×
25.08.2017
217.015.9b5b

Результат интеллектуальной деятельности: ТРИАНГУЛЯЦИОННЫЙ СПОСОБ ИЗМЕРЕНИЯ ОТКЛОНЕНИЯ ОБЪЕКТА И ОПРЕДЕЛЕНИЯ ЕГО ОРИЕНТАЦИИ В ПРОСТРАНСТВЕ

Вид РИД

Изобретение

Аннотация: Триангуляционный способ измерения отклонения объекта и определения его ориентации в пространстве содержит этап, на котором источник излучения формирует на поверхности исследуемого объекта световое пятно в виде двух пересекающихся световых линий за счет освещения исследуемого объекта засветкой в виде двух ортогональных световых ножей. Величину отклонения исследуемого объекта определяют по отклонению центра пересечения световых линий на принимаемом изображении, а ориентацию исследуемого объекта в пространстве определяют на основании значений двух углов наклона световых линий на принимаемом изображении. Технический результат заключается в повышении точности измерений отклонений объекта. 1 ил.

Изобретение относится к измерительной технике и может быть использовано в машиностроении, приборостроении, оптической промышленности при разработке систем неразрушающего контроля отклонений плоских объектов.

Известен способ триангуляционного измерения объектов (патент РФ №45520 на полезную модель «Лазерный триангуляционный измеритель», 2004 г., G01B 11/00), при котором источник излучения формирует на поверхности исследуемого объекта световое пятно, отраженное световое излучение фокусируется на объективе приемника оптического излучения, при этом приемная система также содержит, по крайней мере, две апертурные диафрагмы, сужающие угол обзора объектива приемника, расположенные между исследуемым объектом и объективом приемника.

Известен триангуляционный способ измерения (патент США №5815272 «Filter for laser gaging system», 1996 г., G01S 17/46; G01S 17/89; G02B 5/20), при котором источник излучения формирует на поверхности исследуемого объекта световое пятно, отраженное световое излучение фокусируется на объективе приемника оптического излучения, при этом приемная система содержит две линзы, между которыми размещена щелевая диафрагма. Диафрагма располагается в фокусе первой, ближайшей к измеряемому объекту линзы и размер ее щели подбирается в соответствии с размером зондирующего пятна на поверхности объекта. Отраженное от поверхности объекта световое излучение фокусируется первой линзой в плоскость щели и сформированное таким образом промежуточное изображение, затем фокусируется в плоскость объектива, который, в свою очередь, фокусирует световое пятно на приемнике оптического излучения.

Наиболее близким по технической сущности заявляемому способу является электронно-оптический способ измерения (патент США №4248532 «Electro-optical distance-measuring system», 1978 г., G01C 3/10; G01S 17/46; (IPC 1-7): G01C 11/26; G01C 3/00; G01C 5/00), при котором источник излучения формирует на поверхности исследуемого объекта световое пятно, отраженное световое излучение фокусируется на объективе приемника оптического излучения.

Во всех вышеперечисленных способах величину отклонения исследуемого объекта определяют по отклонению центра изображения с учетом средневзвешенного значения координаты светового пятна.

Недостатком всех перечисленных способов является низкая точность определения внешних смещений центра полученного изображения вследствие того, что помимо его смещения, связанного с отклонением исследуемой точки объекта, происходит еще дополнительное случайное смещение, связанное с изменением формы самого светового пятна (например, вследствие перепада рельефа или попадания в область пятна мельчайших песчинок, капель масла и пр.), а также из-за наличия неравномерного коэффициента преломления воздуха в оптическом пути источника и приемника излучения, который может быть вызван температурным градиентом воздуха. Кроме того, перечисленные способы измерений не позволяют определить ориентацию поверхности исследуемого объекта в пространстве.

Задачей заявляемого способа является повышение точности измерений отклонений объекта и расширение функциональности за счет возможности измерять не только отклонение измеряемого объекта, но и определять его ориентацию в пространстве.

Поставленная задача решается тем, что в триангуляционном способе измерения отклонения объекта и определения его ориентации в пространстве, при котором источник излучения формирует на поверхности исследуемого объекта световое пятно, отраженное световое излучение фокусируется на объективе приемника оптического излучения, величину отклонения объекта определяют по отклонению центра изображения пятна, согласно изобретению, световое пятно представляет собой две пересекающиеся световые линии за счет освещения исследуемого объекта засветкой, в виде двух ортогональных световых ножей, при этом величину отклонения объекта определяют по координатам точки пересечения световых линий на принимаемом изображении, а ориентацию исследуемого объекта в пространстве определяют из значения углов наклона световых линий на принимаемом изображении.

За счет получения изображения в виде двух пересекающихся световых линий повышается точность измерения отклонения объекта, а также появляется возможность определять ориентацию объекта в пространстве.

На фигуре 1 представлен общий вид устройства для осуществления триангуляционного способа измерения отклонения объекта и определения его ориентации в пространстве. Использованы следующие обозначения: 1 - исследуемый объект, 2 - источник оптического излучения, 3 - приемник оптического излучения, 4 - засветка, сформированная на поверхности объекта источником оптического излучения, 5 - изображение исследуемого объекта, полученное приемником оптического излучения.

Измерение величины отклонения объекта осуществляют следующим образом.

Исследуемый объект 1 освещают источником оптического излучения 2 и наблюдают приемником оптического излучения 3 с направления, отличного от направления освещения. Источник оптического излучения 1 формирует излучение в виде двух ортогональных световых ножей, которые образуют на поверхности исследуемого объекта засветку в виде пересечения двух линий 4. Приемник оптического излучения 3 размещают так, чтобы он мог принимать изображение объекта 1 с засветкой 4. В результате на матрице приемника оптического излучения 3 формируется изображение засветки исследуемого объекта 5. Горизонтальная координата точки пересечения световых лучей 4 на изображении 5 определяет расстояние от источника излучения 2 до исследуемого объекта 1.

В приближении отсутствия параллакса у приемника оптического излучения 3, зависимость расстояния между источником излучения 2 и исследуемым объектом 1 от горизонтальной координаты точки пересечения световых лучей 4 на изображении 5 будет линейная. Если оптическая система приемника оптического излучения будет иметь параллакс, то для точного определения расстояния до исследуемого объекта необходимо провести калибровку измерителя от расстояния до исследуемого объекта.

Калибровку расстояния до исследуемого объекта выполняют следующим образом. Берут плоскую поверхность, которую определяют калибровочной. Калибровочную поверхность размещают на различных расстояниях (как минимум на трех различных расстояниях) от источника оптического излучения, измеряют расстояние и фиксируют координаты точки пересечения световых ножей на изображении калибровочной поверхности 5 приемника оптического излучения 3. На основе полученных данных строят регрессионную функцию в виде многочлена для определения расстояния от источника оптического излучения 2 до исследуемого объекта 1 в зависимости от координаты точки пересечения световых ножей на изображении 5 исследуемого объекта 1.

Предлагаемый способ позволяет определить ориентацию поверхности исследуемого объекта 1 в пространстве, а именно определить угол наклона поверхности относительно оси X, совпадающей с нормалью к плоскости триангуляции (плоскость, образованная оптическими осями источника и приемника оптического излучения) и осью Y, расположенной в плоскости триангуляции и перпендикулярной оптической оси источника излучения 1. Для определения положения поверхности исследуемого объекта измеряют угол наклона линий относительно горизонтали на изображении 5, сформированных световыми ножами источника оптического излучения 2. Пусть угол наклона одной линии равен A, угол наклона второй линии B. Тогда угол наклона исследуемой поверхности относительно оси X монотонно зависит от разности (A-B), угол наклона исследуемой поверхности относительно оси Y монотонно зависит от суммы (A+B).

Для определения функции зависимости углов наклона относительно осей X и Y от A и B необходимо провести калибровку системы по углам.

Калибровку по углам выполняют следующим образом.

Берут плоскую поверхность, которую определяют калибровочной. Калибровочную поверхность размещают на фиксированном расстоянии от источника оптического излучения, но под разными углами относительно оси X и оси Y, измеряют угол наклона калибровочной поверхности, фиксируют углы A и B наклона световых линий на изображении 5. На основе полученных данных строят регрессионную функцию в виде многочлена для определения угла наклона относительно осей X и Y от значения углов A и B.

Предлагаемый триангуляционный способ измерения отклонения объекта и определения его ориентации в пространстве обладает существенно более низкой погрешностью по сравнению с триангуляционными способами измерения на основе точечного источника излучения. Если предположить, что эффективный диаметр светового пятна, детектируемого приемной частью измерителя с точечным источником излучения, равен D (размер пятна, по которому оценивают координаты центра для определения измеряемого расстояния), а эффективный размер линии, детектируемой приемной частью в предлагаемом изобретении, равен D×N, где D - поперечный размер линии, а N - продольный размер, причем N>>D. Учитывая, что погрешность измерения обратно пропорциональна квадратному корню площади изображения, по которому определяется точка на приемнике излучения, то в случае с точечным источником:

,

а в случае предлагаемого триангуляционного способа, площадь двух линий будет равна 2*D*N, а погрешность будет пропорциональна:

.

Из полученных оценок видно, что погрешность предлагаемого триангуляционного способа существенно меньше погрешности триангуляционных способов, использующих точечный источник излучения:

.

В результате повышается точность измерения и появляется возможность определить ориентацию исследуемого объекта в пространстве.

Триангуляционный способ измерения отклонения объекта и определения его ориентации в пространстве, при котором на поверхности исследуемого объекта формируют световое пятно в виде двух пересекающихся световых линий, отражённое световое излучение наблюдают с направления, отличного от направления освещения, отклонение объекта в пространстве определяют по отклонению центра светового пятна на принимаемом изображении, отличающийся тем, что выполняют измерение значений двух углов наклона световых линий на принимаемом изображении светового пятна в плоскости изображения и бесконтактно определяют ориентацию исследуемого объекта в пространстве на основе значений двух углов наклона световых линий на изображении.
ТРИАНГУЛЯЦИОННЫЙ СПОСОБ ИЗМЕРЕНИЯ ОТКЛОНЕНИЯ ОБЪЕКТА И ОПРЕДЕЛЕНИЯ ЕГО ОРИЕНТАЦИИ В ПРОСТРАНСТВЕ
ТРИАНГУЛЯЦИОННЫЙ СПОСОБ ИЗМЕРЕНИЯ ОТКЛОНЕНИЯ ОБЪЕКТА И ОПРЕДЕЛЕНИЯ ЕГО ОРИЕНТАЦИИ В ПРОСТРАНСТВЕ
Источник поступления информации: Роспатент

Showing 1-10 of 96 items.
27.07.2013
№216.012.5916

Способ сепарации низкокипящего компонента из смеси паров и устройство для его осуществления

Группа изобретений относится к нефтяной, газовой отраслям промышленности и может быть использована при разделении углеводородных смесей и сжиженных газов. Согласно способу сепарации низкокипящего компонента из смеси паров смесь подают в состоянии пароконденсата и закручивают внутри вертикальной...
Тип: Изобретение
Номер охранного документа: 0002488427
Дата охранного документа: 27.07.2013
10.08.2013
№216.012.5dd6

Конденсационная котельная установка (варианты)

Изобретение относится к энергетике. Конденсационная котельная установка включает паровой котел с основным и байпасным газоходами, водяной экономайзер (ЭВ), конденсационный теплообменник-утилизатор теплоты продуктов сгорания топлива (КТУ), дымосос и дымовую трубу, а также поверхностный...
Тип: Изобретение
Номер охранного документа: 0002489643
Дата охранного документа: 10.08.2013
10.11.2013
№216.012.7f86

Способ бесконтактной оптико-лазерной диагностики нестационарных режимов вихревых течений и устройство для его реализации

Изобретение относится к контрольно-измерительной технике и позволяет исследовать потоки жидкости и газа. Изобретение основано на совместном использовании ЛДА и PIV. Устройство включает импульсный лазер с энергией импульса не менее 120 мДж, частотой срабатывания не менее 16 Гц, две CCD камеры...
Тип: Изобретение
Номер охранного документа: 0002498319
Дата охранного документа: 10.11.2013
20.12.2013
№216.012.8dee

Способ экологически чистой переработки твердых бытовых отходов с производством тепловой энергии и строительных материалов и мусоросжигательный завод для его осуществления

Изобретение относится к области сжигания отходов или низкосортных топлив. Мусоросжигательный завод состоит из бункерного блока, блока сжигания ТБО во вращающейся печи барабанного типа, блока дымоочистки, блока водоподготовки и утилизации тепла, блока утилизации золы, который содержит плавильный...
Тип: Изобретение
Номер охранного документа: 0002502017
Дата охранного документа: 20.12.2013
20.12.2013
№216.012.8def

Комплексная районная тепловая станция для экологически чистой переработки твердых бытовых отходов с производством тепловой энергии и строительных материалов

Изобретение относится к области сжигания отходов или низкосортных топлив. Комплексная районная тепловая станция для экологически чистой переработки твердых бытовых отходов с производством тепловой энергии и строительных материалов содержит 2 цеха: мусоросжигающий цех (МСЦ) и теплоцех, причем...
Тип: Изобретение
Номер охранного документа: 0002502018
Дата охранного документа: 20.12.2013
27.01.2014
№216.012.9d33

Трансформаторный плазматрон низкого давления для ионно-плазменной обработки поверхности материалов

Изобретение относится к плазменной технике, а именно к трансформаторным плазмотронам низкого давления, и может быть использовано в микроэлектронике для обработки полупроводниковых материалов (плазменное травление, оксидирование, очистка поверхности и т.д.), осаждения тонких пленок, в...
Тип: Изобретение
Номер охранного документа: 0002505949
Дата охранного документа: 27.01.2014
10.02.2014
№216.012.9f7d

Оптический способ измерения мгновенного поля толщины прозрачной пленки

Способ может быть использован для бесконтактных, непрерывных измерений толщин прозрачной пленки. Способ включает направленное воздействие лучей света на пленку, их полное внутреннее отражение на границе раздела сред и последующую обработку отраженного света. Источник света помещают над пленкой...
Тип: Изобретение
Номер охранного документа: 0002506537
Дата охранного документа: 10.02.2014
20.02.2014
№216.012.a2fb

Инжектор для криогенной жидкости

Изобретение относится к области криогенной и вакуумной техники и касается устройств дозированной выдачи криогенной жидкости в технологические зоны с высоким и сверхвысоким давлением. Инжектор криогенной жидкости включает узел ввода криогенной жидкости, криорезервуар и узел вывода криогенной...
Тип: Изобретение
Номер охранного документа: 0002507438
Дата охранного документа: 20.02.2014
10.04.2014
№216.012.afd9

Система охлаждения светодиодного модуля

Изобретение относится к радиоэлектронике и может быть использовано при конструировании эффективных систем охлаждения модулей мощных светодиодов. Технический результат - обеспечение высокоэффективного отвода тепла от расположенных на поверхности модуля полупроводниковых светодиодов при...
Тип: Изобретение
Номер охранного документа: 0002510732
Дата охранного документа: 10.04.2014
10.04.2014
№216.012.b21e

Дезинтегратор для помола угля

Изобретение относится к области энергетики и может быть использовано для помола угля в установках глубокой переработки угля в другие виды топлива. Дезинтегратор для помола угля содержит корпус 1, два вращающихся в противоположных направлениях и жестко закрепленных на полых горизонтальных валах...
Тип: Изобретение
Номер охранного документа: 0002511314
Дата охранного документа: 10.04.2014
Showing 1-10 of 64 items.
27.07.2013
№216.012.5916

Способ сепарации низкокипящего компонента из смеси паров и устройство для его осуществления

Группа изобретений относится к нефтяной, газовой отраслям промышленности и может быть использована при разделении углеводородных смесей и сжиженных газов. Согласно способу сепарации низкокипящего компонента из смеси паров смесь подают в состоянии пароконденсата и закручивают внутри вертикальной...
Тип: Изобретение
Номер охранного документа: 0002488427
Дата охранного документа: 27.07.2013
10.08.2013
№216.012.5dd6

Конденсационная котельная установка (варианты)

Изобретение относится к энергетике. Конденсационная котельная установка включает паровой котел с основным и байпасным газоходами, водяной экономайзер (ЭВ), конденсационный теплообменник-утилизатор теплоты продуктов сгорания топлива (КТУ), дымосос и дымовую трубу, а также поверхностный...
Тип: Изобретение
Номер охранного документа: 0002489643
Дата охранного документа: 10.08.2013
10.11.2013
№216.012.7f86

Способ бесконтактной оптико-лазерной диагностики нестационарных режимов вихревых течений и устройство для его реализации

Изобретение относится к контрольно-измерительной технике и позволяет исследовать потоки жидкости и газа. Изобретение основано на совместном использовании ЛДА и PIV. Устройство включает импульсный лазер с энергией импульса не менее 120 мДж, частотой срабатывания не менее 16 Гц, две CCD камеры...
Тип: Изобретение
Номер охранного документа: 0002498319
Дата охранного документа: 10.11.2013
20.12.2013
№216.012.8dee

Способ экологически чистой переработки твердых бытовых отходов с производством тепловой энергии и строительных материалов и мусоросжигательный завод для его осуществления

Изобретение относится к области сжигания отходов или низкосортных топлив. Мусоросжигательный завод состоит из бункерного блока, блока сжигания ТБО во вращающейся печи барабанного типа, блока дымоочистки, блока водоподготовки и утилизации тепла, блока утилизации золы, который содержит плавильный...
Тип: Изобретение
Номер охранного документа: 0002502017
Дата охранного документа: 20.12.2013
20.12.2013
№216.012.8def

Комплексная районная тепловая станция для экологически чистой переработки твердых бытовых отходов с производством тепловой энергии и строительных материалов

Изобретение относится к области сжигания отходов или низкосортных топлив. Комплексная районная тепловая станция для экологически чистой переработки твердых бытовых отходов с производством тепловой энергии и строительных материалов содержит 2 цеха: мусоросжигающий цех (МСЦ) и теплоцех, причем...
Тип: Изобретение
Номер охранного документа: 0002502018
Дата охранного документа: 20.12.2013
27.01.2014
№216.012.9d33

Трансформаторный плазматрон низкого давления для ионно-плазменной обработки поверхности материалов

Изобретение относится к плазменной технике, а именно к трансформаторным плазмотронам низкого давления, и может быть использовано в микроэлектронике для обработки полупроводниковых материалов (плазменное травление, оксидирование, очистка поверхности и т.д.), осаждения тонких пленок, в...
Тип: Изобретение
Номер охранного документа: 0002505949
Дата охранного документа: 27.01.2014
10.02.2014
№216.012.9f7d

Оптический способ измерения мгновенного поля толщины прозрачной пленки

Способ может быть использован для бесконтактных, непрерывных измерений толщин прозрачной пленки. Способ включает направленное воздействие лучей света на пленку, их полное внутреннее отражение на границе раздела сред и последующую обработку отраженного света. Источник света помещают над пленкой...
Тип: Изобретение
Номер охранного документа: 0002506537
Дата охранного документа: 10.02.2014
20.02.2014
№216.012.a2fb

Инжектор для криогенной жидкости

Изобретение относится к области криогенной и вакуумной техники и касается устройств дозированной выдачи криогенной жидкости в технологические зоны с высоким и сверхвысоким давлением. Инжектор криогенной жидкости включает узел ввода криогенной жидкости, криорезервуар и узел вывода криогенной...
Тип: Изобретение
Номер охранного документа: 0002507438
Дата охранного документа: 20.02.2014
10.04.2014
№216.012.afd9

Система охлаждения светодиодного модуля

Изобретение относится к радиоэлектронике и может быть использовано при конструировании эффективных систем охлаждения модулей мощных светодиодов. Технический результат - обеспечение высокоэффективного отвода тепла от расположенных на поверхности модуля полупроводниковых светодиодов при...
Тип: Изобретение
Номер охранного документа: 0002510732
Дата охранного документа: 10.04.2014
10.04.2014
№216.012.b21e

Дезинтегратор для помола угля

Изобретение относится к области энергетики и может быть использовано для помола угля в установках глубокой переработки угля в другие виды топлива. Дезинтегратор для помола угля содержит корпус 1, два вращающихся в противоположных направлениях и жестко закрепленных на полых горизонтальных валах...
Тип: Изобретение
Номер охранного документа: 0002511314
Дата охранного документа: 10.04.2014
+ добавить свой РИД