×
25.08.2017
217.015.9b6f

Результат интеллектуальной деятельности: Литьевой самозатухающий композиционный термопластичный материал

Вид РИД

Изобретение

Аннотация: Изобретение относится к области термопластичных композиционных материалов, а именно к разработке размеростабильных термопластичных полимерных композиционных материалов (ПКМ) и технологий их переработки в детали и элементы системы кондиционирования воздуха (СКВ) для использования в авиационной промышленности. Композиционный материал включает термопластичный полимер, наполнитель и модификатор, где в качестве термопластичного полимера содержит полисульфон, являющийся продуктом поликонденсации щелочной соли бисфенола с 4,4'-дихлордифенилсульфоном, в качестве модификатора содержит фенолфталеин, а в качестве наполнителя содержит коаксиальные многослойные углеродные нанотрубки. Технический результат заключается в разработке литьевого композиционного термопластичного материала, позволяющего снизить вес элементов и деталей СКВ по сравнению с элементами из алюминиевых сплавов и обеспечивающего технологичность процесса изготовления деталей, а также их рабочую температуру. 1 з.п. ф-лы, 2 табл.

Изобретение относится к области термопластичных композиционных материалов, а именно к разработке размеростабильных термопластичных ПКМ и технологий их переработки в детали и элементы системы кондиционирования воздуха (СКВ) для использования в авиационной промышленности. Такие материалы должны обладать низкой плотностью (ρ≤1500 кг/м3), повышенными антистатическими свойствами, иметь прочность при растяжении σр≥75 МПа, температуру эксплуатации до 180°С, отвечать требованиям АП-25 по горючести; перерабатываться в изделия литьем под давлением, детали из них должны сохранять при эксплуатации свои размеры.

Известен аналог - полисульфон марки Udel Ρ-1700 фирмы «Solvay Advanced Polymers»: конструкционный аморфный материал, обладающий повышенной термостойкостью, хорошими электрическими и механическими свойствами (прочность при растяжении равна σр=72 МПа, модуль упругости при растяжении составляет 2400 МПа), способный работать длительно при температурах до 160°С, с температурой стеклования, равной 192°С, стойкий к действию спиртов, масел, смазок, алифатических углеводородов, растворов солей, минеральных кислот и щелочей, растворяется в амидных растворителях и хлорированных углеводородах. Полисульфон Udel Ρ-1700 применяется для производства электротехнических изделий, изделий медицинского назначения, комплектующих в машино- и автомобилестроении и др. Недостатками указанного полисульфона является его неспособность задерживать УФ-излучение, недостаточный уровень прочностных свойств и максимальной рабочей температуры. Кроме того, материал является диэлектриком, что обуславливает скопление на поверхности изготовленных из него деталей статического электричества (ρv=2,9×1016 Ом⋅см).

Известен аналог отечественного производства - полисульфон ПСФ-150, имеющий температуру эксплуатации 150°С и стеклования 190°С. Полисульфон ПСФ-150 полностью отвечает требованиям АП-25 (FAR-25) по горючести и дымообразованию, обладает высокой прочностью (56 МПа), жесткостью (2500 МПа), стойкостью к удару, различным агрессивным средам, имеет хорошие электрические свойства, технологичен при переработке. ПСФ-150 является единственным конструкционным материалом с повышенной теплостойкостью, который выпускается в отечественной промышленности в настоящее время. Однако также являясь диэлектриком, по сравнению с полисульфоном Udel Ρ – 1700, он имеет более низкие значения температуры эксплуатации (150°С) и прочности при растяжении (56 МПа).

Наиболее близким аналогом (патент US 8158245, МПК В32В 27/04, опубл. 17.04.2012), взятым за прототип, является термопластичный композиционный материал следующего химического состава, масс. %:

полиэфирэфиркетон РЕЕК 25,0-60,0
углеродные нанотрубки 3,0-28,0
углеродное волокно AS - 4 35,0-80,0
канальная сажа 25,9 5,9-28,7

Недостатком указанной композиции являются высокие температуры переработки (360-410°С), что требует дорогостоящего специального технологического оборудования.

Технической задачей и техническим результатом заявленного изобретения является разработка литьевого композиционного термопластичного материала, позволяющего снизить вес элементов и деталей СКВ на 20-30% по сравнению с элементами из алюминиевых сплавов и обеспечивающего технологичность процесса изготовления деталей, а также их рабочую температуру до 180°С.

Для решения поставленной задачи и достижения технического результата предлагается термопластичный композиционный материал, включающий термопластичный полимер, наполнитель и модификатор Материал в качестве термопластичного полимера содержит полисульфон, являющийся продуктом поликонденсации щелочной соли бисфенола с 4,4'-дихлордифенилсульфоном, в качестве модификатора содержит фенолфталеин, а в качестве наполнителя содержит коаксиальные многослойные углеродные нанотрубки при следующем соотношении компонентов, масс. %:

полисульфон 25-67
фенолфталеин 30-70
коаксиальные многослойные углеродные нанотрубки 3-30

Коаксиальные многослойные углеродные нанотрубки могут иметь наружный диаметр 8-15 нм, внутренний диаметр 4-8 нм и длину не более 2 мкм, например, типа «Таунит-М».

Полисульфон (марок «ПСФ-1», «ПСК-1»), являющийся продуктом поликонденсации щелочной соли бисфенола с 4,4'-дихлордифенилсульфоном, макромолекула которого содержит группы =С(СН3)2, получают по технологии нуклеофильной поликонденсации в растворителе, что обеспечивает изготовление сополимеров заданной молекулярной массы с высокой термостабильностью.

Применение в качестве модификатора фенолфталеина (объемными боковыми циклическими группами в повторяющемся звене макромолекулы полисульфона), позволяет повысить температуру стеклования до 10% и прочность при растяжении до 35%. Введение модификатора в полисульфон осуществляется путем химической модификации - в процессе синтеза при температурах 160-320°С.

Применение в качестве наполнителя коаксиальных многослойных углеродных нанотрубок типа «Таунит-М» позволяет повысить у химически модифицированного полисульфона - полиарилсульфона прочность при растяжении до 8%, стабильность размеров (снизить усадку в 2 раза), обеспечить антистатические свойства (ρv=1,0×104 Ом⋅см вместо 6,7×1015 Ом⋅см). Углеродные нанотрубки имеют наружный диаметр 8-15 нм и длину - не более 2 мкм. Число слоев одной трубки - 6÷10. Удельная геометрическая

поверхность составляет 300÷320 м2/г. Указанные параметры углеродных нанотрубок обеспечивают повышение электропроводности (антистатических свойств) материала и сохранение его технологичности при переработке.

При эксплуатации изделий из полимерных материалов существует опасность возникновения на их поверхности статического электричества вследствие низкой электропроводности. Статическое электричество значительно повышает риск возникновения пожаров, что, в свою очередь, может привести к выведению отдельных узлов или всей конструкции из строя. Одним из методов преобразования изолирующего полимера в проводящий является его наполнение проводящими частицами, такими как канальная сажа, технический углерод, углеродное волокно, металлическое волокно (из нержавеющей стали), а также углеродные нанотрубки. Для обеспечения необходимого уровня электрических свойств полимерных композиционных материалов важны контактные явления на границе наполнитель-полимер, определяющие в значительной мере электропроводность и другие электрофизические свойства материала. Образование проводящих путей в двухфазной системе зависит от способности частиц электропроводящей фазы образовывать хороший электрический контакт при их соприкосновении или сближении. Учитывая огромное число контактов между частицами, любые изменения в свойствах контакта оказывают сильное влияние на электропроводность материала.

Введение углеродных нанотрубок осуществляют способом физической модификации, которая позволяет получить полимеры матричной структуры, основные свойства которых определяет матрица, в данном случае - полиарилсульфон (химически модифицированный полисульфон). Модификацию осуществляли путем совмещения компонентов в двухшнековом экструдере при температуре 290-325°С и объемной скорости переработки 400-600 см3.

Переработка разработанного литьевого самозатухающего композиционного термопластичного материала осуществляется способом литья под давлением на термопластавтомате со шнековой пластикацией (фирмы ARBURG ALLROUNDER). Температура литья 300-350°С, давление - 145-165 МПа, скорость впрыска - от 45 до 70 см3/с.

По сравнению с российским аналогом - полисульфоном ПСФ-150 (ОАО «Институт пластмасс») и зарубежным - полисульфоном марки Udel Ρ -1700 фирмы «Solvay Advanced Polymers» предлагаемый размеростабильный литьевой самозатухающий композиционный термопластичный материал на основе полиарилсульфона имеет следующие преимущества (соответственно):

- более высокую рабочую температуру (на 30 и 20°С); (20,0 и 12,5%);

- повышенную температуру стеклования (на 22 и 20°С); (11,5 и 11,0%):

- более высокое значение прочности при растяжении (на 32 и 26 МПа); (57,1 и 22,2%);

- антистатические свойства: удельное объемное электрическое сопротивление ρv=2,2×105 Ом⋅см против >1,4×1016 и 2,9×1016;

- технологичность по сравнению с полисульфоном марки Udel Ρ - 1700, так как имеет молекулярную массу Mw на 33-45% ниже.

Кроме того, предлагаемый материал сохраняет значение модуля упругости при растяжении при температуре испытания 180°С на уровне 70%, что является следствием сохранения жесткости и стабильности размеров литьевых деталей и изделий в процессе эксплуатации, а также имеет значение температурного коэффициента линейного расширения (ТКЛР) в диапазоне температур от -60 до 180°С - 47-65×10-6 К-1 и обладает колебанием усадки 0,05%, то есть материал является размеростабильным.

Заявленный литьевой самозатухающий композиционный термопластичный материал позволяет обеспечить импортозамещение, возможность использования не только в изделиях гражданской и военной техники, но и в народном хозяйстве; улучшить экологическую обстановку в цехах при изготовлении и переработке материала за счет исключения растворителя; осуществить возможности многократной переработки без ухудшения свойств изделия и значительно сократить количество отходов за счет вторичной переработки.

Примеры осуществления

Пример 1

Приготовление

Смесь щелочной соли бисфенола - А с 4,4'- дихлордифенилсульфоном, 30 масс. %, и фенолфталеином, 70 масс. %, загружают в реактор, где проводят синтез методом ароматической нуклеофильной поликонденсации в апротонных растворителях. В качестве растворителей, как правило, используют диметилсульфоксид, диметилацетамид, N-метилпирролидон, диметилсульфон, дифенилсульфон. Для получения щелочных солей бисфенолов применяют гидроокись натрия или углекислый калий. Поликонденсацию ведут при температуре 160-3200°С, в зависимости от применяемого растворителя и реакционной способности мономеров. После перерастворения в хлорбензоле и фильтрации от соли полученный продукт концентрируют на роторно-пленочном испарителе.

Для изготовления литьевого самозатухающего композиционного термопластичного материала полученный в результате реакции поликонденсации в виде порошка полиарилсульфон насыпают в металлические противни ровным слоем, толщиной не более 30 мм и сушат в вакуумном сушильном шкафу в течение 3 ч при температуре (125±5)°С (остаточное давление 0,3 кгс/см2). Высушенный материал выгружают из термошкафа и пересыпают в герметичную тару.

Далее полиарилсульфон, 100 масс. %, и многослойные углеродные нанотрубки «Таунит-М», 3,1 масс. %, загружают при комнатной температуре в смеситель типа «пьяная бочка» и перемешивают. Полученную смесь (композицию) выгружают из смесителя и помещают в полимерную емкость, закрыв крышкой.

Затем подготовленную смесь (композицию) загружают в бункер экструдера, нагретый до 300-325°С, при скорости вращения шнека: 20-40 об/мин. Полученный в результате нагрева расплав полиарилсульфона перемешивается с многослойными углеродными нанотрубками в зонах экструдера с помощью двух вращающихся шнеков.

Выходящие из сопла экструдера стренги изготовленного материала пропускаются через направляющие ролики в ванне охлаждения и подаются в приемно-гранулирующее устройство с установленной скоростью нарезки гранул, обеспечивающую необходимый размер получаемых гранул - от 2 до 8 мм.

Полученные гранулы материала собираются в приемную емкость.

Технологию изготовления литьевых композиционных термопластичных материалов по примерам 2-12 (табл. 1) осуществляли аналогично примеру 1.

По сравнению с прототипом - углеволокнитом на основе полиэфирэфиркетона РЕЕК и углеродного волокна AS – 4, разработанный литьевой композиционный термопластичный материал обладает большей технологичностью:

- перерабатывается высокопроизводительным способом литья под давлением (прототип - прессованием, вакуум-формовкой, штамповкой и т.д.);

- имеет температуры переработки 300-350°С, что на 60°С ниже температур переработки прототипа (360-410°С), что позволяет использовать серийное оборудование.

Источник поступления информации: Роспатент

Showing 251-260 of 367 items.
10.01.2019
№219.016.ae13

Многослойный низкоэмиссионный материал

Изобретение относится к производству многослойного низкоэмиссионного текстильного материала, обеспечивающего сохранение камуфлирующих свойств наружного слоя и отражающего электромагнитное излучение в тепловизионном инфракрасном диапазоне, обладающего высоким уровнем воздухопроницаемости и...
Тип: Изобретение
Номер охранного документа: 0002676574
Дата охранного документа: 09.01.2019
10.01.2019
№219.016.ae2f

Огнестойкий слоистый металлостеклопластик и изделие, выполненное из него

Изобретение относится к области слоистых алюмополимерных композиционных материалов. Предложен слоистый металлостеклопластик, содержащий по меньшей мере один слой стеклопластика на базе термореактивного клеевого связующего с армирующим наполнителем из стекловолокон и чередующиеся с ним листы...
Тип: Изобретение
Номер охранного документа: 0002676637
Дата охранного документа: 09.01.2019
10.01.2019
№219.016.ae46

Препрег на основе клеевого связующего пониженной горючести и стеклопластик, углепластик на его основе

Изобретение относится к области получения высокопрочных композиционных материалов пониженной горючести на основе армирующих наполнителей и полимерного связующего, которые могут быть использованы для изготовления деталей и агрегатов из полимерных композиционных материалов (ПКМ) монолитной и...
Тип: Изобретение
Номер охранного документа: 0002676634
Дата охранного документа: 09.01.2019
16.01.2019
№219.016.b05b

Композиция для получения электропроводящего гидрофобного покрытия на основе лака с углеродными нанотрубками и способ ее изготовления

Изобретение относится к электропроводящему гидрофобному покрытию на основе лака с углеродными нанотрубками (УНТ) и способу его изготовления. Покрытие предназначено главным образом для полимерных изделий. Электропроводящее гидрофобное покрытие включает, мас.ч.: пленкообразующий сополимер -...
Тип: Изобретение
Номер охранного документа: 0002677156
Дата охранного документа: 15.01.2019
14.02.2019
№219.016.ba45

Способ получения композиционного материала на основе ледяной матрицы

Изобретение относится к области получения композиционных материалов. Способ получения композиционного материала на основе льда включает послойную наморозку слоев льда из воды в формах. Послойную наморозку слоев льда осуществляют при температуре от минус 10 до минус 17°С, толщина слоя льда при...
Тип: Изобретение
Номер охранного документа: 0002679726
Дата охранного документа: 12.02.2019
15.02.2019
№219.016.bad0

Способ сварки трением с перемешиванием стыковых соединений высокопрочных алюминий-литиевых сплавов системы al-cu-li

Изобретение может быть использовано для получения стыковых соединений алюминиевых сплавов, имеющих низкую свариваемость - высокопрочных алюминий-литиевых сплавов системы Al-Cu-Li. Вращающийся инструмент, состоящий из наконечника в виде тела вращения с заплечиком, погружают в стык на 0,90-0,95...
Тип: Изобретение
Номер охранного документа: 0002679787
Дата охранного документа: 12.02.2019
21.02.2019
№219.016.c52d

Способ получения мелкодисперсных металлических порошков из сплавов на основе тугоплавких металлов

Изобретение относится к получению мелкодисперсных металлических порошков из сплавов на основе тугоплавких металлов. Заготовку в виде стержня, состоящего из конусной и цилиндрической частей, устанавливают в камеру загрузки. Камеру загрузки, плавильную камеру, камеры распыления и системы сбора...
Тип: Изобретение
Номер охранного документа: 0002680322
Дата охранного документа: 19.02.2019
03.03.2019
№219.016.d295

Композиция для изготовления герметизирующего материала и ленточный герметик на ее основе для разъемных и неразъемных узлов и агрегатов

Изобретение относится к герметизирующим композициям на основе кремнийорганического эластомера, предназначенного для работы при температуре от - 60°С до +200°С, и может быть использовано в строительной индустрии, машиностроительном, авиационном, судостроительном, нефтедобывающем,...
Тип: Изобретение
Номер охранного документа: 0002681004
Дата охранного документа: 01.03.2019
08.03.2019
№219.016.d52d

Способ получения комбинированной нити на основе коротких волокон и устройство для его осуществления

Изобретение относится к способам получения комбинированных нитей, содержащих короткие волокна, в частности, к высокотемпературным нитям для получения огнеупорных материалов, а также к устройствам для их получения. Способ получения комбинированной нити на основе коротких волокон, включает подачу...
Тип: Изобретение
Номер охранного документа: 0002419692
Дата охранного документа: 27.05.2011
20.03.2019
№219.016.e305

Способ производства жаропрочных сплавов на основе никеля (варианты)

Изобретение относится к области металлургии, а именно к производству жаропрочных сплавов на основе никеля, и может быть использовано при изготовлении лопаток, дисков, створок и других деталей газотурбинных двигателей. Способ производства жаропрочных сплавов на основе никеля включает...
Тип: Изобретение
Номер охранного документа: 0002682266
Дата охранного документа: 18.03.2019
Showing 251-260 of 335 items.
10.01.2019
№219.016.ae13

Многослойный низкоэмиссионный материал

Изобретение относится к производству многослойного низкоэмиссионного текстильного материала, обеспечивающего сохранение камуфлирующих свойств наружного слоя и отражающего электромагнитное излучение в тепловизионном инфракрасном диапазоне, обладающего высоким уровнем воздухопроницаемости и...
Тип: Изобретение
Номер охранного документа: 0002676574
Дата охранного документа: 09.01.2019
10.01.2019
№219.016.ae2f

Огнестойкий слоистый металлостеклопластик и изделие, выполненное из него

Изобретение относится к области слоистых алюмополимерных композиционных материалов. Предложен слоистый металлостеклопластик, содержащий по меньшей мере один слой стеклопластика на базе термореактивного клеевого связующего с армирующим наполнителем из стекловолокон и чередующиеся с ним листы...
Тип: Изобретение
Номер охранного документа: 0002676637
Дата охранного документа: 09.01.2019
10.01.2019
№219.016.ae46

Препрег на основе клеевого связующего пониженной горючести и стеклопластик, углепластик на его основе

Изобретение относится к области получения высокопрочных композиционных материалов пониженной горючести на основе армирующих наполнителей и полимерного связующего, которые могут быть использованы для изготовления деталей и агрегатов из полимерных композиционных материалов (ПКМ) монолитной и...
Тип: Изобретение
Номер охранного документа: 0002676634
Дата охранного документа: 09.01.2019
16.01.2019
№219.016.b05b

Композиция для получения электропроводящего гидрофобного покрытия на основе лака с углеродными нанотрубками и способ ее изготовления

Изобретение относится к электропроводящему гидрофобному покрытию на основе лака с углеродными нанотрубками (УНТ) и способу его изготовления. Покрытие предназначено главным образом для полимерных изделий. Электропроводящее гидрофобное покрытие включает, мас.ч.: пленкообразующий сополимер -...
Тип: Изобретение
Номер охранного документа: 0002677156
Дата охранного документа: 15.01.2019
14.02.2019
№219.016.ba45

Способ получения композиционного материала на основе ледяной матрицы

Изобретение относится к области получения композиционных материалов. Способ получения композиционного материала на основе льда включает послойную наморозку слоев льда из воды в формах. Послойную наморозку слоев льда осуществляют при температуре от минус 10 до минус 17°С, толщина слоя льда при...
Тип: Изобретение
Номер охранного документа: 0002679726
Дата охранного документа: 12.02.2019
15.02.2019
№219.016.bad0

Способ сварки трением с перемешиванием стыковых соединений высокопрочных алюминий-литиевых сплавов системы al-cu-li

Изобретение может быть использовано для получения стыковых соединений алюминиевых сплавов, имеющих низкую свариваемость - высокопрочных алюминий-литиевых сплавов системы Al-Cu-Li. Вращающийся инструмент, состоящий из наконечника в виде тела вращения с заплечиком, погружают в стык на 0,90-0,95...
Тип: Изобретение
Номер охранного документа: 0002679787
Дата охранного документа: 12.02.2019
21.02.2019
№219.016.c52d

Способ получения мелкодисперсных металлических порошков из сплавов на основе тугоплавких металлов

Изобретение относится к получению мелкодисперсных металлических порошков из сплавов на основе тугоплавких металлов. Заготовку в виде стержня, состоящего из конусной и цилиндрической частей, устанавливают в камеру загрузки. Камеру загрузки, плавильную камеру, камеры распыления и системы сбора...
Тип: Изобретение
Номер охранного документа: 0002680322
Дата охранного документа: 19.02.2019
03.03.2019
№219.016.d295

Композиция для изготовления герметизирующего материала и ленточный герметик на ее основе для разъемных и неразъемных узлов и агрегатов

Изобретение относится к герметизирующим композициям на основе кремнийорганического эластомера, предназначенного для работы при температуре от - 60°С до +200°С, и может быть использовано в строительной индустрии, машиностроительном, авиационном, судостроительном, нефтедобывающем,...
Тип: Изобретение
Номер охранного документа: 0002681004
Дата охранного документа: 01.03.2019
20.03.2019
№219.016.e305

Способ производства жаропрочных сплавов на основе никеля (варианты)

Изобретение относится к области металлургии, а именно к производству жаропрочных сплавов на основе никеля, и может быть использовано при изготовлении лопаток, дисков, створок и других деталей газотурбинных двигателей. Способ производства жаропрочных сплавов на основе никеля включает...
Тип: Изобретение
Номер охранного документа: 0002682266
Дата охранного документа: 18.03.2019
20.03.2019
№219.016.e398

Припой на основе никеля

Изобретение относится к области машиностроения, а именно к припоям на основе никеля, которые могут найти применение при изготовлении паяных деталей горячего тракта турбин ГТД из монокристаллических никелевых сплавов. Припой на основе никеля для соединения никелевых жаропрочных сплавов содержит...
Тип: Изобретение
Номер охранного документа: 0002283742
Дата охранного документа: 20.09.2006
+ добавить свой РИД