×
24.08.2017
217.015.94e3

СПОСОБ ПАРАЛЛЕЛЬНОГО ПОЛУЧЕНИЯ ВОДОРОДА И УГЛЕРОДСОДЕРЖАЩИХ ПРОДУКТОВ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение может быть использовано в водородной энергетике и сталелитейной промышленности. В реакционное пространство помещают обогащенный углеродом гранулят с размером частиц от 0,1-100 мм, содержащий по меньшей мере 80 мас. % углерода, вводят углеводороды и подвергают их термической деструкции на углерод и водород. Тепловую энергию, необходимую для деструкции углеводородов, производят вне реакционного пространства, а затем в него вводят нагретый газообразный теплоноситель - водород или азот. В качестве обогащенного углеродом гранулята используют коксовую мелочь, низкокачественный кокс коксохимического производства на основе бурого или каменного угля и/или кокс, полученный из биомассы, и пропускают его через реакционное пространство непрерывно в виде подвижного или кипящего слоя. Часть удаленного из реакционного пространства углеродсодержащего гранулята возвращают в реакционное пространство. Изобретение позволяет получить одновременно углерод и водород высокой степени чистоты в промышленных масштабах. 9 з.п. ф-лы, 1 ил.
Реферат Свернуть Развернуть

Изобретение относится к способу параллельного получения водорода и углеродсодержащих продуктов, в соответствии с которым углеводороды вводят в реакционный объем и в присутствии углеродсодержащего гранулята термически деструктируют до углерода и водорода, причем по меньшей мере часть необходимой для деструкции углеводородов тепловой энергии предоставляют газообразные теплоносители, которые получают вне реакционного объема.

Водород является ключевым компонентом энергетической и химической отраслей. Мировая потребность в водороде составляет 50 миллионов тонн в год. Сферы использования углеродсодержащих продуктов чрезвычайно многочисленны: так, например, одной из крупнейших сфер применения углерода является сталелитейная промышленность, в которой мировое потребление коксующихся углей, используемых в качестве восстановителей, составляет около миллиарда тонн в год.

В 2010 году выброс диоксида углерода в окружающую среду в Германии составил около 960 миллионов тонн (в эквивалентах CO2). При этом совокупный вклад химической и сталелитейной отраслей составил около 10% (в равных долях). Важную в отношении эмиссии диоксида углерода специфическую потребность сталелитейной промышленности в восстановителях уже снизили до минимума благодаря последовательному усовершенствованию производственных процессов. Дальнейшее сокращение потребности сталелитейной промышленности в восстановителях за счет оптимизации технологии возможно лишь в ограниченной степени. То же относится и к химической промышленности, интенсивность эмиссии диоксида углерода в которой в основном зависит от потребности производственных процессов в энергии.

С экологической и экономической точек зрения существует значительная заинтересованность в снижении эмиссии диоксида углерода в обеих указанных промышленных отраслях за счет видоизменения сырьевой базы, использования производственных процессов с минимальным образованием диоксида углерода, оптимизации потребления энергии и переработки образующегося в производственных процессах диоксида углерода в крупнотоннажные базовые химикаты. Пригодным базовым химикатом является, например, водород.

Важным фактором изменения сырьевой базы Германии и многих других западноевропейских промышленных стран является зависимость от импорта. Европейские страны в ближайшие десятилетия будут надежно обеспечены природным газом, в то время как нефтедобыча в скором времени достигнет максимума. В химической промышленности предпринимаются энергичные усилия для решения проблемы зависимости от нефтедобычи.

Немецкие коксохимические предприятия при высоком потреблении специфических коксующихся углей сталелитейной отраслью после закрытия восточных горных выработок на сто процентов зависят от импорта. Следствием растущей собственной потребности азиатского региона в коксующихся углях является наблюдаемый с 2004 года четырехкратный рост их стоимости в Германии. Нынешняя годовая потребность немецкой сталелитейной промышленности в коксующихся углях составляет около десяти миллионов тонн, из которых четыре миллиона тонн в связи с отсутствием собственного коксохимического производства подлежит импорту. Производимый в Германии кокс получают примешиванием к коксующемуся углю экспериментальных носителей углерода.

Согласно уровню техники кокс получают путем сухой перегонки коксующегося угля в коксовальных печах. Для предотвращения сгорания нагретого до красного каления кокса на выходе из коксовальной печи его необходимо быстро охлаждать. При этом используют технологию сухого или мокрого гашения, которая является весьма дорогостоящей и/или сопровождается выделением существенных количеств вредных веществ.

Для использования в доменных процессах необходим кокс, отвечающий высоким требованиям в отношении качества, прочности, реакционной способности и размера частиц. В качестве заменяющего кокс восстановителя с середины 80-х годов в доменные печи во все возрастающих объемах стали вдувать пылевидный уголь, причем потребление подобных вдуваемых углей в Германии в 2011 году составило около 3,8 миллионов тонн.

В настоящее время для промышленного получения молекулярного водорода используют паровой риформинг. Получение 100 кг водорода паровым риформингом сопровождается образованием 1080 кг диоксида углерода. При использовании пиролиза природного газа высвобождается только 694 кг диоксида углерода, причем дополнительно получают 395 кг кокса, вкладу которого в эмиссию CO2 совместно с необходимой тепловой энергией соответствует 207 кг. В случае если эмиссию диоксида углерода для кокса и тепловой энергии принять в качестве постоянной величины, равной 207 кг, на производство водорода приходится только 487 кг. В итоге эмиссия диоксида углерода для 100 кг водорода согласно уровню техники составляет около 11 кг на кг водорода, причем при пиролизе природного газа она могла бы составлять всего 5 кг на кг водорода.

Термическую деструкцию углеводородов выполняют при высоких температурах, находящихся в интервале от 800 до 1600°C, а в случае плазменной технологии, даже выше. Подобные высокие температуры особенно необходимы для превращения насыщенных соединений, в частности, метана, поскольку вследствие термодинамического равновесия и кинетики реакции достаточно высоких превращений (более 50%) необходимо достигать в течение приемлемого короткого времени (от миллисекунд до секунд).

Согласно уровню техники для реализации указанных высоких температур в технологии пиролиза и производстве кокса существует множество различных технических решений, предусматривающих использование в качестве теплоносителей насыпных твердых веществ (смотри, например, патенты США US 2,389,636, US 2,600,07, US 5,486,216 и US 6,670,058). В соответствии с немецким патентом DE 6001659 T, патентом США US 3,264,210 и патентом Канады CA 2345950 в качестве источника тепла используют различным образом реализуемые методы окисления. В патентах США US 2,799,640 и US 3,259,565, а также в немецкой заявке на патент DE 1266273 используют электрические источники тепла; кроме того, в немецком патенте DE 69208686 T описана плазменная горелка.

Подробный обзор уровня техники приводится ниже.

В патенте США US 2,389,636 описана деструкция углеводородов в предварительно нагретом насыпном слое. Насыпной слой, состоящий из керамических или металлических материалов, перед входом в реакционную зону нагревают в отдельной камере. При этом частицы носителя, предварительно снабженные в реакционной камере углеродом, подвергают воздействию потока горячего воздуха. Частицы носителя накапливают выделяющееся в результате сгорания углерода тепло. Следовательно, получение содержащего углерод продукта отсутствует. В цитируемом документе описывается реализуемая в движущемся слое непрерывная технология, целью которой является регенерация тепла.

В патенте США US 2,600,078 описано получение частиц кокса с определенным размером зерен в подвижном слое. При этом углеродный субстрат опасно вводить в реактор, то есть подвергать его предварительному нагреванию и выводить из реактора по завершении реакции, пока размер частиц не достигнет необходимого значения. Покрытие на углеродные частицы наносят в жидкой фазе. Информация о получении водорода в качестве целевого продукта в цитируемом документе отсутствует.

В патенте США US 5,486,216 описано введение в шахтную печь свежеполученного в коксовальной печи горячего кокса. Через кокс, проходящий через шахтную печь сверху вниз в виде подвижного слоя, путем противотока пропускают состоящую из метана и азота газовую смесь, причем метан нагревается до температуры его деструкции и в результате эндотермической реакции разлагается на водород и углерод. Образующийся углерод осаждается на используемом коксе, оптимизируя его структуру таким образом, чтобы кокс предпочтительно можно было использовать в доменной печи. Необходимую для эндотермической деструкции метана тепловую энергию производит кокс, который в результате деструкции метана остывает. Удаляемый из нижней части шахтной печи охлажденный кокс заменяют подаваемым в ее нижнюю часть горячим коксом.

В патенте США US 6,670,058 описан пиролиз углеводородов в реакторе с движущимся слоем. Во внешней топочной камере осуществляют частичное сжигание выгружаемого углерода и текучих горючих веществ, причем горючие частицы углерода возвращают в реакционную камеру в качестве теплоносителя. В реакционной камере отсутствует иной источник тепла, кроме источника, восполняющего расход тепла. В качестве предшественников катализатора описаны не полностью превращенные углеводороды.

Возможность получения и осаждения углерода посредством предварительно нагретого насыпного слоя (на единицу количества кокса) в первую очередь определяется применимой для деструкции метана энергией горячего кокса. Поскольку применимая энергия не может быть произвольно увеличена, например, путем повышения рабочей температуры кокса/насыпного слоя, осаждение любого количества углерода не представляется возможным. Согласно патенту США US 5,486,216 количество углерода, которое может быть осаждено на используемом количестве кокса, не превышает 5%. Однако этого относительно незначительного количества не всегда достаточно, чтобы получать кокс любого качества, например, кокс, пригодный для использования в доменной печи.

Недостатком внешнего нагревания твердого насыпного слоя и его использования в качестве теплоносителя является трудность оперирования с горячими твердым веществами. При температурах выше 1000°C возникают упрочняющие поверхностные эффекты в сфере адгезии, агломерации и абразии, что, например, затрудняет загрузку и выгрузку материалов в реактор (и из реактора).

В немецком патенте DE 6001659 T описан способ пиролиза углеводородов, в соответствии с которым часть углеводородного потока используют для получения необходимой для пиролиза энергии. При этом пиролиз осуществляют в реакционном объеме, который ориентирован в направлении, совпадающем с движением потока через пористые трубы. Через пористые трубы течет окислитель (воздух или кислород). При этом окислитель проникает в реакционный объем через пористые стенки в направлении, вертикальном по отношению к углеводородному потоку. Благодаря этому вблизи от пористой стенки образуется тонкий слой горения, который обеспечивает реакционный объем необходимой для пиролиза энергией. В патенте не описано ни применение носителя углерода, ни получение углеродного продукта.

В патенте США US 3,264,210 описано получение кокса и водорода в виде сопряженных продуктов, причем водород в указанном процессе используют в качестве топлива. Соответствующий реактор состоит из двух зон. В первой зоне протекает пиролиз в кипящем слое с использованием углерода в качестве продукта предшествующей реакции/основы. Передачу теплоты от горелки к реактору для пиролиза осуществляют конвективно и посредством излучения. Во второй зоне приготовление кокса осуществляют в шахте, что позволяет получать продукт с необходимыми размерами зерен.

Недостатком непосредственного использования окислительной технологии является введение примесей в реакционную зону, а следовательно, загрязнение продуктов. Кроме того, существует опасность самопроизвольного воспламенения углерода или одновременного возгорания потока эдуктов. В случае косвенной передачи тепла из процессов горения в реакционную зону при необходимых высоких температурах потребовались бы значительные поверхности теплопередачи. Однако реализация подобных значительных поверхностей теплопередачи, например, посредством внутренних устройств реактора в случае реакции в подвижном или в кипящем слое оказалась бы проблематичной, в частности, в связи с блокированием обтекаемых продуктами поверхностей, а также воздействием механических нагрузок на внутренние устройства.

С целью исключения недостатков, связанных с использованием окислительной технологии в качестве источника энергии, а также недостатков, обусловленных обращением с горячим твердым веществом, было предложено использовать электрические источники энергии.

В патенте США US 2,799,640 описано активирование деструкции углеводородов в виде реакции между газовыми фазами или газом и твердым веществом посредством электрических разрядов между частицами движущегося слоя. В качестве описываемого в патенте насыпного материала, соответственно псевдоожиженного материала, используют углерод.

В патенте США US 3,259,565 описана деструкция тяжелых углеводородов в легкие углеводороды, водород и углерод в движущемся слое из углерода. Описывается электрическое теплообеспечение деструкции в движущемся слое в виде резистивного нагревания. Кроме того, предусмотрена рециркуляция агломератов кокса и противоточный теплообмен с газообразным потоком продуктов выше реакционной зоны. Ниже реакционной зоны происходит теплообмен между растущими агломератами углерода и поступающим газом.

В немецком патенте DE 1266273 описана деструкция углеводородов до водорода и кокса, причем кокс обладает высокой степенью чистоты и прочностью. Нагревание в случае реакции осуществляют электрорезистивно, используя в качестве сопротивления слой углерода, который является подвижным или кипящим слоем. Кроме того, описано накопление тепла вследствие пропускания потока твердого вещества и газового потока в противоположных направлениях.

В немецком патенте DE 2420579 также описано индуктивное нагревание слоя кокса.

В немецком патенте DE 69208686 T2 описан плазменный реактор в качестве реакционной зоны для пиролиза углеводородов. Предварительно нагретый углеродный субстрат подают в пламя плазменной горелки через насадки. Зона смешения одновременно является главной реакционной зоной. Превращение завершается на последовательно присоединенном участке. Водород частично возвращают в плазменную горелку, тем самым реализуя частичное накопление тепла. В качестве продукта помимо водорода получают сажу. Сажу производят гомогенно в виде первичных частиц; об использовании субстрата не сообщается.

В патенте Канады CA 2345950 описан пиролиз метана в углеродную пыль. По мере наращивания частиц углерода до определенного размера их механически выгружают. Сообщается, что тепло можно подавать электрически или посредством дымовых газов, однако подробная информация о выполнении подачи тепла, к сожалению, отсутствует. Накопление тепла возможно как посредством газовых потоков, так и благодаря противоточному теплообмену между газовым потоком и потоком твердого вещества.

Недостатком описанных выше электрических методов являются высокие эксплуатационные и капитальные затраты. Кроме того, остается неясным, возможна ли также реализация равномерного нагревания реакционной зоны электрическим методом в промышленных условиях.

В связи с перечисленными выше недостатками уровня техники на его основе до последнего времени не удавалось разработать промышленное производство водорода и углерода в качестве сопряженных продуктов на основе углеводородов.

В настоящее время в качестве источника энергии для промышленных процессов деструкции углеводородов, например, производства синтез-газа или сажи, используют непосредственную окислительную технологию (Reimert, R., Marschner, F., Renner, H.-J., Boll, W., Supp, E., Brejc, M., Liebner, W., Schaub, G. 2011. Gas Production, 2. Processes. Ullmann's Encyclopedia of Industrial Chemistry). При реализации необходимых высоких температур и надежном нагревании и режиме осуществления реакций до последнего времени вынуждены мириться с определенной степенью загрязнения примесями, обусловленными газообразными продуктами сгорания, соответственно опасностью сгорания эдуктов и/или продуктов.

С учетом вышеизложенного в основу настоящего изобретения была положена задача разработать способ получения двух ценных продуктов (водорода и углерода) с возможностью промышленной реализации способа с высокими выходами. Кроме того, задача настоящего изобретения состояла в том, чтобы предложить для химической промышленности и для развивающейся мобильности водород с незначительными следами диоксида углерода и одновременно материально утилизировать углерод. Другая задача изобретения состояла в получении углерода с высокой степенью чистоты, который можно было бы использовать, например, в сталелитейной отрасли в качестве вдуваемого угля, заменителя коксующегося угля или даже доменного кокса. Другая задача изобретения состояла в том, чтобы найти возможность в широких пределах регулировать количество образующегося углерода, наслаивающегося на углеродсодержащий гранулят.

Указанная задача согласно изобретению решается благодаря способу параллельного получения водорода и одного или нескольких углеродсодержащих продуктов, в соответствии с которым углеводороды вводят в реакционный объем и в присутствии обогащенного углеродом гранулята термически деструктируют до углерода и водорода, причем способ отличается тем, что по меньшей мере часть необходимой для деструкции углеводородов тепловой энергии предоставляют посредством одного или нескольких газообразных теплоносителей, которые получают вне реакционного объема, а затем вводят в реакционную зону, причем либо (i) газообразный теплоноситель инертен в условиях реакции деструкции углеводородов и/или является продуктом и/или эдуктом этой реакции, либо (и) газообразный теплоноситель не вступает в контакт с углеводородным потоком.

Предпочтительно по меньшей мере 50%, предпочтительно более 80%, в частности, более 90% тепловой энергии, необходимой для деструкции углеводородов и теплообмена, предоставляется газообразным теплоносителем. Кроме того, можно использовать другие известные из уровня техники источники энергии. Предпочтительной является комбинация с электрическим резистивным нагреванием, электрическим индукционным нагреванием или радиационным нагреванием.

Под углеродсодержащим гранулятом в соответствии с настоящим изобретением подразумевают материал, который предпочтительно состоит из твердых зерен, содержащих по меньшей мере 50% масс. предпочтительно по меньшей мере 80% масс., в частности, по меньшей мере 90% масс. углерода. Размер зерен (эквивалентный диаметр) углеродсодержащего гранулята, который может быть определен путем просеивания через сито с определенным размером отверстий, предпочтительно составляет от 0,5 до 100 мм, предпочтительно от 1 до 80 мм. Углеродсодержащий гранулят предпочтительно обладает формой шариков. В соответствии с предлагаемым в изобретении способом можно использовать множество разных углеродсодержащих гранулятов. Подобный гранулят может состоять, например, из угля, кокса, коксовой мелочи и/или смеси указанных материалов. Размер зерен коксовой мелочи как правило составляет менее 20 мм. Кроме того, в углеродсодержащем грануляте может присутствовать от 0 до 15% масс., предпочтительно от 0 до 5% масс. (в пересчете на общую массу гранулята) металла, оксида металла и/или керамики. Особенно предпочтительно используют грануляты, которые состоят из коксовой мелочи и/или низкосортного кокса, то есть кокса, непригодного для непосредственного металлургического процесса, кокса с коксохимического предприятия на основе бурого или каменного угля и/или кокса, получаемого из биомассы.

Коксовая мелочь в связи с небольшими размерами зерен непригодна для непосредственного использования в доменной печи. Размер частиц доменного кокса составляет от 35 до 80 мм, предпочтительно от 50 до 60 мм. Благодаря указанным размерам достигается необходимая проницаемость насыпного слоя доменного кокса для дутьевого воздуха и расплава в доменной печи.

Массовое количество твердого вещества в углеродсодержащем грануляте предпочтительно в 5-10 раз, предпочтительно в 6-8 раз превышает массу производимого водорода.

К углеродсодержащему грануляту предпочтительно присоединяется по меньшей мере 90% мас., предпочтительно по меньшей мере 95% мас. углерода от общей массы углерода, образующегося в соответствии с предлагаемой в изобретении реакцией деструкции.

В соответствии с изобретением под углеродсодержащим продуктом подразумевают продукт, который предпочтительно по меньшей мере на 90% мас., предпочтительно по меньшей мере на 95% мас., особенно предпочтительно по меньшей мере на 98% мас., в частности, по меньшей мере на 99% мас. состоит из углерода. Углеродсодержащий продукт предпочтительно содержит менее 5% мас., предпочтительно менее 1% мас., особенно предпочтительно менее 0,1% мас. золы (в пересчете на общую массу углеродсодержащего продукта). Углеродсодержащий продукт предпочтительно содержит менее 5% мас., предпочтительно менее 1% мас., особенно предпочтительно менее 0,1% мас. (в пересчете на общую массу углеродсодержащего продукта) щелочных металлов, в частности, оксидов и гидроксидов щелочных и щелочноземельных металлов, а также серосодержащих и/или фосфорсодержащих соединений. Подобные углеродсодержащие продукты можно использовать, например в сталелитейной промышленности в качестве вдуваемого угля, добавки к коксующимся углям или доменного кокса.

Предлагаемым в изобретении способом на используемый углеродсодержащий гранулят предпочтительно осаждают по меньшей мере 5% мас., предпочтительно по меньшей мере 10% мас., особенно предпочтительно по меньшей мере 20% мас., в частности, по меньшей мере 30% мас. углерода в пересчете на первоначальную общую массу гранулята. Массу используемого углеродсодержащего гранулята предлагаемым в изобретении способом предпочтительно можно повышать на величину, составляющую от 5 до 50% мас., предпочтительно от 10 до 45% мас., особенно предпочтительно от 20 до 30% мас., в пересчете на первоначальную общую массу гранулята.

В соответствии с предпочтительным вариантом осуществления предлагаемого в изобретении способа необходимую тепловую энергию для газообразного теплоносителя, а следовательно, для деструкции углеводородов получают путем окисления или частичного окисления содержащего углеводороды и/или водород топлива. Водородом может являться, например, получаемый при деструкции углеводородов водород, который удаляют из реакционного объема и после возможной при необходимости выполняемой очистки (например, обеспыливания) подают в горелку. В качестве окислителя предпочтительно используют воздух, обогащенный кислородом воздух и/или технически чистый кислород. Окисление или частичное окисление выполняют вне реакционного объема, для чего топливо смешивают с окислителем и реализуют их реакцию. Образующийся горячий газ предпочтительно обладает температурой в интервале от 800 до 2200°C, предпочтительно от 1000 до 1800°C. Образующийся горячий газ в дальнейшем используют для нагревания газообразного теплоносителя, инертного в условиях реакции с углеводородами, и/или теплоносителя, который является продуктом и/или эдуктом подобной реакции с углеводородом, который затем вводят в реакционный объем и пропускают через содержащий углерод гранулят, причем он отдает часть своего ощутимого тепла углеродсодержащему грануляту и/или подлежащим деструкции углеводородам. В качестве газообразного теплоносителя, инертного в условиях реакции с углеводородами, предпочтительно используют азот, в то время как в качестве теплоносителя, который является продуктом и/или эдуктом подобной реакции с углеводородом, предпочтительно используют водород.

В качестве альтернативы горячий газообразный продукт сгорания можно непосредственно вводить в реакционный объем, причем он отдает часть своего ощутимого тепла непосредственно углеродсодержащему грануляту и/или подлежащим деструкции углеводородам. В случае непосредственной подачи газообразного теплоносителя в реакционный объем ее реализуют таким образом, чтобы теплоноситель не контактировал с углеводородным потоком. Это возможно, например, благодаря циклическому осуществлению предлагаемой в изобретении реакции, причем речь идет по меньшей мере о двух циклах. Предпочтительно используют по меньшей мере один цикл нагревания, предусматривающий введение/пропускание горячего газообразного теплоносителя, и по меньшей мере один цикл реакции, предусматривающий пропускание углеводородов через нагретый углеродсодержащий гранулят.

Во время цикла нагревания подача углеводорода в реактор/его пропускание через реактор особенно предпочтительно отсутствуют. Во время цикла реакции подача теплоносителя в реактор/его пропускание через реактор особенно предпочтительно отсутствуют. Продолжительность цикла предпочтительно составляет от 30 до 7200 секунд, предпочтительно от 60 до 3600 секунд, особенно предпочтительно от 300 до 1200 секунд. Цикл нагревания предпочтительно короче цикла реакции, причем особенно предпочтительно, если отношение длительности цикла нагревания к длительности цикла реакции составляет 1:2, 1:3 или 1:4. Длительность цикла можно регулировать, например, путем варьирования объемного расхода. Предлагаемый в изобретении способ предпочтительно осуществляют квазинепрерывно с использованием двух или более аналогичных реакторов.

Предлагаемый в изобретении способ предпочтительно осуществляют без использования окислителя в реакционном объеме.

Предлагаемый в изобретении способ позволяет путем введения газообразного теплоносителя создавать плотность теплового потока (относящуюся к объему теплопроизводительность), составляющую более 100 кВт/м3, предпочтительно более 500 кВт/м3, особенно предпочтительно более 1000 кВт/м3 в пересчете на объем слоя реакционной зоны.

В другом варианте осуществления изобретения газообразный теплоноситель производят с помощью упорядоченного вне реакционного объема электрического нагревательного устройства, через который пропускают газовый поток, нагреваемый посредством электрической дуги до температуры от 2000 до 5000°C, предпочтительно от 3500 до 4000°C перед введением в реакционный объем, или который служит для нагревания газообразного теплоносителя, инертного в условиях реакции деструкции углеводородов и/или являющегося продуктом и/или эдуктом этой реакции. Нагретый указанным образом теплоноситель затем вводят в реакционный объем. В реакционном объеме газообразный теплоноситель отдает свое тепло реагенту или реагентам. Газовый поток может состоять, например, из полученного при деструкции углеводородов водорода, который удаляют из реакционного объема и после возможной очистки (например, обеспыливания) подают в электрическое нагревательное устройство и по меньшей мере частично ионизируют.

Эмиссия диоксида углерода в соответствии с предлагаемым в изобретении способом в случае производства 100 килограммов водорода предпочтительно составляет менее 10 кг CO2/кг Н2, предпочтительно менее 8 кг CO2/кг Н2, в частности, менее 6 кг CO2/кг Н2.

Энергия, предоставляемая для осуществления предлагаемого в изобретении способа, предпочтительно составляет менее 500 кДж, предпочтительно менее 400 кДж, особенно предпочтительно менее 250 кДж, в частности, менее 150 кДж в расчете на моль превращенного метана.

Термическую реакцию деструкции углеводородов согласно изобретению предпочтительно осуществляют при средней температуре в реакционной зоне от 800 до 1600°C, предпочтительно от 1100 до 1400°C.

Термическую реакцию деструкции углеводородов согласно изобретению предпочтительно осуществляют при давлении в интервале от атмосферного давления до 50 бар.

Время пребывания в реакционной зоне при реализуемой согласно изобретению реакции деструкции предпочтительно составляет от 0,5 до 25 минут, предпочтительно от 1 до 60 секунд, в частности, от 1 до 30 секунд.

Объемный расход водорода в соответствии с предлагаемым в изобретении способом в типичных случаях составляет от 1000 до 50000 нм3/ч, предпочтительно от 10000 до 30000 нм3/ч, в частности, от 15000 до 25000 нм3/ч.

Отношение массовых потоков углеводородного газа и углеродсодержащего гранулята предпочтительно находится в интервале от 1,5:1 до 3:1, предпочтительно от 1,8:1 до 2,5:1.

Реакционный объем предпочтительно обладает цилиндрическим сечением и его полный объем доступен как для твердых и газообразных реакционных потоков, так и для газообразного теплоносителя.

Углеродсодержащий гранулят предпочтительно пропускают через реакционный объем в виде подвижного слоя, причем подлежащие деструкции углеводороды целесообразно пропускать противотоком по отношению к грануляту. В этом случае реакционный объем в целесообразном варианте выполнен в виде вертикальной шахты, в связи с чем подвижный слой перемещается только под действием гравитации. Потоки могут проходить через подвижный слой предпочтительно гомогенно и равномерно. Однако углеродсодержащий гранулят можно пропускать через реакционный объем также в виде кипящего слоя. Оба варианта могут быть реализованы в непрерывном или квазинепрерывном рабочем режиме.

В случае если углеродсодержащий гранулят пропускают через реакционный объем в виде подвижного слоя, то в соответствии с особенно предпочтительным вариантом осуществления предлагаемого в изобретении способа гранулят с температурой окружающей среды вводят в реакционный объем, в котором его сначала нагревают до максимальной температуры, а затем вновь охлаждают, причем максимальная температура нагревания составляет от 800 до 1600°C, предпочтительно от 1100 до 1400°C. Охлаждение можно осуществлять до температуры, которая превышает температуру окружающей среды предпочтительно максимум на 500 K, предпочтительно максимум на 300 K, особенно предпочтительно максимум на 50 K, чтобы не потребовалось выполнять охлаждение, соответственно гашение выгружаемого из реакционного объема кокса. Для формирования и соблюдения указанного выше температурного профиля предлагается вводить в реакционный объем газ с температурой окружающей среды, который предпочтительно содержит подлежащие деструкции углеводороды, и пропускать его через подвижный слой противотоком. На пути через реакционный объем газ обменивается теплом с подвижным слоем, нагреваясь до температуры деструкции углеводородов, причем одновременно происходит охлаждение подвижного слоя. Образовавшийся в результате деструкции горячий водород совместно с не прореагировавшими компонентами газа проходит противотоком через подвижный слой дальше и остывает вследствие непосредственного теплообмена с ним, так что содержащая водород газовая смесь, температура которой близка температуре окружающей среды, может быть удалена из реакционного объема. Необходимую для деструкции углеводородов тепловую энергию посредством газообразного теплоносителя вводят, в частности, в тех местах реакционного объема, в которых деструктируют углеводороды. Тем не менее не исключается возможность создания и/или введения тепловой энергии в других местах.

Газовую смесь, содержащую полученный согласно изобретению водород, предпочтительно подвергают очистке и разделяют на фракцию технически чистого водорода и остаточный поток, содержащий водород и углеводороды. По меньшей мере часть остаточного потока в виде рецикла предпочтительно возвращают в реакционный объем, чтобы посредством деструкции содержащихся в этом потоке углеводородов повысить выход водорода. Другая часть остаточного потока, которую предпочтительно направляют в горелку, служит топливом для окисления, которое предпочтительно производит тепловую энергию, необходимую для газообразных теплоносителей, а следовательно, для реакции деструкции.

В случае использования водорода в качестве газообразного теплоносителя, например, можно отбирать из потока продукта часть технически чистого водорода, чтобы с помощью полученных в горелке горячих газов нагревать ее, например, в теплообменнике, а затем (вновь) направлять в реакционную зону.

Зерна, из которых состоит отбираемый из реакционного объема углеродсодержащий продукт, рассеивают в зависимости от размера и плотности, так что непосредственному использованию, например, в качестве доменного кокса подлежит лишь часть углеродсодержащего продукта. Доменный кокс предпочтительно обладает размером частиц от 35 до 80 мм и плотностью от 0,9 до 1,1 г/см3. Таким образом, согласно изобретению предусматривают классификацию отбираемого из реакционного объема углеродсодержащего продукта путем просеивания и/или сепарации. Зерна, которые удовлетворяют требуемой спецификации, выгружают в качестве целевого продукта. Зерна, которые обладают слишком малым диаметром, или слишком низкой или слишком высокой плотностью для предусматриваемого применения, предпочтительно возвращают в тот же самый или параллельно функционирующий реакционный объем. Зерна со слишком большим диаметром перед их возвращением измельчают и мелкую фракцию возвращают.

В принципе в реакционный объем можно вводить и деструктировать в нем любые углеводороды, однако предпочтительными являются легкие углеводороды, например, метан, этан, пропан и бутан. Особенно предпочтительный вариант осуществления предлагаемого в изобретении способа предусматривает, что в реакционный объем вводят природный газ, молярное содержание метана в котором в зависимости от месторождения природного газа в типичных случаях составляет от 75 до 99%, и метан деструктируют до водорода и углерода.

Для получения высокочистого водорода в качестве целевого продукта может потребоваться очистка подлежащих введению в реакционный объем массовых потоков от веществ, присутствие которых в водороде является нежелательным или которые могут превращаться в реакционном объеме в нежелательные вещества. Дополнительно или в качестве альтернативы нежелательные вещества можно выделять также из отбираемых из реакционного объема газов. К нежелательным веществам относятся, например, сернистые соединения, соединения с одним или несколькими ароматическими кольцами, например, бензол, толуол, ксилол и/или нафталин, а также другие углеводороды, которые, в частности, могут присутствовать в природном газе.

Один вариант предлагаемого в изобретении способа предусматривает, что образующийся при осуществлении способа газ с целью очистки пропускают через слой кокса и при этом освобождают от веществ, которые сами в водороде как целевом продукте являются нежелательными или в реакционном объеме могут превращаться в нежелательные вещества. В зависимости от качества снабженный при газоочистке нежелательными веществами кокс можно устранять путем сжигания или направлять на использование в коксохимическом производстве.

В отличие от уровня техники в сфере производства кокса предлагаемый в изобретении способ предоставляет возможность получения высококачественного кокса без трудоемкого и/или вредного для окружающей среды тушения в закрытом аппарате. Другое преимущество предлагаемого в изобретении способа по сравнению с уровнем техники состоит в том, что его можно осуществлять без использования коксующегося угля, стоимость которого в обозримом будущем существенно возрастет.

Благодаря предлагаемому в изобретении способу производимое количество углерода посредством хорошо регулируемого и быстро реализуемого в реакторе предлагаемого в изобретении ввода тепла можно варьировать в широком диапазоне, который в значительной мере не зависит от используемого количества углеродсодержащего гранулята. В частности, предлагаемый в изобретении способ позволяет значительно повысить удельное количество осаждаемого на грануляте углерода по сравнению с уровнем техники.

Предлагаемый в изобретении способ позволяет промышленно получать водород и углерод в качестве сопряженных продуктов, в частности, благодаря интегрированной рециркуляции тепла, неструктурированному объему реактора и использованию газообразного теплоносителя, причем указанные продукты содержат незначительные следы диоксида углерода.

Использование диоксида углерода в качестве химического сырья для массового производства требует его активирования, например, до синтез-газа посредством как можно более климатически нейтрального восстановителя. Получение водорода связанным с низкой эмиссией CO2 и экономичным способом является ключом для решения этой задачи. Получаемый водород позволяет выполнять активирование CO2 по технологии RWGS (Reverse Water Gas Shift Reaktion) и утилизировать значительные ресурсы диоксида углерода.

Ниже изобретение более подробно поясняется на примере его осуществления со ссылкой на Фиг. 1.

На Фиг. 1 показан вариант осуществления предлагаемого в изобретении способа, согласно которому доменный кокс получают в соответствии с непрерывным процессом с помощью газообразного теплоносителя.

В реакционный объем R сверху по линии 1 вводят углеродсодержащий гранулят (например, коксовую мелочь) с температурой окружающей среды, который затем под действием гравитации перемещается вниз в подвижный слой W. Одновременно снизу в реакционный объем R вводят содержащий углеводороды газ 2 (предпочтительно природный газ), который противотоком пропускают через подвижный слой W вверх. Газ 2, который на входе в реакционный объем R обладает температурой окружающей среды, при перемещении вверх благодаря непосредственному теплообмену с подвижным слоем W нагревается до температуры деструкции углеводородов, которые в этих условиях в результате эндотермической реакции разлагаются на водород и углерод. Более 95% мас. образующегося при этом углерода присоединяется к углеродсодержащим зернам подвижного слоя W, обеспечивая повышение их качества. Образующийся горячий водород совместно с не превращенными или частично превращенными углеводородами продолжает перемещаться вверх, причем в результате непосредственного теплообмена с подвижным слоем W водород охлаждается таким образом, что по трубопроводу 3 можно отбирать и вводить в разделительное устройство Т содержащую водород газовую смесь, температура которой выше температуры окружающей среды, но по меньшей мере на 500 K ниже температуры реакции. В разделительном устройстве Т содержащую водород газовую смесь 3 разделяют на фракцию 4 технического чистого водорода и остаточный поток 9, содержащий водород и углеводороды. Из части полученного остаточного потока 9 в горелке при подаче окислителя 11 производят горячий газ 5, который посредством теплообменника WT передает свое тепло части фракции технически чистого водорода 4. Остаток 10 фракции технически чистого водорода отбирают в виде целевого продукта. Другую часть остаточного потока 9 в качестве рецикла возвращают в реакционный объем R для повышения выхода водорода. Нагретую часть водородной фракции вводят в реакционный объем R, в которой получают преимущественную часть необходимой для деструкции углеводородов энергии. Из нижней части реакционного объема R отбирают гранулят 6, температура которого почти соответствует температуре окружающей среды и который в связи с наличием отложений углерода можно использовать в качестве доменного кокса или добавки к коксу. Компоненты гранулята 6, которые не удовлетворяют требованиям качества, поскольку обладают слишком большим (более 80 мм) или слишком малым (менее 35 мм) диаметром, или, например, обладают слишком низкой прочностью (прочность доменного кокса при барабанной пробе 140 для >40% согласно ISO/FDIS 18894:2003), отделяют в разделительном устройстве путем просеивания и/или классификации и возможного измельчения и по трубопроводу 7 возвращают в реакционный объем R. Остатком 8 является доменный кокс, который выгружают в виде высококачественного продукта.


СПОСОБ ПАРАЛЛЕЛЬНОГО ПОЛУЧЕНИЯ ВОДОРОДА И УГЛЕРОДСОДЕРЖАЩИХ ПРОДУКТОВ
Источник поступления информации: Роспатент

Showing 51-60 of 660 items.
27.11.2013
№216.012.8554

Проводящие пасты с металлоорганическими модификаторами

Изобретение относится к проводящим пастам, применяемым для формирования металлических контактов на поверхности субстратов в фотогальванических элементах. Проводящая паста содержит стеклянную фритту, проводящий материал, органическую среду и один или более металлоорганических компонентов,...
Тип: Изобретение
Номер охранного документа: 0002499810
Дата охранного документа: 27.11.2013
10.12.2013
№216.012.88c6

Оик-инертные субстраты, содержащие бис-оксодигидроиндолиленбензодифураноны

Изобретение относится к получению околоинфракрасных (ОИК) инертных субстратов, снижающих теплообразование и являющихся ценными во многих областях применения. Инертные к инфракрасному излучению субстраты включают формованные полимерные изделия, пленки, волокна, покрытия и другие органические и...
Тип: Изобретение
Номер охранного документа: 0002500696
Дата охранного документа: 10.12.2013
27.12.2013
№216.012.90c0

Сополимер на основе содержащего сульфокислоту соединения

Изобретение относится к сополимеру на основе содержащего сульфокислоту соединения. Сополимер включает в качестве мономерных компонентов a) по меньшей мере одно соединение, содержащее сульфокислотную группу, b) по меньшей мере одно соединение, выбранное из группы, включающей N-винил-капролактам,...
Тип: Изобретение
Номер охранного документа: 0002502749
Дата охранного документа: 27.12.2013
10.01.2014
№216.012.9376

Полиуретаны в качестве средств модифицирования реологии косметических препаратов

Изобретение относится к косметической промышленности и представляет собой косметический препарат, содержащий вододиспергируемый полиуретан с в основном линейными основными цепями, состоящими из чередующихся гидрофильных и гидрофобных участков, причем а) оба концевых участка (Т) гидрофобны и по...
Тип: Изобретение
Номер охранного документа: 0002503444
Дата охранного документа: 10.01.2014
20.01.2014
№216.012.974c

Удерживающие no материалы и ловушки, устойчивые к термическому старению

Изобретение относится к материалам для удерживания NOx. Описан катализатор для удерживания оксида азота, содержащий: субстрат; первый слой покрытия из пористого оксида на субстрате, где указанный первый слой покрытия из пористого оксида содержит удерживающий оксид азота материал, содержащий...
Тип: Изобретение
Номер охранного документа: 0002504431
Дата охранного документа: 20.01.2014
20.01.2014
№216.012.977c

Способ и печатная машина для печатания на основе

Изобретение относится к способу для печатания на основе в печатной машине и печатной машине для его реализации. Краска с гибкого носителя переносится на основу в соответствии с заданным рисунком с помощью того, что энергия устройством для направления энергии через гибкий носитель направляется в...
Тип: Изобретение
Номер охранного документа: 0002504479
Дата охранного документа: 20.01.2014
27.01.2014
№216.012.9b97

Способ отделения фумаровой кислоты и других побочных компонентов при получении ангидрида малеиновой кислоты

Изобретение относится к способу уменьшения образования отложений фумаровой кислоты при получении ангидрида малеиновой кислоты путем гетерогенного каталитического окисления молекулярным кислородом углеводорода, выбираемого из группы бензола, н-бутана, н-бутена и 1,3-бутадиена, в присутствии...
Тип: Изобретение
Номер охранного документа: 0002505537
Дата охранного документа: 27.01.2014
27.01.2014
№216.012.9cf7

Способ изготовления электродов для солнечных батарей

Изобретение касается способа изготовления электродов для солнечных батарей, в котором электрод выполнен в виде электропроводящего слоя на основе (1) для солнечных батарей, на первом этапе с носителя (7) на основу (1) переносят дисперсию, содержащую электропроводящие частицы, посредством...
Тип: Изобретение
Номер охранного документа: 0002505889
Дата охранного документа: 27.01.2014
20.02.2014
№216.012.a146

Непрерывный способ изготовления геометрических формованных изделий из катализатора к

Изобретение относится к области катализа. Описан способ изготовления геометрических формованных изделий из катализатора K, у которых активная масса представляет собой мультиэлементный оксид, который содержит элемент Мо, элементы Bi и/или V, а также один или несколько элементов из ряда Со, Ni,...
Тип: Изобретение
Номер охранного документа: 0002507001
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a21b

Способ и устройство для непрерывного получения полимеризатов методом радикальной полимеризации

Настоящее изобретение относится к способу непрерывного получения полимеризата посредством радикальной полимеризации. Описан способ непрерывного получения полимеризата методом радикальной полимеризации в растворе, включающий следующие этапы: (а) подготовка по меньшей мере двух жидких потоков,...
Тип: Изобретение
Номер охранного документа: 0002507214
Дата охранного документа: 20.02.2014
Showing 51-60 of 391 items.
27.10.2013
№216.012.79a0

Привитой сополимер как ингибитор газовых гидратов

Изобретение относится к привитым сополимерам на основе полиамида. Предложены привитые сополимеры на основе полиамида, прошедшего реакцию с ангидридом малеиновой кислоты, содержащие по меньшей мере одну винил-ненасыщенную боковую цепь, выбранную из N-винилкапролактама и/или N-винилпирролидона и...
Тип: Изобретение
Номер охранного документа: 0002496798
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.7a8d

Способ надежного предотвращения обратного потока при перекачивании жидкости

Изобретение относится к способам, предотвращающим обратный поток при перекачивании жидкости под давлением. Способ надежного предотвращения обратного потока при перекачивании жидкости под давлением через нагнетательный трубопровод (1), в котором расположено блокирующее устройство (2) со схемой...
Тип: Изобретение
Номер охранного документа: 0002497035
Дата охранного документа: 27.10.2013
20.11.2013
№216.012.818d

Применение алкоксилированных полиалканоламинов для деэмульгирования эмульсий типа "масло в воде"

Изобретение относится к применению алкоксилированных полиалканоламинов для деэмульгирования эмульсий типа «масло в воде», прежде всего нефтяных эмульсий. Алкоксилированные полиалканоламины получают (А) конденсацией, по меньшей мере, одного триалканоламина до полиалканоламина, причем полученные...
Тип: Изобретение
Номер охранного документа: 0002498841
Дата охранного документа: 20.11.2013
20.11.2013
№216.012.81f0

Улучшенный способ получения синильной кислоты посредством каталитической дегидратации газообразного формамида

Изобретение может быть использовано в химической и металлургической промышленности. Способ получения синильной кислоты посредством каталитической дегидратации газообразного формамида включает протекание реакции каталитической дегидратации в одном из реакционных каналов трубчатого реактора,...
Тип: Изобретение
Номер охранного документа: 0002498940
Дата охранного документа: 20.11.2013
27.11.2013
№216.012.8489

Косметические препараты на основе молекулярно впечатанных полимеров

В заявке описана косметическиая или дерматологическая композиция в виде крема, пены, спрея, геля, гелевого спрея, лосьона, масла, масляного геля или мусса. Композиция содержит по меньшей мере одно действующее вещество, по меньшей мере один полимер, молекулярно импринтированный в присутствии...
Тип: Изобретение
Номер охранного документа: 0002499607
Дата охранного документа: 27.11.2013
27.11.2013
№216.012.8554

Проводящие пасты с металлоорганическими модификаторами

Изобретение относится к проводящим пастам, применяемым для формирования металлических контактов на поверхности субстратов в фотогальванических элементах. Проводящая паста содержит стеклянную фритту, проводящий материал, органическую среду и один или более металлоорганических компонентов,...
Тип: Изобретение
Номер охранного документа: 0002499810
Дата охранного документа: 27.11.2013
10.12.2013
№216.012.88c6

Оик-инертные субстраты, содержащие бис-оксодигидроиндолиленбензодифураноны

Изобретение относится к получению околоинфракрасных (ОИК) инертных субстратов, снижающих теплообразование и являющихся ценными во многих областях применения. Инертные к инфракрасному излучению субстраты включают формованные полимерные изделия, пленки, волокна, покрытия и другие органические и...
Тип: Изобретение
Номер охранного документа: 0002500696
Дата охранного документа: 10.12.2013
27.12.2013
№216.012.90c0

Сополимер на основе содержащего сульфокислоту соединения

Изобретение относится к сополимеру на основе содержащего сульфокислоту соединения. Сополимер включает в качестве мономерных компонентов a) по меньшей мере одно соединение, содержащее сульфокислотную группу, b) по меньшей мере одно соединение, выбранное из группы, включающей N-винил-капролактам,...
Тип: Изобретение
Номер охранного документа: 0002502749
Дата охранного документа: 27.12.2013
10.01.2014
№216.012.9376

Полиуретаны в качестве средств модифицирования реологии косметических препаратов

Изобретение относится к косметической промышленности и представляет собой косметический препарат, содержащий вододиспергируемый полиуретан с в основном линейными основными цепями, состоящими из чередующихся гидрофильных и гидрофобных участков, причем а) оба концевых участка (Т) гидрофобны и по...
Тип: Изобретение
Номер охранного документа: 0002503444
Дата охранного документа: 10.01.2014
20.01.2014
№216.012.974c

Удерживающие no материалы и ловушки, устойчивые к термическому старению

Изобретение относится к материалам для удерживания NOx. Описан катализатор для удерживания оксида азота, содержащий: субстрат; первый слой покрытия из пористого оксида на субстрате, где указанный первый слой покрытия из пористого оксида содержит удерживающий оксид азота материал, содержащий...
Тип: Изобретение
Номер охранного документа: 0002504431
Дата охранного документа: 20.01.2014
+ добавить свой РИД