.
СПОСОБ ГЛУБОКОЙ УТИЛИЗАЦИИ ТЕПЛА ДЫМОВЫХ ГАЗОВ
СПОСОБ ГЛУБОКОЙ УТИЛИЗАЦИИ ТЕПЛА ДЫМОВЫХ ГАЗОВ
Источник поступления информации: Роспатент

Showing 1-10 of 76 items.
10.10.2015
№216.013.8147

Способ определения параметров асинхронного электродвигателя

Изобретение относится к электротехнике и может быть использовано для определения параметров асинхронных электродвигателей. Способ заключается в том, что в течение пуска и работы асинхронного электродвигателя одновременно измеряют мгновенные величины токов и напряжений на двух фазах статора...
Тип: Изобретение
Номер охранного документа: 0002564692
Дата охранного документа: 10.10.2015
27.10.2015
№216.013.89bc

Устройство для сжигания жидкого и газообразного топлива

Изобретение относится к теплоэнергетике, а именно к области энергетического машиностроения, и позволяет обеспечить эффективность и экологичность сжигания жидкого и газообразного топлива. Устройство содержит корпус, канал рециркуляции, регулирующую заслонку и выхлопную трубу. В корпусе...
Тип: Изобретение
Номер охранного документа: 0002566863
Дата охранного документа: 27.10.2015
20.11.2015
№216.013.9196

Способ оценки эффективности защиты лимфоцитов от апоптоза

Изобретение касается способа оценки эффективности защиты лимфоцитов от апоптоза, относится к медицине и может быть использовано в биохимии, кардиологии и терапии. Способ включает выделение лимфоцитов, инкубацию клеток 48 часов при температуре 37°С и 5% содержанием СО, количественное определение...
Тип: Изобретение
Номер охранного документа: 0002568886
Дата охранного документа: 20.11.2015
27.11.2015
№216.013.94b2

Способ получения влагостойкого композитного топлива из торфа

Изобретение относится к способу получения твердого композитного топлива из торфа, который включает термическую обработку торфа при температуре 200-500°C без доступа воздуха, смешивание связующего с измельченным углеродистым остатком, формирование из полученной смеси брикета и его сушку, при...
Тип: Изобретение
Номер охранного документа: 0002569685
Дата охранного документа: 27.11.2015
20.01.2016
№216.013.a233

Способ обработки полых цилиндров

Изобретение относится к обработке полых цилиндров. Выполняют бурты у торцев цилиндров. Осуществляют дорнование отверстия цилиндра с натягом, равным не менее 5% от его диаметра. Осуществляют осевое пластическое растяжение цилиндра с деформациями 1…2,5%. Осуществляют дорнование отверстия цилиндра...
Тип: Изобретение
Номер охранного документа: 0002573165
Дата охранного документа: 20.01.2016
20.02.2016
№216.014.e822

Тепловизионная система для проведения наружной тепловизионной съемки

Изобретение относится к области неразрушающего контроля и может быть использовано при проведении наружной тепловизионной съемки для диагностики состояния строительных сооружений и энергетических объектов. Тепловизионная система для проведения наружной тепловизионной съемки содержит блок...
Тип: Изобретение
Номер охранного документа: 0002575798
Дата охранного документа: 20.02.2016
10.04.2016
№216.015.2f74

Тепловизионный дефектоскоп

Изобретение относится к области неразрушающего контроля и может быть использовано для активного одностороннего теплового контроля металлических, композиционных и др. материалов. Тепловизионный дефектоскоп содержит оптический нагреватель для тепловой стимуляции объекта контроля, тепловизор,...
Тип: Изобретение
Номер охранного документа: 0002580411
Дата охранного документа: 10.04.2016
27.05.2016
№216.015.443f

Ретрансляционный модуль для телеметрической системы с электромагнитным каналом связи

Изобретение относится к геофизическим исследованиям скважин в процессе бурения с использованием телеметрических систем, основанных на электромагнитном канале передачи данных. Техническим результатом является увеличение достоверности и скорости передачи данных по электромагнитному каналу связи...
Тип: Изобретение
Номер охранного документа: 0002585617
Дата охранного документа: 27.05.2016
10.06.2016
№216.015.4680

Устройство регистрации крутящего момента при вращательном и возвратно-вращательном движениях исполнительного органа

Изобретение относится к измерительной технике и предназначено для регистрации крутящего момента статически и динамически нагруженных узлов при вращательном и возвратно-вращательном движениях активных и пассивных органов машин и механизмов. Устройство представляет собой подшипниковый узел, в...
Тип: Изобретение
Номер охранного документа: 0002586962
Дата охранного документа: 10.06.2016
10.06.2016
№216.015.46b4

Способ определения метионина в модельных водных растворах методом циклической вольтамперометрии на графитовом электроде, модифицированном коллоидными частицами золота

Изобретение относится к аналитической химии. Способ определения метионина в модельных водных растворах методом циклической вольтамперометрии на графитовом электроде, модифицированном коллоидными частицами золота, включает модифицирование графитовых электродов коллоидными частицами золота из...
Тип: Изобретение
Номер охранного документа: 0002586961
Дата охранного документа: 10.06.2016
Showing 1-10 of 48 items.
10.10.2015
№216.013.8147

Способ определения параметров асинхронного электродвигателя

Изобретение относится к электротехнике и может быть использовано для определения параметров асинхронных электродвигателей. Способ заключается в том, что в течение пуска и работы асинхронного электродвигателя одновременно измеряют мгновенные величины токов и напряжений на двух фазах статора...
Тип: Изобретение
Номер охранного документа: 0002564692
Дата охранного документа: 10.10.2015
27.10.2015
№216.013.89bc

Устройство для сжигания жидкого и газообразного топлива

Изобретение относится к теплоэнергетике, а именно к области энергетического машиностроения, и позволяет обеспечить эффективность и экологичность сжигания жидкого и газообразного топлива. Устройство содержит корпус, канал рециркуляции, регулирующую заслонку и выхлопную трубу. В корпусе...
Тип: Изобретение
Номер охранного документа: 0002566863
Дата охранного документа: 27.10.2015
20.11.2015
№216.013.9196

Способ оценки эффективности защиты лимфоцитов от апоптоза

Изобретение касается способа оценки эффективности защиты лимфоцитов от апоптоза, относится к медицине и может быть использовано в биохимии, кардиологии и терапии. Способ включает выделение лимфоцитов, инкубацию клеток 48 часов при температуре 37°С и 5% содержанием СО, количественное определение...
Тип: Изобретение
Номер охранного документа: 0002568886
Дата охранного документа: 20.11.2015
27.11.2015
№216.013.94b2

Способ получения влагостойкого композитного топлива из торфа

Изобретение относится к способу получения твердого композитного топлива из торфа, который включает термическую обработку торфа при температуре 200-500°C без доступа воздуха, смешивание связующего с измельченным углеродистым остатком, формирование из полученной смеси брикета и его сушку, при...
Тип: Изобретение
Номер охранного документа: 0002569685
Дата охранного документа: 27.11.2015
20.01.2016
№216.013.a233

Способ обработки полых цилиндров

Изобретение относится к обработке полых цилиндров. Выполняют бурты у торцев цилиндров. Осуществляют дорнование отверстия цилиндра с натягом, равным не менее 5% от его диаметра. Осуществляют осевое пластическое растяжение цилиндра с деформациями 1…2,5%. Осуществляют дорнование отверстия цилиндра...
Тип: Изобретение
Номер охранного документа: 0002573165
Дата охранного документа: 20.01.2016
20.02.2016
№216.014.e822

Тепловизионная система для проведения наружной тепловизионной съемки

Изобретение относится к области неразрушающего контроля и может быть использовано при проведении наружной тепловизионной съемки для диагностики состояния строительных сооружений и энергетических объектов. Тепловизионная система для проведения наружной тепловизионной съемки содержит блок...
Тип: Изобретение
Номер охранного документа: 0002575798
Дата охранного документа: 20.02.2016
10.04.2016
№216.015.2f74

Тепловизионный дефектоскоп

Изобретение относится к области неразрушающего контроля и может быть использовано для активного одностороннего теплового контроля металлических, композиционных и др. материалов. Тепловизионный дефектоскоп содержит оптический нагреватель для тепловой стимуляции объекта контроля, тепловизор,...
Тип: Изобретение
Номер охранного документа: 0002580411
Дата охранного документа: 10.04.2016
27.05.2016
№216.015.443f

Ретрансляционный модуль для телеметрической системы с электромагнитным каналом связи

Изобретение относится к геофизическим исследованиям скважин в процессе бурения с использованием телеметрических систем, основанных на электромагнитном канале передачи данных. Техническим результатом является увеличение достоверности и скорости передачи данных по электромагнитному каналу связи...
Тип: Изобретение
Номер охранного документа: 0002585617
Дата охранного документа: 27.05.2016
10.06.2016
№216.015.4680

Устройство регистрации крутящего момента при вращательном и возвратно-вращательном движениях исполнительного органа

Изобретение относится к измерительной технике и предназначено для регистрации крутящего момента статически и динамически нагруженных узлов при вращательном и возвратно-вращательном движениях активных и пассивных органов машин и механизмов. Устройство представляет собой подшипниковый узел, в...
Тип: Изобретение
Номер охранного документа: 0002586962
Дата охранного документа: 10.06.2016
10.06.2016
№216.015.46b4

Способ определения метионина в модельных водных растворах методом циклической вольтамперометрии на графитовом электроде, модифицированном коллоидными частицами золота

Изобретение относится к аналитической химии. Способ определения метионина в модельных водных растворах методом циклической вольтамперометрии на графитовом электроде, модифицированном коллоидными частицами золота, включает модифицирование графитовых электродов коллоидными частицами золота из...
Тип: Изобретение
Номер охранного документа: 0002586961
Дата охранного документа: 10.06.2016
+ добавить свой РИД