×
13.01.2017
217.015.8ec0

Результат интеллектуальной деятельности: ИМПУЛЬСНАЯ РЕАКТИВНАЯ ДВИГАТЕЛЬНАЯ УСТАНОВКА КОСМИЧЕСКОГО АППАРАТА

Вид РИД

Изобретение

№ охранного документа
0002605163
Дата охранного документа
20.12.2016
Аннотация: Изобретение относится к космической технике и может использоваться для корректировки орбиты обитаемых космических аппаратов (КА). Импульсная реактивная двигательная установка космического аппарата включает твердополимерный электролизер воды, вход водородной полости которого гидравлически связан с герметичным резервуаром с водой, имеющим штуцер наддува, газожидкостной сепаратор, подключенный к выходу водородной полости электролизера и связанный с ее входом байпасной гидромагистралью, на которой установлен насос, баллон для хранения водорода и реактивный двигатель, соединенные пневмомагистралью с клапаном, а также управляемый источник тока, подключенный к электролизеру. В установку введен подключенный к управляемому источнику тока электрохимический компрессор водорода, вход которого пневматически соединен с газовой полостью газожидкостного сепаратора, а выход - с баллоном для хранения водорода и штуцером наддува резервуара с водой пневмомагистралями с клапанами, причем на второй из них установлен также редуктор давления, при этом электрохимический компрессор водорода имеет байпасную разгрузочную пневмомагистраль с клапаном, соединяющую выход компрессора с его входом. Изобретение обеспечивает повышение ресурса и надежности импульсной реактивной двигательной установки космического аппарата. 1 з.п. ф-лы, 1 ил.

Изобретение относится к космической технике и может использоваться для корректировки орбиты обитаемых космических аппаратов (КА).

Идея производить ракетное топливо (водород и кислород) в условиях космического полета путем электролиза воды в последние годы достаточно популярна. При этом разработана технология такого процесса как для орбитального заправочного комплекса (Notardonato W, Johnson W, Swanger A, McQuade W. 2012 In-space propellant production using water. In Proc. AIAA SPACE 2012 Conference and Exposition, number AIAA 2012-5288, 11-13 September 2012, Pasadena, CA; "Электролизно-криогенный производственный комплекс в орбитальных условиях", www.energoobmen.ru/OZK), так и непосредственно на борту КА (патенты RU 2215891 от 10.11.2003, МПК: F02K 11/00 (2006.01) и RU 2310768 от 20.11.2007, МПК: F02K 11/00 (2006.01), B64G 1/40 (2006.01)).

Аналогом данного предложения можно считать импульсную реактивную двигательную установку (РДУ), включающую в свой состав электролизер воды (ЭВ) с жидким электролитом - наиболее распространенным типом электролизеров (патент RU 2215891 от 10.11.2003, МПК: F02K 11/00 (2006.01)). Несмотря на большой практический опыт применения таких агрегатов в наземных условиях, на борту КА их использование не вполне оправдано по нескольким причинам. Последние перечислены в последующей разработке тех же авторов (патент RU 2310768 от 20.11.2007, МПК: F02K 11/00 (2006.01), B64G 1/40 (2006.01)), которая в данном случае принята за прототип.

В отличие от аналога здесь используется твердополимерный ЭВ с катодной системой водоснабжения («А water-based propulsion system for advanced spacecraft» Journal AIAA (American Institute of Aeronautics and Astronautics) (USA). Guidance, Navigation, and Control Conference. San Jose: AIAA 2006, p. 426-438), при которой кислород генерируется в чистом виде, без примесей воды. Это существенно упрощает схему РДУ и повышает ее надежность. Таким образом, прототип импульсной реактивной двигательной установки космического аппарата содержит твердополимерный электролизер воды, вход водородной полости которого гидравлически связан с герметичным резервуаром с водой, имеющим штуцер наддува, газожидкостной сепаратор (ГЖС), подключенный к выходу водородной полости электролизера и связанный с ее входом байпасной гидромагистралью, на которой установлен насос, баллон для хранения водорода и реактивный двигатель, соединенные пневмомагистралью с клапаном, а также управляемый источник тока, подключенный к электролизеру.

Однако такое техническое решение также имеет свои недостатки, к которым можно отнести:

- высокая температура (до 2500 К) в камере сгорания при использовании кислородно-водородного топлива. Несмотря на импульсный режим работы установки это приводит к постепенному выгоранию критического сечения сопла, а это затрудняет нормирование импульса, который дает РДУ;

- необходимость нагревать водород перед подачей его в камеру сгорания существенно увеличивает энергопотребление установки во время работы двигателя, поскольку даже заранее перемешанная кислородно-водородная смесь самовоспламеняется при температуре около 500 К («Водород. Свойства, получение, хранение…» - Справочник под ред. Д.Ю. Гамбурга. М.: Химия, 1989, стр. 50). В рассматриваемом же случае в нагретый водород подается холодный кислород, поэтому предварительный нагрев водорода должен быть еще выше, особенно в начале, пока двигатель еще холодный. Мощность нагревателя в этот момент должна быть существенно увеличена (с учетом тепловой инерционности нагревателя).

- воспламенение кислородно-водородных смесей с большой разницей температур компонентов, кроме того, может сопровождаться детонацией и задержкой воспламенения. Это также меняет импульс, выдаваемый РДУ, и может привести к поломке двигателя;

- установка-прототип не рассчитана на использование в обитаемых КА и никак не интегрируется с другими системами таких аппаратов.

Задачей данного предложения является устранение перечисленных недостатков.

Техническим результатом изобретения является повышение ресурса и надежности импульсной РДУ.

Технический результат достигается тем, что в импульсную реактивную двигательную установку космического аппарата, включающую твердополимерный электролизер воды, вход водородной полости которого гидравлически связан с герметичным резервуаром с водой, имеющим штуцер наддува, газожидкостной сепаратор, подключенный к выходу водородной полости электролизера и связанный с ее входом байпасной гидромагистралью, на которой установлен насос, баллон для хранения водорода и реактивный двигатель, соединенные пневмомагистралью с клапаном, а также управляемый источник тока, подключенный к электролизеру, введен подключенный к управляемому источнику тока электрохимический компрессор водорода, вход которого пневматически соединен с газовой полостью газожидкостного сепаратора, а выход - с баллоном для хранения водорода и штуцером наддува резервуара с водой пневмомагистралями с клапанами, причем на второй из них установлен также редуктор давления, при этом электрохимический компрессор водорода имеет байпасную разгрузочную пневмомагистраль с клапаном, соединяющую выход компрессора с его входом.

Кроме того, в импульсной реактивной двигательной установке космического аппарата выход электролизера по кислороду сообщается с системой жизнеобеспечения космического аппарата, а твердополимерный электролизер и электрохимический компрессор водорода включены последовательно в общую цепь электропитания управляемого источника тока.

Суть предложения состоит в том, что при той же, что и в прототипе, общей архитектуре установки (ракетный двигатель + его служебные системы на основе электролизера воды) кардинально меняется рабочее тело двигателя. Вместо высокотемпературных продуктов сгорания кислородно-водородной смеси он работает на «холодном» водороде высокого давления, при этом «силовые» характеристики двигателя практически не ухудшаются. Последнее объясняется тем, что скорость звука в водороде (около 1300 м/с) близка к скорости звука в рабочих газах кислородно-водородных двигателей (1000-1500 м/с), т.е. удельная энергия в обоих случаях примерно одинакова. Уровень же давлений, который можно получить с помощью электрохимического компрессора водорода, (до 400 атм) заметно выше, чем тот, что используется в «горячих» двигателях (до 250 атм). Температура же в камере сгорания в данном случае на порядок ниже, что увеличивает ресурс двигателя, а конструкция установки проще и надежнее.

Кроме того, плотность холодного газообразного водорода при давлении 400 атм и выше уже приближается к плотности жидкого, поэтому запас топлива в РДУ может существенно увеличиться, и установка сможет работать более длительное время. Помимо этого появляется возможность использовать наработанный кислород для нужд экипажа КА.

Схема РДУ дана на фиг. 1. Как и в прототипе ее основными элементами являются РД (10) и снабженный датчиком давления (8) баллон хранения водорода (БХВ) (11), соединенные пневмомагистралью с клапаном (3). В отличие от прототипа камера сгорания РД здесь не имеет рубашки охлаждения, поскольку двигатель работает на холодном водороде.

Основным новым элементом служебных систем установки является электрохимический компрессор водорода (ЭКВ) (13), работающий по принципу, аналогичному тому, что используется в твердополимерных электролизерах воды (Electrochemical hydrogen compressor - Wikipedia). В настоящее время с помощью такого устройства получен водород с давлением 400 атм («Hydrogen - A Competitive Energy Storage Medium To Enable the, Large Scale Integration of Renewable Energies», Seville, 15-16 November 2012, HyET Electrochemical Hydrogen Compression, http://www.iphe.net/docs/Events/Seville_11-12/V). Генерирующая часть установки (фактически - генератор водорода высокого давления) представляет собой последовательно соединенные ЭВ (12) и ЭКВ (13). Соединены они через ГЖС (14), который снабжен датчиком давления (7) и датчиком заполнения (9). Вместе с водородной полостью ЭВ и насосом (15), установленным на байпасной гидромагистрали электролизера (18), водяная полость ГЖС (14) образует замкнутый по воде циркуляционный контур. При работе ЭВ (12) кислород удаляется прямо из электролизера (12), а водород вместе с неразложившейся водой направляется в этот циркуляционный контур и по магистрали (6) попадает в ГЖС (14), где отделяется от воды, циркулирующей в контуре.

Уменьшающийся запас воды в контуре пополняется из резервуара с водой (РСВ) (16), соединенного с водородной полостью ЭВ (12) гидромагистралью с клапаном (1). Штуцер наддува (21) РСВ (16) подключен к выходу ЭКВ (13) пневмомагистралью с клапаном (2) и редуктором (17). Вход ЭКВ (13) сообщается с газовой полостью ГЖС (14) пневмомагистралью (19), а выход ЭКВ подключен к БХВ (11) пневмомагистралью с клапаном (4). Кроме того, ЭКВ (13) имеет байпасную разгрузочную пневмомагистраль с клапаном (5).

Электропитание ЭВ (12) и ЭКВ (13) осуществляется от управляемого источника тока (УИТ) (20), при этом оба агрегата могут включаться последовательно в общую цепь электропитания этого источника. Управление установкой может происходить как автоматически, так и вручную. В последнем случае в качестве датчиков давления используются манометры, а вместо электрических клапанов могут применяться вентили.

Работа данной РДУ (как и прототипа) носит циклический характер и состоит из «зарядки» и «реактивной» стадии, когда работает ее двигатель. На стадии «зарядки» происходит наработка рабочего тела двигателя.

Перед началом эксплуатации установки РСВ (16) должен быть заполнен водой, а газовые полости - водородом (исключая, естественно, кислородную полость электролизера). Заполнение БХВ начинается после подачи питания на ЭКВ (13) от УИТ (20), при этом клапаны на магистралях (1, 2, 4) открыты, а на магистралях (3, 5) - закрыты. Возникший при этом на компрессоре (13) перепад давления стимулирует течение воды из РСВ (16) через водородную полость ЭВ (12) в ГЖС (14), что позволяет начать электролиз. После этого включают питание ЭВ (12), и начинается наработка водорода, процесс при этом контролируют по показаниям датчиков давления - (7, 8). Кислород из РДУ удаляют (например, направляется в систему жизнеобеспечения КА), что увеличивает пожаробезопасность установки.

Следует отметить, что при работе ЭВ на его мембране должен соблюдаться допустимый перепад давления между кислородом и водородом. Для твердополимерных ЭВ обычной конструкции этот перепад достигает 2-3 ати. Для ограничения нагрузки на мембрану используют различные регуляторы перепада давления или специальные схемные решения, например применение же специальных суппортов («GES/Dimensionally Stable High Perfomance Membrane», www.hydrogen.energy.gov; патент US 6/365/032 B1, 02.04.2002, МПК: C25B 1/12 (2006.01), C25B 11/02 (2006.01), C25B 11/04 (2006.01); заявка US 20090035631 A1, 05.02.2009, МПК: C25B 13/00 (2006.01), C25B 9/04 (2006.01), C25B 9/08 (2006.01)) позволяет работать при перепадах до 140 ати и более. В этом случае использовать схемные решения для выравнивания давлений водорода и кислорода на мембране электролизера необязательно.

После заполнения ГЖС (14) водой (процесс контролируется датчиком заполнения (9)) клапан на магистрали (1) закрывается, и включается циркуляционный насос (15), установленный на байпасной гидромагистрали (18). Последующая наработка газов происходит в процессе циркуляции воды по замкнутому контуру, включающему водяную полость ГЖС (14), насос (15), водородную полость ЭВ (12) и магистрали (6) и (18). Запас ее в контуре пополняется из РСВ (16) по показаниям датчика заполнения (9) в ГЖС (14), либо исходя из расчетного количества наработанного водорода (по показаниям датчика давления (8)). Для этого открывается клапан на магистрали (1), и водород через водородную полость ЭВ (12) вытесняет порцию воды из РСВ (16) в ГЖС (14). Падение давления водорода в РСВ (16) компенсируется по мере необходимости, исходя из показаний датчика давления (7), для чего открывается клапан на магистрали (2), и водород с выхода ЭКВ (13) через редуктор (17) поступает в газовую подушку РСВ (16) по магистрали (2). Полученный при электролизе водород из газовой полости ГЖС (14) по магистрали (19) поступает на вход ЭКВ (13) и далее по магистрали (4) - в БХВ (11). Клапан на байпасной разгрузочной пневмомагистрали (5) при этом закрыт. Последовательное размещение на водородной линии установки двух твердополимерных электрохимических агрегатов (ЭВ и ЭКВ) делает необходимым согласование режимов их работы. В противном случае возможно возникновение перепадов давления водорода, нарушающих нормальную работу одного из этих агрегатов, и выход из строя всей установки. Обеспечить согласованную работу ЭВ (12) и ЭКВ (13) можно с помощью соответствующей системы управления, однако проще и надежнее включить оба эти агрегата в общую цепь электропитания. В этом случае число протонов, т.е. атомов водорода, проходящих через мембрану ЭВ, равно числу протонов, проходящих через мембрану ЭКВ (13). При этом точный баланс соблюдается как в стационарном режиме, так и на переходных режимах работы, а количество водорода в ГЖС (14) поддерживается постоянным. Отсутствие дисбаланса в работе основных агрегатов РДУ естественно повышает ее надежность.

После заполнения БХВ (11) (контроль - по датчику давления (8)) электропитание ЭВ (12), ЭКВ (13) и насоса (15) отключается, закрывается клапан на пневмомагистрали (4), открывается клапан на байпасной разгрузочной пневмомагистрали (5), и давление водорода по всему тракту генерирующей части установки выравнивается. Впоследствии после отработки двигателя закрывается клапан на пневмомагистрали (3), открывается клапан на пневмомагистрали (4) и давление в РДУ падает до уровня остаточного давления в БХВ. Генерирующая часть установки возвращается в свое исходное состояние, а сама установка готова к запуску РД (10), который срабатывает по команде системы управления КА.


ИМПУЛЬСНАЯ РЕАКТИВНАЯ ДВИГАТЕЛЬНАЯ УСТАНОВКА КОСМИЧЕСКОГО АППАРАТА
ИМПУЛЬСНАЯ РЕАКТИВНАЯ ДВИГАТЕЛЬНАЯ УСТАНОВКА КОСМИЧЕСКОГО АППАРАТА
Источник поступления информации: Роспатент

Showing 321-330 of 370 items.
10.04.2019
№219.017.0636

Ракетный разгонный блок

Изобретение относится к ракетно-космической технике, а именно к конструкции ракетных разгонных блоков. Ракетный разгонный блок содержит корпус, состоящий из верхнего переходника с металлической обшивкой, среднего переходника, нижнего переходника, бак окислителя, бак горючего, межбаковую ферму,...
Тип: Изобретение
Номер охранного документа: 0002412871
Дата охранного документа: 27.02.2011
17.04.2019
№219.017.153f

Способ заправки рабочим телом гидравлических магистралей доставляемого оборудования космических объектов

Изобретение относится к космической технике и может быть использовано для заправки рабочими телами гидравлических магистралей доставляемого на орбитальные космические объекты оборудования. Согласно предлагаемому способу, перед заполнением гидравлической магистрали рабочим телом из бака...
Тип: Изобретение
Номер охранного документа: 0002271969
Дата охранного документа: 20.03.2006
17.04.2019
№219.017.15b2

Способ определения расхода системы подачи рабочего тела к источнику плазмы

Изобретение относится к эксплуатируемой преимущественно в условиях космического вакуума измерительной технике, предназначенной для определения расхода рабочего тела (ксенона), подаваемого из баков реактивных двигательных установок космических аппаратов. Измеряют рабочее давление P(t) во входной...
Тип: Изобретение
Номер охранного документа: 0002392589
Дата охранного документа: 20.06.2010
17.04.2019
№219.017.15fe

Способ определения герметичности системы подачи рабочего тела к источнику плазмы, преимущественно в условиях вакуума

Изобретение относится к области испытательной техники, в частности к испытаниям на герметичность систем космических аппаратов. Способ определения герметичности системы подачи рабочего тела к источнику плазмы включает измерение давления и температуры в контролируемом объеме системы на...
Тип: Изобретение
Номер охранного документа: 0002377522
Дата охранного документа: 27.12.2009
19.04.2019
№219.017.2df7

Система заправки и хранения кислорода на борту космического аппарата

Изобретение относится к средствам жизнеобеспечения экипажей космических аппаратов, в частности при проведении ими внекорабельной деятельности (ВКД). Система содержит блоки: приема газа (в виде заправляемого переносного кислородного блока), предварительной осушки кислорода (с регулятором...
Тип: Изобретение
Номер охранного документа: 0002347724
Дата охранного документа: 27.02.2009
19.04.2019
№219.017.2e36

Устройство для мажоритарного выбора сигналов

Изобретение относится к области автоматики и вычислительной техники и может быть использовано при построении высоконадежных резервированных устройств и систем с возможностью обеспечения синхронной работы всех резервных каналов. Техническим результатом изобретения является повышение надежности...
Тип: Изобретение
Номер охранного документа: 0002396591
Дата охранного документа: 10.08.2010
19.04.2019
№219.017.2f31

Распорное устройство для тонкостенных оболочек

Изобретение относится к технологии получения сварных соединений, в частности к распорному устройству для сварки тонкостенных оболочек, и может быть использовано для выполнения сварных швов в замкнутых полостях различных изделий. Распорное устройство содержит центральный цилиндр и распоры с...
Тип: Изобретение
Номер охранного документа: 0002353495
Дата охранного документа: 27.04.2009
19.04.2019
№219.017.2f48

Способ управления ориентацией космического аппарата, снабженного бортовым радиотехническим комплексом

Изобретение относится к космической технике и может быть использовано в системах управления ориентацией спутников связи, снабженных бортовым радиотехническим комплексом, для выполнения своей целевой задачи. Способ управления ориентацией космического аппарата заключается в определении градиентов...
Тип: Изобретение
Номер охранного документа: 0002355013
Дата охранного документа: 10.05.2009
19.04.2019
№219.017.3024

Устройство для хранения и подачи жидких компонентов (варианты)

Изобретение относится к устройствам для хранения и подачи жидкостей и может быть использовано для хранения и подачи компонентов топлива к потребителям на космических кораблях и летательных аппаратах. Предлагаемое устройство содержит раму с установленными на ней системой наддува и топливными...
Тип: Изобретение
Номер охранного документа: 0002301180
Дата охранного документа: 20.06.2007
19.04.2019
№219.017.3353

Способ подвода газообразного вещества в полость герметизируемого агрегата с ее герметизацией и фиксирующее устройство герметизируемого агрегата

Изобретения могут быть использованы в агрегатах с жесткими требованиями по герметичности внутренних полостей, например, в авиационной и космической технике. Способ подвода газообразного вещества в полость 7 герметизируемого агрегата с ее герметизацией включает сообщение штуцера 3 с магистралью...
Тип: Изобретение
Номер охранного документа: 0002430272
Дата охранного документа: 27.09.2011
Showing 291-295 of 295 items.
10.07.2018
№218.016.6f2d

Электрохимический компрессор водорода

Изобретение относится к электрохимии, в том числе к «зеленой энергетике», и может использоваться в транспортных энергосистемах и космосе. Электрохимический компрессор водорода включает прочный корпус с входным и выходным штуцерами. Пакет электроизолированных мембранно-электродных блоков состоит...
Тип: Изобретение
Номер охранного документа: 0002660695
Дата охранного документа: 09.07.2018
05.12.2018
№218.016.a333

Способ создания реактивной тяги пилотируемого космического аппарата

Изобретение относится к ракетно-космической технике и может использоваться при разработке реактивных двигательных установок (ДУ), предназначенных для маневрирования пилотируемых космических аппаратов (КА). Способ создания реактивной тяги пилотируемого космического аппарата, включающий...
Тип: Изобретение
Номер охранного документа: 0002673920
Дата охранного документа: 03.12.2018
20.03.2019
№219.016.e33e

Способ эксплуатации пилотируемой орбитальной станции

Изобретение относится к управлению полётом и жизнеобеспечению экипажей космических аппаратов (КА), преимущественно орбитальных станций. Способ включает выделение углекислого газа из воздуха обитаемых отсеков КА путем адсорбции, а также последующую десорбцию, охлаждение (с частичным сжижением) и...
Тип: Изобретение
Номер охранного документа: 0002673215
Дата охранного документа: 22.11.2018
29.04.2019
№219.017.436a

Энергоустановка с электрохимическим генератором на основе водородно-кислородных топливных элементов и способ ее эксплуатации

Изобретение относится к энергоустановкам с электрохимическими генераторами (ЭХГ) на основе водородно-кислородных топливных элементов (ТЭ). Техническим результатом является повышение надежности включения и работоспособности ЭХГ при низких температурах окружающей среды. Согласно изобретению...
Тип: Изобретение
Номер охранного документа: 0002417487
Дата охранного документа: 27.04.2011
10.07.2019
№219.017.adb0

Автономная система энергопитания и способ ее эксплуатации

Изобретение относится к области автономных систем энергопитания (АСЭП) отдельных объектов, удаленных от линии электропередачи, а именно к АСЭП, включающим возобновляемые источники энергии в качестве внешнего источника электроэнергии, электрохимический генератор (ЭХГ), электролизер и баллоны для...
Тип: Изобретение
Номер охранного документа: 0002371813
Дата охранного документа: 27.10.2009
+ добавить свой РИД