×
25.08.2017
217.015.9cb2

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ТЕПЛОПРОВОДНОСТИ ЖИДКОЙ ТЕПЛОВОЙ ИЗОЛЯЦИИ НА ПОВЕРХНОСТИ ПЛОСКОГО ИСТОЧНИКА ТЕПЛОТЫ

Вид РИД

Изобретение

Аннотация: Изобретение относится к стационарным способам определения коэффициента теплопроводности жидких теплоизоляционных материалов. Разработанный способ может применяться в строительстве и теплоэнергетике для исследования теплопроводных качеств сверхтонких жидких теплоизоляционных покрытий на поверхностях плоских источников теплоты. Сущность способа заключается в локальном нанесении на поверхность плоского источника теплоты слоя жидкой тепловой изоляции известной толщины. По известным значениям температуры поверхности плоского источника теплоты, температуры поверхности теплоизолированного участка и температуры окружающей среды, а также по толщине слоя тепловой изоляции вычисляют по специальной расчетной формуле в зависимости от расположения в пространстве поверхности плоского источника теплоты коэффициент теплопроводности жидкой тепловой изоляции. Технический результат - повышение точности определения коэффициента теплопроводности жидкой тепловой изоляции на поверхности плоского источника теплоты. 5 ил.

Изобретение относится к стационарным способам определения коэффициента теплопроводности жидких теплоизоляционных материалов. Разработанный способ может применяться в строительстве и теплоэнергетике для исследования теплопроводных качеств сверхтонких жидких теплоизоляционных покрытий на поверхностях плоских источников теплоты.

Известен способ определения коэффициента теплопроводности тонкостенных теплозащитных покрытий, проводимый в два этапа. На первом этапе с помощью нагревателя с постоянной температурой равномерно на дистанции нагревают всю внешнюю поверхность образца без теплозащитного покрытия, одновременно охлаждая обратную сторону образца воздушным потоком, движущимся в теплоизолированном вентиляционном канале. На втором этапе наносят теплозащитное покрытие известной толщины на внешнюю поверхность образца и повторно проводят те же самые испытания. По результатам бесконтактного измерения термографами температурных полей поверхностей образца до и после нанесения на одну из его сторон теплозащитного покрытия, а также по температуре охлаждающего воздуха вычисляют по специальным расчетным формулам коэффициент теплопроводности теплозащитного покрытия [патент РФ 2426106, кл. G01N 25/18, 2011].

К недостаткам данного способа можно отнести использование большого количества элементов: нагревателя, вентиляционного канала, компрессора, инфракрасного прозрачного стекла, компьютерных термографов, а также достаточно сложный порядок выполнения расчета: определение по результатам первого этапа измерений по уравнению теплового баланса коэффициента теплоотдачи между образцом и холодным циркулирующим воздухом в вентиляционном канале, нахождение по результатам второго этапа измерений температуры на границе образца и теплозащитного покрытия, что является весьма затруднительным с технической точки зрения, итоговое вычисление локальных и среднеинтегрального значений коэффициента теплопроводности теплозащитного покрытия.

Наиболее близким к заявленному изобретению является способ определения коэффициента теплопроводности сверхтонких жидких теплоизоляционных покрытий, проводимый в два этапа. На первом этапе нижнюю поверхность плоскопараллельной стенки, состоящей из двух слоев одинаковой толщины с равным коэффициентом теплопроводности материала, нагревают с помощью плоского терморегулируемого источника теплоты и измеряют температуру поверхности источника теплоты, а также температуру между слоями. Температуру наружной поверхности верхнего слоя определяют расчетным способом. На втором этапе на наружной поверхности плоскопараллельной стенки закрепляют металлическую пластину известной толщины с известным коэффициентом теплопроводности. Далее на наружную поверхность металлической пластины наносят слой сверхтонкого жидкого теплоизоляционного покрытия известной толщины и измеряют температуру поверхности контакта верхнего слоя плоскопараллельной стенки и металлической пластины со сверхтонким жидким теплоизоляционным покрытием. По специальной расчетной формуле вычисляют коэффициент теплопроводности жидкого теплоизоляционного покрытия [патент РФ 2478936, кл. G01N 25/18, G01N 25/20, 2013].

К недостаткам данного способа можно отнести использование большого количества элементов: терморегулируемого источника теплоты, двух слоев плоскопараллельной стенки, металлической пластины, а также применение контактных измерителей температуры, расположенных между соседними слоями измерительной системы и искажающих ее стационарное температурное поле. Сложность способа также заключается в необходимости априорного знания значений коэффициентов теплопроводности двухслойной плоскопараллельной стенки и металлической пластины. Исходные уравнения для вывода итоговой расчетной формулы в некоторой степени не соответствуют классическим законам теплообмена.

Целью изобретения является упрощение способа и повышение точности определения коэффициента теплопроводности жидкой тепловой изоляции на поверхности плоского источника теплоты.

Поставленная цель достигается тем, что слой жидкой тепловой изоляции известной толщины локально наносят на поверхность плоского источника теплоты. Производят отдельно измерения температуры поверхности плоского источника теплоты, температуры поверхности теплоизолированного участка и температуры окружающей среды. По известным значениям температуры поверхности плоского источника теплоты, температуры поверхности теплоизолированного участка и температуры окружающей среды, а также по известной толщине слоя тепловой изоляции вычисляют по специальной расчетной формуле в зависимости от расположения в пространстве поверхности плоского источника теплоты коэффициент теплопроводности жидкой тепловой изоляции.

На фиг. 1 показана принципиальная схема реализации способа определения коэффициента теплопроводности жидкой тепловой изоляции на поверхности плоского источника теплоты.

На фиг. 2 показан график для определения коэффициента теплоотдачи α1 в зависимости от температуры поверхности теплоизолированного участка tc2 и температуры окружающей среды tв при вертикальном расположении в пространстве поверхности плоского источника теплоты.

На фиг. 3 показан график для определения коэффициента теплоотдачи α2 в зависимости от температуры поверхности теплоизолированного участка tc2 и температуры окружающей среды tв при горизонтальном расположении в пространстве поверхности плоского источника теплоты.

На фиг. 4 показан пример конкретной реализации способа определения коэффициента теплопроводности жидкой тепловой изоляции на поверхности плоского источника теплоты (на примере конфорки электрической плитки).

На фиг. 5 показано тепловое изображение (термограмма) поверхности плоского источника теплоты и поверхности теплоизолированного участка при стационарном тепловом режиме (на примере конфорки электрической плитки).

На поверхности плоского источника теплоты 1 локально расположен слой жидкой тепловой изоляции 2 толщиной δиз (фиг. 1). Температура поверхности плоского источника теплоты 1 равна tc1, температура поверхности теплоизолированного участка - tc2 и температура окружающей среды - tв. Тепловой режим поверхности плоского источника теплоты 1 и поверхности теплоизолированного участка 2 стационарный.

Устройство для реализации предложенного способа работает следующим образом (фиг. 1).

При стационарном тепловом режиме производят отдельно измерения температуры поверхности плоского источника теплоты 1 tc1, температуры поверхности теплоизолированного участка 2 tc2 и температуры окружающей среды tв.

Коэффициент теплопроводности жидкой тепловой изоляции 2 в зависимости от расположения в пространстве поверхности плоского источника теплоты 1 вычисляют по специальной расчетной формуле:

- при вертикальном расположении в пространстве поверхности плоского источника теплоты 1:

- при горизонтальном расположении в пространстве плоского источника теплоты 1 с теплоотдающей поверхностью, обращенной вверх:

- при горизонтальном расположении в пространстве плоского источника теплоты 1 с теплоотдающей поверхностью, обращенной вниз:

где α1 и α2 - коэффициенты теплоотдачи между поверхностью теплоизолированного участка 2 и окружающей средой соответственно при вертикальном и горизонтальном расположениях плоского источника теплоты 1 (соответственно фиг. 2 и фиг. 3); δиз - толщина слоя жидкой тепловой изоляции 2; tc1 - температура поверхности плоского источника теплоты 1; tc2 - температура поверхности теплоизолированного участка 2; tв - температура окружающей среды.

Достоинствами предложенного способа являются техническая простота проведения теплофизических измерений и математическая простота вычисления коэффициента теплопроводности жидкой тепловой изоляции на поверхности плоского источника теплоты. Высокая точность результатов расчета достигается за счет применения формул, выведенных из классических уравнений теплопроводности для плоской стенки при стационарном тепловом режиме и конвективного теплообмена, а также графиков, полученных с помощью теории подобия тепловых процессов.

Пример конкретной реализации способа (фиг. 4)

Определим коэффициент теплопроводности жидкой тепловой изоляции на примере теплоизоляционной краски Броня 2, нанесенной на половину поверхности конфорки электрической плитки 1, с толщиной слоя жидкой тепловой изоляции δиз=2,0⋅10-3 м. Средние значения температуры поверхности конфорки электрической плитки 1 и поверхности теплоизолированного участка 2 по данным тепловизора DALI-700E (фиг. 5) соответственно составили tc1=210,9°C и tc2=133,3°C. Температура окружающей среды по результатам измерений равна tв=22,4°C.

Тогда коэффициент теплоотдачи вертикально расположенной конфорки электрической плитки 1, согласно фиг. 2, равен α1=8,1 Вт/(м2⋅К).

Коэффициент теплопроводности жидкой тепловой изоляции Броня 2 по формуле (1) составил:

.

Относительная погрешность измерительной системы равна ±8%.


СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ТЕПЛОПРОВОДНОСТИ ЖИДКОЙ ТЕПЛОВОЙ ИЗОЛЯЦИИ НА ПОВЕРХНОСТИ ПЛОСКОГО ИСТОЧНИКА ТЕПЛОТЫ
СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ТЕПЛОПРОВОДНОСТИ ЖИДКОЙ ТЕПЛОВОЙ ИЗОЛЯЦИИ НА ПОВЕРХНОСТИ ПЛОСКОГО ИСТОЧНИКА ТЕПЛОТЫ
СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ТЕПЛОПРОВОДНОСТИ ЖИДКОЙ ТЕПЛОВОЙ ИЗОЛЯЦИИ НА ПОВЕРХНОСТИ ПЛОСКОГО ИСТОЧНИКА ТЕПЛОТЫ
СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ТЕПЛОПРОВОДНОСТИ ЖИДКОЙ ТЕПЛОВОЙ ИЗОЛЯЦИИ НА ПОВЕРХНОСТИ ПЛОСКОГО ИСТОЧНИКА ТЕПЛОТЫ
СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ТЕПЛОПРОВОДНОСТИ ЖИДКОЙ ТЕПЛОВОЙ ИЗОЛЯЦИИ НА ПОВЕРХНОСТИ ПЛОСКОГО ИСТОЧНИКА ТЕПЛОТЫ
СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ТЕПЛОПРОВОДНОСТИ ЖИДКОЙ ТЕПЛОВОЙ ИЗОЛЯЦИИ НА ПОВЕРХНОСТИ ПЛОСКОГО ИСТОЧНИКА ТЕПЛОТЫ
СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ТЕПЛОПРОВОДНОСТИ ЖИДКОЙ ТЕПЛОВОЙ ИЗОЛЯЦИИ НА ПОВЕРХНОСТИ ПЛОСКОГО ИСТОЧНИКА ТЕПЛОТЫ
Источник поступления информации: Роспатент

Showing 21-26 of 26 items.
18.12.2019
№219.017.ee3a

Способ предотвращения разрушения изгибаемых железобетонных балок пролетного строения мостов от отслоения элементов усиления тканными холстами на приопорных участках

Изобретение относится к сфере строительства и может быть использовано при возведении и реконструкции сооружений жилого и производственного назначения. В способе предотвращения разрушения изгибаемых железобетонных балок пролетного строения мостов от отслоения элементов усиления тканными...
Тип: Изобретение
Номер охранного документа: 0002709135
Дата охранного документа: 16.12.2019
18.12.2019
№219.017.ee48

Способ удаления из природных вод ионов марганца и железа при подготовке питьевой воды

Изобретение может быть использовано в очистке воды для удаления ионов марганца и железа из природных вод с исходным содержанием марганца, не превышающим 20 ПДК. Процесс очистки воды состоит из двух этапов. На первом этапе осуществляют ламинарное движение воды снизу вверх со скоростью не более 9...
Тип: Изобретение
Номер охранного документа: 0002709090
Дата охранного документа: 13.12.2019
23.02.2020
№220.018.056e

Способ возведения ледяного причала в условиях арктики

Изобретение относится к строительству ледяных причальных сооружений на побережье арктических морей. Способ предусматривает на начальной стадии формирования ледяного покрова выполнение работ по намораживанию несущего массива причала из льда с добавкой древесного или растительного волокна, что...
Тип: Изобретение
Номер охранного документа: 0002715034
Дата охранного документа: 21.02.2020
09.03.2020
№220.018.0aaa

Способ определения деформаций, напряжений, усилий и действующих нагрузок в элементах эксплуатируемых металлических конструкций

Изобретение относится к неразрушающему контролю деформаций, напряжений, наибольших усилий и действующих нагрузок в элементах эксплуатируемых металлических конструкций. Способ заключается в следующем: теоретически или экспериментально выявляют место (сечение) с наибольшими деформациями в...
Тип: Изобретение
Номер охранного документа: 0002716173
Дата охранного документа: 06.03.2020
24.04.2020
№220.018.1847

Способ повышения несущей способности армокаменной кладки

Изобретение относится к строительным конструкциям и может быть использовано в кирпичной кладке при возведении колонн, простенков и стен. Суть изобретения состоит в том, что упрочнение и, следовательно, повышение несущей способности кладки производится за счет того, что в массе кладочного...
Тип: Изобретение
Номер охранного документа: 0002719678
Дата охранного документа: 21.04.2020
24.06.2020
№220.018.29a5

Поршневой двигатель и способ применения топлива в поршневом двигателе

Группа изобретений относится к транспортному машиностроению и может быть использована в автомобилях, тракторах и других транспортных средствах и в транспортно-технологических машинах, эксплуатирующихся при переменных нагрузках в старт-стопном режиме, при низких отрицательных температурах....
Тип: Изобретение
Номер охранного документа: 0002724071
Дата охранного документа: 19.06.2020
Showing 11-16 of 16 items.
27.04.2016
№216.015.3802

Способ повышения энергетической эффективности механической передачи за счет оптимизации её нагрузочного режима

Изобретение относится к области испытаний и может быть использовано для повышения энергетической эффективности механической передачи за счет оптимизации ее нагрузочного режима. КПД механической передачи η подчиняется гиперболической зависимости в функции от момента М на приводном валу. По...
Тип: Изобретение
Номер охранного документа: 0002582494
Дата охранного документа: 27.04.2016
13.01.2017
№217.015.8889

Способ определения коэффициента теплопроводности жидкой тепловой изоляции в натурных условиях

Изобретение относится к стационарным способам определения коэффициента теплопроводности жидких теплоизоляционных материалов. Разработанный способ может применяться в строительстве и промышленной теплоэнергетике для исследования в натурных условиях теплопроводных качеств сверхтонких жидких...
Тип: Изобретение
Номер охранного документа: 0002602595
Дата охранного документа: 20.11.2016
20.01.2018
№218.016.0fe5

Устройство для обезжелезивания подземных вод с утилизацией железа

Изобретение относится к области очистки подземных вод с повышенным содержанием железа и может быть применено в процессах водоподготовки для питьевых и технических целей, а также для утилизации удаляемого железа с целью его промышленного использования. Устройство для обезжелезивания подземных...
Тип: Изобретение
Номер охранного документа: 0002633534
Дата охранного документа: 13.10.2017
04.04.2018
№218.016.36e9

Способ определения коэффициента теплопроводности жидкой тепловой изоляции при нестационарном тепловом режиме

Изобретение относится к нестационарным способам определения коэффициента теплопроводности жидких теплоизоляционных материалов. Разработанный способ может применяться в строительстве и теплоэнергетике для исследования теплопроводных качеств сверхтонких жидких теплоизоляционных покрытий. Сущность...
Тип: Изобретение
Номер охранного документа: 0002646437
Дата охранного документа: 05.03.2018
29.12.2018
№218.016.aca8

Напиток медовый безалкогольный газированный "иван-чай" и способ его получения

Изобретение относится к пищевой промышленности и может быть использовано в производстве газированных медовых напитков. Напиток безалкогольный газированный содержит мед, лимонную кислоту, водный экстракт травы иван-чая (кипрея), сорбат калия и воду при следующем соотношении компонентов на 100...
Тип: Изобретение
Номер охранного документа: 0002676313
Дата охранного документа: 27.12.2018
12.12.2019
№219.017.ec8c

Способ ксантогенирования торфа

Изобретение относится к химической переработке торфа и может быть использовано для получения поверхностно-активных веществ, ингибиторов нитрификации-денитрификации почв и серосодержащих торфогуминовых удобрений. Обрабатывают исходный воздушно-сухой торф гидроксидом натрия и сероуглеродом в...
Тип: Изобретение
Номер охранного документа: 0002708576
Дата охранного документа: 09.12.2019
+ добавить свой РИД