×
25.08.2017
217.015.9dc5

Способ поражения малогабаритных летательных аппаратов

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к вооружению и касается систем огневого поражения воздушных объектов зенитными артиллерийскими комплексами (ЗАК). Поражение малогабаритного летательного аппарата (МГЛА) заключается в поиске, обнаружении и сопровождении зенитно-артиллерийским комплексом (ЗАК), наведении ЗАК в направление прицеливания с учетом параметров полета МГЛА и характеристик ЗАК. При этом передают параметры полета МГЛА на неконтактный оптический взрыватель зенитного боеприпаса (ЗБП) ЗАК, подсвечивают МГЛА лазерным излучением, после чего осуществляют ЗАК выстрел ЗБП. Неконтактным оптическим взрывателем ЗБП по принимаемому отраженному лазерному излучению измеряют угол места и азимут МГЛА и определяют угломестную составляющую скорости сближения ЗБП и МГЛА. Затем вычисляют значение оптимального угла места МГЛА подрыва ЗБП, при достижении которого осуществляют направленный подрыв ЗБП в направлении текущего азимута МГЛА. Достигается повышение эффективности поражения малогабаритных летательных аппаратов. 2 ил.
Реферат Свернуть Развернуть

Изобретение относится к вооружению, в частности к системам огневого поражения воздушных объектов зенитными артиллерийскими комплексами (ЗАК).

Известен способ поражения летательных аппаратов [1, 2], основанный на поиске, обнаружении и сопровождении ЗАК летательного аппарата, наведении пушечной установки ЗАК в направление прицеливания с учетом параметров полета летательного аппарата и характеристик ЗАК, выстреле зенитного боеприпаса (ЗБП) и локации активным неконтактным взрывателем летательного аппарата, определении по отраженному сигналу неконтактным взрывателем параметров пространственного положения летательного аппарата, подрыве активным неконтактным взрывателем ЗБП и формировании поля поражения в направлении летательного аппарата при достижении параметров пространственного положения летательного аппарата оптимальных значений. Недостатком является существующая вероятность срыва локации активным неконтактным взрывателем малогабаритных летательных аппаратов (МГЛА). Это связано с малыми габаритами МГЛА и применяемыми материалами для его изготовления. Так, малые размеры МГЛА и использование неметаллических материалов для его изготовления снижают эффективную площадь рассеивания (особенно в радиодиапазоне), а также учитывая скоротечность и динамку полета ЗБП, локационный сигнал «может не попасть» на МГЛА. В дополнение, использование активного взрывателя усложняет конструкцию, увеличивает массу и стоимость ЗБП, что приводит к увеличению отказов, уменьшению дальности поражения и неэффективности по критерию стоимости цели и применяемого для его поражения средства.

Техническим результатом, на достижение которого направлено предлагаемое изобретение, является повышение эффективности ЗАК при поражении МГЛА.

Технический результат достигается тем, что в известном способе поражения малогабаритных летательных аппаратов, основанном на поиске, обнаружении и сопровождении ЗАК МГЛА, наведении ЗАК в направлении прицеливания с учетом параметров полета МГЛА и характеристик ЗАК, передают параметры полета МГЛА на неконтактный оптический взрыватель ЗБП ЗАК, подсвечивают МГЛА лазерным излучением, осуществляют ЗАК выстрел ЗБП, измеряют неконтактным оптическим взрывателем ЗБП по принимаемому отраженному лазерному излучению угол места и азимут МГЛА и определяют угломестную составляющую скорости сближения ЗБП и МГЛА, по значениям угломестной составляющей скорости сближения ЗБП и МГЛА, параметров полета МГЛА относительно ЗАК и разрывных характеристик ЗБП вычисляют значение оптимального угла места МГЛА подрыва ЗБП, при достижении по мере сближения ЗБП и МГЛА угла места МГЛА значения угла места подрыва ЗБП осуществляют направленный подрыв ЗБП в направлении текущего азимута МГЛА.

Поражение летательных аппаратов может осуществляться ЗАК, использующими снаряды с неконтактными взрывателями [3]. Использование таких взрывателей в основном определяется наличием информационного поля цели, по которому определяют ее пространственное положение. По конструктивным особенностям МГЛА могут не обеспечить достаточный уровень информационного излучения. В этом случае дополнительный подсвет МГЛА направленным лазерным излучением позволит повысить уровень информационного сигнала для ЗБП и соответственно эффективность поражения.

На фиг. 1 представлена схема, поясняющая существо способа (где приняты следующие обозначения: 1 - ЗАК, 2 - МГЛА, 3 - ЗБП, 4 - точка подрыва ЗБП, 5 поражающие элементы, 6 - траектория полета ЗБП, 7 - направление распространения сигнала лазерного подсвета ЗАК - МГЛА, 8 - направление распространения отраженного сигнала лазерного подсвета МГЛА - ЗБП, β - угол погрешности наведения ЗАК на МГЛА, αt - угол места МГЛА (отраженного сигнала лазерного подсвета от МГЛА), εt - азимут МГЛА (отраженного сигнала лазерного подсвета от МГЛА), αП - угол места МГЛА в точке подрыва ЗБП, εП - азимут МГЛА в точке подрыва ЗБП, αt,МГЛА – угол места МГЛА относительно ЗАК, εt,МГЛА - азимут МГЛА относительно ЗАК, D - расстояние ЗАК - МГЛА, Dt - расстояние ЗАК - ЗБП, L - расстояние подрыва ЗБП относительно МГЛА, t - индекс изменения значений величин в процессе полета ЗБП и МГЛА во времени).

Рассмотрим ключевые этапы функционирования предлагаемого способа. ЗАК 1 определяет параметры полета МГЛА 2: D, αt,МГЛА, εt,МГЛА скорость и направление. На основе полученных значений ЗАК 1 производит необходимые расчеты и осуществляет наведение своей пушечной установки в цель. При этом, учитывая динамику процесса наведения и характеристики исполнительных элементов, формируется угловая погрешность наведения β, влияющая на эффективность поражения МГЛА 2. Это влияние отражается на величине промаха ЗБП 3 относительно цели. Компенсация ошибок наведения на основе учета пространственных характеристик разброса поражающих элементов 5 осуществляется выбором на траектории полета ЗБП 6 точки (участка) его подрыва 4. Для этой цели в состав ЗБП 3 включают дистанционные или неконтактные взрыватели, оценивающие его пространственное положение в процессе полета [4]. Дистанционные взрыватели осуществляют подрыв ЗБП на установленной дистанции и по своему принципу функционирования не способны в процессе полета оценить текущее положение относительно цели. Следовательно, эффективность применения дистанционного взрывателя определяется начальными процедурами подготовки к стрельбе. Использование таких взрывателей для поражения МГЛА (учитывая малые размеры) может потребовать достаточно большое количество ЗБП. Неконтактные взрыватели позволяют оценить текущее положение цели и делятся на активные и пассивные. В интересах поражения летательных аппаратов неконтактные взрыватели функционируют в радио и оптическом диапазонах длин волн. Эффективность пассивных взрывателей в первую очередь определяется возможностью выделить цель по ее излучению. Применительно к МГЛА 3 такие взрыватели не могут быть использованы. Это объясняется недостаточной информативностью МГЛА в радио и оптическом полях (отсутствие бортовых источников радиоизлучения, низкая интенсивность ИК-излучения и т.д.), что может привести к необнаружению цели. Наиболее эффективно использование активных взрывателей, которые оценивают пространственное положение ЗУ 3 относительно цели по параметрам отраженного сигнала. Однако при поражении МГЛА 2 существует вероятность «неполучения» отраженного сигнала. Это связано с малыми габаритами МГЛА 2 и применяемыми материалами для его изготовления. Так, малые размеры МГЛА 2 и использование неметаллических материалов для его изготовления снижают эффективную площадь рассеивания (особенно в радиодиапазоне), а также учитывая скоротечность и динамку полета ЗБП 3, локационный сигнал «может не попасть» на МГЛА 2. В дополнение, использование активного взрывателя усложняет конструкцию, увеличивает массу и стоимость ЗБП 3, что приводит к увеличению отказов, уменьшению дальности поражения и неэффективности по критерию стоимости цели и применяемого для его поражения средства.

Исходя из вышеизложенного, в этой ситуации наиболее эффективным представляется повысить информативность МГЛА 2 в излучаемом физическом поле для пассивного оптического неконтактного взрывателя. Для чего предлагается дополнительно облучить МГЛА 2 направленным излучением, в качестве которого использовать излучение лазерного целеуказателя ЗАК 1. Тогда в определенном смысле теряется возможность непосредственной оценки величины L на борту ЗБП 3 (т.к. ее значение получают в процессе «локации» активным оптическим взрывателем) и соответственно координат точки подрыва 4. В этом случае оценка пространственного положения точки подрыва ЗБП 4 может быть осуществлена пассивным оптическим неконтактным взрывателем на основе введенных исходных данных, используемых для получения ее координат в процессе полета ЗБП 3. Такими исходными данными являются значения текущего D, скорости, направления полета МГЛА и разрывных характеристик снаряда 3 в динамике его полета. Расстояние промаха ЗБП относительно МГЛА 2 непосредственно влияет на угломестную и азимутальную составляющие скорости сближения ЗБП 3 и МГЛА 2. С точки зрения оценки величины промаха и выбора точки порыва ЗБП 3 наибольшее влияние оказывает угломестная составляющая скорости сближения ЗБП 3 и МГЛА 2. Чем больше расстояние L, тем выше значение угломестной составляющей скорости сближения ЗБП 3 и МГЛА 2 за контрольный отрезок времени (траектории). Поэтому с использованием математических зависимостей (по причине громоздкости выражения не приводятся) можно определить значения оптимального угла места МГЛА 2 подрыва ЗБП 3 αП, который характеризует величину L на расстоянии D ЗАК-МГЛА при угловой ошибке наведения β. При этом данными для расчета являются вводимые перед запуском ЗБП 3 значения параметров полета МГЛА 2 относительно ЗАК 1, разрывные характеристики боевой части и получаемое в процессе полета ЗБП значение угломестной составляющей скорости сближения ЗБП 3 и МГЛА 2.

В продолжение описания способа в соответствии с поясняющей схемой (фиг. 1) порядок действий следующий. Первоначально ЗАК 1 с использованием штатного оптического и радиоэлектронного оборудования осуществляет поиск МГЛА 2. При обнаружении МГЛА 2 ЗАК 1 определяет параметры его полета и на их основе с учетом характеристик пушечной установки производит наведение ее на цель. Также значения параметров полета МГЛА 2 и разрывных характеристик ЗБП 3 ЗАК 1 передает на неконтактный оптический взрыватель. При этом в качестве разрывных характеристик ЗБП 3 используют направление разброса поражающих элементов 5 в динамике полета. ЗАК осуществляет подсвет МГЛА 2 лазерным излучением 7 и производит выстрел ЗБП 3. Неконтактный оптический взрыватель в процессе полета ЗБП 3 принимает отраженное от МГЛА 2 лазерное излучение 8 и определяет его пеленгационные углы αt и εt, а также измеряет угломестную составляющую скорости сближения ЗБП 3 и МГЛА 2. Неконтактный оптический взрыватель с использованием полученного значения угломестной составляющей скорости сближения ЗБП 3 и МГЛА 2, предварительно веденных параметров полета МГЛА 2 и разрывных характеристик ЗБП 3 вычисляет значение оптимального угла места αП МГЛА 2 подрыва ЗБП 3. При достижении по мере сближения ЗБП 3 и МГЛА 2 угла места at значения угла места αП подрыва ЗБП 3 осуществляют направленный подрыв ЗБП в направлении текущего азимута εП МГЛА 2. Выбор в отношении направленного подрыва ЗБП 3 объясняется наличием осуществляемой азимутальной оценки цели в процессе полета и соответственно наиболее рациональным поражающим воздействием на МГЛА 2.

На фиг. 2 представлена блок-схема устройства, с помощь которого может быть реализован способ. Блок-схема устройства содержит: неконтактный оптический взрыватель снаряда 10, управляющий микропроцессор 11, блок направленного подрыва 12, блок, остальные обозначения соответствуют фиг. 1.

Устройство работает следующим образом. При обнаружении МГЛА 2 ЗАК 1 определяет параметры его полета и на их основе с учетом характеристик пушечной установки производит наведение ее на цель. Также значения параметров полета МГЛА 2 и разрывных характеристик ЗБП 3 ЗАК 1 передает в управляющий микропроцессор 11. ЗАК 1 осуществляет подсвет МГЛА 2 лазерным целеуказателем и производит выстрел ЗБП 3. Неконтактный оптический взрыватель снаряда 10 принимает отраженное от МГЛА 2 лазерное излучение и определяет его пеленгационные параметры, значение которых передает в управляющий микропроцессор 11. Управляющий микропроцессор 11 вычисляет по поступившим и первоначально введенным данным пеленгационные параметры подрыва ЗБП 3 и по мере сближения ЗБП 3 и МГЛА 2 при совпадении пеленгационных параметров отраженного лазерного излучения с расчетными вырабатывает сигнал в блок направленного подрыва 12, который осуществляет подрыв ЗБП 3.

Таким образом, за счет дополнительного подсвета лазерным излучением МГЛА и получения координат точки подрыва ЗБП с пеленгационных параметров отраженного лазерного излучения у заявляемого способа появляются свойства повышения эффективности ЗАК при поражении МГЛА. Тем самым устраняет недостатки прототипа.

Предлагаемое техническое решение является новым, поскольку из общедоступных сведений неизвестен способ поражения малогабаритных летательных аппаратов, основанный на поиске, обнаружении и сопровождении ЗАК МГЛА, наведении ЗАК в направление прицеливания с учетом параметров полета МГЛА и характеристик ЗАК, передаче параметров полета МГЛА на неконтактный оптический взрыватель ЗБП ЗАК, подсвечивании МГЛА лазерным излучением, осуществлении ЗАК выстрела ЗБП, измерении неконтактным оптическим взрывателем ЗБП по принимаемому отраженному лазерному излучению угла места и азимута МГЛА и определении угломестной составляющей скорости сближения ЗБП и МГЛА, вычислении по значениям угломестной составляющей скорости сближения ЗБП и МГЛА, параметров полета МГЛА относительно ЗАК и разрывных характеристик ЗБП значения оптимального угла места МГЛА подрыва ЗБП, осуществлении при достижении по мере сближения ЗБП и МГЛА угла места МГЛА значения угла места подрыва ЗБП направленного подрыва ЗБП в направлении текущего азимута МГЛА.

Предлагаемое техническое решение практически применимо, так как для его реализации могут быть использованы типовые электротехнические узлы и устройства.

Литература

1. Ефанов В.В., Мужичек Е.М. Патент на изобретение RU №2398183 C1, F42C 15/01. Способ управления характеристиками поля поражения осколочно-фугасной боевой части ракеты и устройство для его осуществления. Роспатент, 2010.

2. Ефанов В.В., Мужичек Е.М. Вытришко Ф.М. Патент на изобретение RU №2499218 C1, F41G 5/00. Способ защиты объекта от средств воздушного нападения и система для его осуществления. Роспатент, 2013.

3. Бабкин А.В., Сухарь И.М., Велданов В.А., Грязнов Е.Ф. и др. Средства поражения и боеприпасы. - М.: Издательство МГТУ им. Н.Э. Баумана, 2008, стр. 849.

4. Бабкин А.В., Сухарь И.М., Велданов В.А., Грязнов Е.Ф. и др. Средства поражения и боеприпасы. - М.: Издательство МГТУ им. Н.Э. Баумана, 2008, стр. 849.

Способ поражения малогабаритного летательного аппарата, заключающийся в поиске, обнаружении и сопровождении зенитно-артиллерийским комплексом (ЗАК) малогабаритного летательного аппарата (МГЛА), наведении ЗАК в направление прицеливания с учетом параметров полета МГЛА и характеристик ЗАК, отличающийся тем, что передают параметры полета МГЛА на неконтактный оптический взрыватель зенитного боеприпаса (ЗБП) ЗАК, подсвечивают МГЛА лазерным излучением, осуществляют ЗАК выстрел ЗБП, измеряют неконтактным оптическим взрывателем ЗБП по принимаемому отраженному лазерному излучению угол места и азимут МГЛА и определяют угломестную составляющую скорости сближения ЗБП и МГЛА, по значениям угломестной составляющей скорости сближения ЗБП и МГЛА, параметров полета МГЛА относительно ЗАК и разрывных характеристик ЗБП вычисляют значение оптимального угла места МГЛА подрыва ЗБП, при достижении по мере сближения ЗБП и МГЛА угла места МГЛА значения угла места подрыва ЗБП осуществляют направленный подрыв ЗБП в направлении текущего азимута МГЛА.
Способ поражения малогабаритных летательных аппаратов
Способ поражения малогабаритных летательных аппаратов
Способ поражения малогабаритных летательных аппаратов
Источник поступления информации: Роспатент

Showing 21-30 of 52 items.
10.06.2015
№216.013.53cd

Комбинированная ложная цель для имитации зенитно-артиллерийских средств

Изобретение относится к средствам обеспечения скрытности вооружения и военной техники от средств разведки видимого, радиолокационного и инфракрасного диапазонов. Комбинированная ложная цель выполнена в виде полномасштабного надувного макета зенитно-артиллерийского средства, покрытого...
Тип: Изобретение
Номер охранного документа: 0002552974
Дата охранного документа: 10.06.2015
10.08.2015
№216.013.6951

Комплекс имитации сложных военных объектов

Изобретение относится к средствам обеспечения скрытности вооружения, военной техники и военных объектов (ВВТ и ВО) от средств оптико-электронной, радиолокационной, а также радио- и радиотехнической разведки. Комплекс имитации сложных военных объектов состоит из M средств имитации простых...
Тип: Изобретение
Номер охранного документа: 0002558514
Дата охранного документа: 10.08.2015
27.10.2015
№216.013.8aae

Способ поражения объектов, прикрываемых аэрозольным образованием

Изобретение относится к вооружению, а именно к системам комплексного огневого поражения. Способ поражения объектов, прикрываемых аэрозольным образованием, заключается в доставке средств генерации ультразвуковых колебаний в район местонахождения аэрозольного образования (АО), прикрывающего...
Тип: Изобретение
Номер охранного документа: 0002567105
Дата охранного документа: 27.10.2015
10.11.2015
№216.013.8ab2

Способ тягового заземления передвижных радиоэлектронных средств

Изобретение касается способа тягового заземления передвижных радиоэлектронных средств, основанного на выдвижении радиоэлектронного средства к месту развертывания, в соответствии с которым заземлитель, выполненный в форме ножа, шарнирно закрепленный через тягу к штоку гидроцилиндра...
Тип: Изобретение
Номер охранного документа: 0002567113
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8d9b

Способ защиты средства спутниковой радиосвязи от самонаводящегося на радиоизлучение элемента поражения

Изобретение относится к области защиты средств радиосвязи от управляемого оружия на основе самонаведения на источник радиоизлучения. Достигаемый технический результат - повышение эффективности защиты средства спутниковой радиосвязи от самонаводящегося на радиоизлучение элемента поражения....
Тип: Изобретение
Номер охранного документа: 0002567858
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8e58

Способ поражения объектов, прикрываемых аэрозольной завесой

Изобретение относится к системам комплексного огневого поражения. Способ поражения объектов, прикрываемых аэрозольной завесой, заключается в доставке средств генерации электроаэрозоля в район местонахождения аэрозольного образования (АО), прикрывающего объекты от поражения огневыми комплексами....
Тип: Изобретение
Номер охранного документа: 0002568049
Дата охранного документа: 10.11.2015
20.02.2016
№216.014.e857

Лазерная система посадки летательных аппаратов (ла)

Лазерная система посадки летательных аппаратов содержит курсовой, глиссадные, боковые и маркерные лазерные излучатели, расположенные определенным образом на взлетно-посадочной полосе (ВПП). Лучи каждого маркерного излучателя направлены под небольшим углом к плоскости глиссады и пересекают...
Тип: Изобретение
Номер охранного документа: 0002575554
Дата охранного документа: 20.02.2016
20.04.2016
№216.015.36fa

Способ оптико-электронного противодействия

Изобретение относится к области противодействия оптико-электронным системам (ОЭС) различного назначения. Способ основан на согласовании ориентации каждого передающего канала помехового сигнала с ориентацией соответствующего пеленгационного канала. В случае функционирования в поле зрения...
Тип: Изобретение
Номер охранного документа: 0002581779
Дата охранного документа: 20.04.2016
27.04.2016
№216.015.39c9

Способ определения координат местоположения источника радиоизлучения

Изобретение относится к пассивным системам радиомониторинга радиоэлектронных средств, в частности может быть использовано в системах местоопределения источников радиоизлучения (ИРИ). Сущность способа определения координат местоположения ИРИ заключается в доставке в предполагаемый район...
Тип: Изобретение
Номер охранного документа: 0002582592
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.39f6

Способ имитации теплового контраста объекта

Изобретение относится к средствам защиты от тепловизионных средств воздушно-космической разведки. При способе имитации теплового контраста объекта регистрируют тепловое изображение имитируемого объекта на фоне местности, передают зарегистрированное изображение на имитатор, регистрируют тепловое...
Тип: Изобретение
Номер охранного документа: 0002582560
Дата охранного документа: 27.04.2016
Showing 21-30 of 82 items.
10.11.2015
№216.013.8ab2

Способ тягового заземления передвижных радиоэлектронных средств

Изобретение касается способа тягового заземления передвижных радиоэлектронных средств, основанного на выдвижении радиоэлектронного средства к месту развертывания, в соответствии с которым заземлитель, выполненный в форме ножа, шарнирно закрепленный через тягу к штоку гидроцилиндра...
Тип: Изобретение
Номер охранного документа: 0002567113
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8d9b

Способ защиты средства спутниковой радиосвязи от самонаводящегося на радиоизлучение элемента поражения

Изобретение относится к области защиты средств радиосвязи от управляемого оружия на основе самонаведения на источник радиоизлучения. Достигаемый технический результат - повышение эффективности защиты средства спутниковой радиосвязи от самонаводящегося на радиоизлучение элемента поражения....
Тип: Изобретение
Номер охранного документа: 0002567858
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8e58

Способ поражения объектов, прикрываемых аэрозольной завесой

Изобретение относится к системам комплексного огневого поражения. Способ поражения объектов, прикрываемых аэрозольной завесой, заключается в доставке средств генерации электроаэрозоля в район местонахождения аэрозольного образования (АО), прикрывающего объекты от поражения огневыми комплексами....
Тип: Изобретение
Номер охранного документа: 0002568049
Дата охранного документа: 10.11.2015
20.02.2016
№216.014.e857

Лазерная система посадки летательных аппаратов (ла)

Лазерная система посадки летательных аппаратов содержит курсовой, глиссадные, боковые и маркерные лазерные излучатели, расположенные определенным образом на взлетно-посадочной полосе (ВПП). Лучи каждого маркерного излучателя направлены под небольшим углом к плоскости глиссады и пересекают...
Тип: Изобретение
Номер охранного документа: 0002575554
Дата охранного документа: 20.02.2016
20.04.2016
№216.015.36fa

Способ оптико-электронного противодействия

Изобретение относится к области противодействия оптико-электронным системам (ОЭС) различного назначения. Способ основан на согласовании ориентации каждого передающего канала помехового сигнала с ориентацией соответствующего пеленгационного канала. В случае функционирования в поле зрения...
Тип: Изобретение
Номер охранного документа: 0002581779
Дата охранного документа: 20.04.2016
27.04.2016
№216.015.39c9

Способ определения координат местоположения источника радиоизлучения

Изобретение относится к пассивным системам радиомониторинга радиоэлектронных средств, в частности может быть использовано в системах местоопределения источников радиоизлучения (ИРИ). Сущность способа определения координат местоположения ИРИ заключается в доставке в предполагаемый район...
Тип: Изобретение
Номер охранного документа: 0002582592
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.39f6

Способ имитации теплового контраста объекта

Изобретение относится к средствам защиты от тепловизионных средств воздушно-космической разведки. При способе имитации теплового контраста объекта регистрируют тепловое изображение имитируемого объекта на фоне местности, передают зарегистрированное изображение на имитатор, регистрируют тепловое...
Тип: Изобретение
Номер охранного документа: 0002582560
Дата охранного документа: 27.04.2016
10.08.2016
№216.015.5306

Способ защиты объектов от поражения огневыми комплексами

Изобретение относится к области борьбы с радиоэлектронными средствами (РЭС) и предназначено для функционального поражения радиоэлектронных устройств, входящих в состав средств поражения. Способ защиты объектов от поражения огневыми комплексами заключается в определении сектора атаки огневого...
Тип: Изобретение
Номер охранного документа: 0002594306
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.5525

Способ определения координат падения боеприпасов

Изобретение относится к области проведения испытаний огневых комплексов, в частности для оценки точности попадания в цель различных боеприпасов. Способ заключается в дополнительном измерении оптико-электронным пеленгатором (ОЭП) спектрально-пространственных параметров изображений излучений,...
Тип: Изобретение
Номер охранного документа: 0002593523
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.5614

Способ противодействия управляемым боеприпасам

Способ противодействия управляемым боеприпасам (УБП) базируется на поэтапном воздействии оптического сигнала на оптико-электронный (ОЭК) УБП в зависимости от координат его местоположения, их разброса и временных промежутков энергетической доступности фоточувствительной площадки его приемника....
Тип: Изобретение
Номер охранного документа: 0002593522
Дата охранного документа: 10.08.2016
+ добавить свой РИД