×
13.01.2017
217.015.8ec0

Результат интеллектуальной деятельности: ИМПУЛЬСНАЯ РЕАКТИВНАЯ ДВИГАТЕЛЬНАЯ УСТАНОВКА КОСМИЧЕСКОГО АППАРАТА

Вид РИД

Изобретение

№ охранного документа
0002605163
Дата охранного документа
20.12.2016
Аннотация: Изобретение относится к космической технике и может использоваться для корректировки орбиты обитаемых космических аппаратов (КА). Импульсная реактивная двигательная установка космического аппарата включает твердополимерный электролизер воды, вход водородной полости которого гидравлически связан с герметичным резервуаром с водой, имеющим штуцер наддува, газожидкостной сепаратор, подключенный к выходу водородной полости электролизера и связанный с ее входом байпасной гидромагистралью, на которой установлен насос, баллон для хранения водорода и реактивный двигатель, соединенные пневмомагистралью с клапаном, а также управляемый источник тока, подключенный к электролизеру. В установку введен подключенный к управляемому источнику тока электрохимический компрессор водорода, вход которого пневматически соединен с газовой полостью газожидкостного сепаратора, а выход - с баллоном для хранения водорода и штуцером наддува резервуара с водой пневмомагистралями с клапанами, причем на второй из них установлен также редуктор давления, при этом электрохимический компрессор водорода имеет байпасную разгрузочную пневмомагистраль с клапаном, соединяющую выход компрессора с его входом. Изобретение обеспечивает повышение ресурса и надежности импульсной реактивной двигательной установки космического аппарата. 1 з.п. ф-лы, 1 ил.

Изобретение относится к космической технике и может использоваться для корректировки орбиты обитаемых космических аппаратов (КА).

Идея производить ракетное топливо (водород и кислород) в условиях космического полета путем электролиза воды в последние годы достаточно популярна. При этом разработана технология такого процесса как для орбитального заправочного комплекса (Notardonato W, Johnson W, Swanger A, McQuade W. 2012 In-space propellant production using water. In Proc. AIAA SPACE 2012 Conference and Exposition, number AIAA 2012-5288, 11-13 September 2012, Pasadena, CA; "Электролизно-криогенный производственный комплекс в орбитальных условиях", www.energoobmen.ru/OZK), так и непосредственно на борту КА (патенты RU 2215891 от 10.11.2003, МПК: F02K 11/00 (2006.01) и RU 2310768 от 20.11.2007, МПК: F02K 11/00 (2006.01), B64G 1/40 (2006.01)).

Аналогом данного предложения можно считать импульсную реактивную двигательную установку (РДУ), включающую в свой состав электролизер воды (ЭВ) с жидким электролитом - наиболее распространенным типом электролизеров (патент RU 2215891 от 10.11.2003, МПК: F02K 11/00 (2006.01)). Несмотря на большой практический опыт применения таких агрегатов в наземных условиях, на борту КА их использование не вполне оправдано по нескольким причинам. Последние перечислены в последующей разработке тех же авторов (патент RU 2310768 от 20.11.2007, МПК: F02K 11/00 (2006.01), B64G 1/40 (2006.01)), которая в данном случае принята за прототип.

В отличие от аналога здесь используется твердополимерный ЭВ с катодной системой водоснабжения («А water-based propulsion system for advanced spacecraft» Journal AIAA (American Institute of Aeronautics and Astronautics) (USA). Guidance, Navigation, and Control Conference. San Jose: AIAA 2006, p. 426-438), при которой кислород генерируется в чистом виде, без примесей воды. Это существенно упрощает схему РДУ и повышает ее надежность. Таким образом, прототип импульсной реактивной двигательной установки космического аппарата содержит твердополимерный электролизер воды, вход водородной полости которого гидравлически связан с герметичным резервуаром с водой, имеющим штуцер наддува, газожидкостной сепаратор (ГЖС), подключенный к выходу водородной полости электролизера и связанный с ее входом байпасной гидромагистралью, на которой установлен насос, баллон для хранения водорода и реактивный двигатель, соединенные пневмомагистралью с клапаном, а также управляемый источник тока, подключенный к электролизеру.

Однако такое техническое решение также имеет свои недостатки, к которым можно отнести:

- высокая температура (до 2500 К) в камере сгорания при использовании кислородно-водородного топлива. Несмотря на импульсный режим работы установки это приводит к постепенному выгоранию критического сечения сопла, а это затрудняет нормирование импульса, который дает РДУ;

- необходимость нагревать водород перед подачей его в камеру сгорания существенно увеличивает энергопотребление установки во время работы двигателя, поскольку даже заранее перемешанная кислородно-водородная смесь самовоспламеняется при температуре около 500 К («Водород. Свойства, получение, хранение…» - Справочник под ред. Д.Ю. Гамбурга. М.: Химия, 1989, стр. 50). В рассматриваемом же случае в нагретый водород подается холодный кислород, поэтому предварительный нагрев водорода должен быть еще выше, особенно в начале, пока двигатель еще холодный. Мощность нагревателя в этот момент должна быть существенно увеличена (с учетом тепловой инерционности нагревателя).

- воспламенение кислородно-водородных смесей с большой разницей температур компонентов, кроме того, может сопровождаться детонацией и задержкой воспламенения. Это также меняет импульс, выдаваемый РДУ, и может привести к поломке двигателя;

- установка-прототип не рассчитана на использование в обитаемых КА и никак не интегрируется с другими системами таких аппаратов.

Задачей данного предложения является устранение перечисленных недостатков.

Техническим результатом изобретения является повышение ресурса и надежности импульсной РДУ.

Технический результат достигается тем, что в импульсную реактивную двигательную установку космического аппарата, включающую твердополимерный электролизер воды, вход водородной полости которого гидравлически связан с герметичным резервуаром с водой, имеющим штуцер наддува, газожидкостной сепаратор, подключенный к выходу водородной полости электролизера и связанный с ее входом байпасной гидромагистралью, на которой установлен насос, баллон для хранения водорода и реактивный двигатель, соединенные пневмомагистралью с клапаном, а также управляемый источник тока, подключенный к электролизеру, введен подключенный к управляемому источнику тока электрохимический компрессор водорода, вход которого пневматически соединен с газовой полостью газожидкостного сепаратора, а выход - с баллоном для хранения водорода и штуцером наддува резервуара с водой пневмомагистралями с клапанами, причем на второй из них установлен также редуктор давления, при этом электрохимический компрессор водорода имеет байпасную разгрузочную пневмомагистраль с клапаном, соединяющую выход компрессора с его входом.

Кроме того, в импульсной реактивной двигательной установке космического аппарата выход электролизера по кислороду сообщается с системой жизнеобеспечения космического аппарата, а твердополимерный электролизер и электрохимический компрессор водорода включены последовательно в общую цепь электропитания управляемого источника тока.

Суть предложения состоит в том, что при той же, что и в прототипе, общей архитектуре установки (ракетный двигатель + его служебные системы на основе электролизера воды) кардинально меняется рабочее тело двигателя. Вместо высокотемпературных продуктов сгорания кислородно-водородной смеси он работает на «холодном» водороде высокого давления, при этом «силовые» характеристики двигателя практически не ухудшаются. Последнее объясняется тем, что скорость звука в водороде (около 1300 м/с) близка к скорости звука в рабочих газах кислородно-водородных двигателей (1000-1500 м/с), т.е. удельная энергия в обоих случаях примерно одинакова. Уровень же давлений, который можно получить с помощью электрохимического компрессора водорода, (до 400 атм) заметно выше, чем тот, что используется в «горячих» двигателях (до 250 атм). Температура же в камере сгорания в данном случае на порядок ниже, что увеличивает ресурс двигателя, а конструкция установки проще и надежнее.

Кроме того, плотность холодного газообразного водорода при давлении 400 атм и выше уже приближается к плотности жидкого, поэтому запас топлива в РДУ может существенно увеличиться, и установка сможет работать более длительное время. Помимо этого появляется возможность использовать наработанный кислород для нужд экипажа КА.

Схема РДУ дана на фиг. 1. Как и в прототипе ее основными элементами являются РД (10) и снабженный датчиком давления (8) баллон хранения водорода (БХВ) (11), соединенные пневмомагистралью с клапаном (3). В отличие от прототипа камера сгорания РД здесь не имеет рубашки охлаждения, поскольку двигатель работает на холодном водороде.

Основным новым элементом служебных систем установки является электрохимический компрессор водорода (ЭКВ) (13), работающий по принципу, аналогичному тому, что используется в твердополимерных электролизерах воды (Electrochemical hydrogen compressor - Wikipedia). В настоящее время с помощью такого устройства получен водород с давлением 400 атм («Hydrogen - A Competitive Energy Storage Medium To Enable the, Large Scale Integration of Renewable Energies», Seville, 15-16 November 2012, HyET Electrochemical Hydrogen Compression, http://www.iphe.net/docs/Events/Seville_11-12/V). Генерирующая часть установки (фактически - генератор водорода высокого давления) представляет собой последовательно соединенные ЭВ (12) и ЭКВ (13). Соединены они через ГЖС (14), который снабжен датчиком давления (7) и датчиком заполнения (9). Вместе с водородной полостью ЭВ и насосом (15), установленным на байпасной гидромагистрали электролизера (18), водяная полость ГЖС (14) образует замкнутый по воде циркуляционный контур. При работе ЭВ (12) кислород удаляется прямо из электролизера (12), а водород вместе с неразложившейся водой направляется в этот циркуляционный контур и по магистрали (6) попадает в ГЖС (14), где отделяется от воды, циркулирующей в контуре.

Уменьшающийся запас воды в контуре пополняется из резервуара с водой (РСВ) (16), соединенного с водородной полостью ЭВ (12) гидромагистралью с клапаном (1). Штуцер наддува (21) РСВ (16) подключен к выходу ЭКВ (13) пневмомагистралью с клапаном (2) и редуктором (17). Вход ЭКВ (13) сообщается с газовой полостью ГЖС (14) пневмомагистралью (19), а выход ЭКВ подключен к БХВ (11) пневмомагистралью с клапаном (4). Кроме того, ЭКВ (13) имеет байпасную разгрузочную пневмомагистраль с клапаном (5).

Электропитание ЭВ (12) и ЭКВ (13) осуществляется от управляемого источника тока (УИТ) (20), при этом оба агрегата могут включаться последовательно в общую цепь электропитания этого источника. Управление установкой может происходить как автоматически, так и вручную. В последнем случае в качестве датчиков давления используются манометры, а вместо электрических клапанов могут применяться вентили.

Работа данной РДУ (как и прототипа) носит циклический характер и состоит из «зарядки» и «реактивной» стадии, когда работает ее двигатель. На стадии «зарядки» происходит наработка рабочего тела двигателя.

Перед началом эксплуатации установки РСВ (16) должен быть заполнен водой, а газовые полости - водородом (исключая, естественно, кислородную полость электролизера). Заполнение БХВ начинается после подачи питания на ЭКВ (13) от УИТ (20), при этом клапаны на магистралях (1, 2, 4) открыты, а на магистралях (3, 5) - закрыты. Возникший при этом на компрессоре (13) перепад давления стимулирует течение воды из РСВ (16) через водородную полость ЭВ (12) в ГЖС (14), что позволяет начать электролиз. После этого включают питание ЭВ (12), и начинается наработка водорода, процесс при этом контролируют по показаниям датчиков давления - (7, 8). Кислород из РДУ удаляют (например, направляется в систему жизнеобеспечения КА), что увеличивает пожаробезопасность установки.

Следует отметить, что при работе ЭВ на его мембране должен соблюдаться допустимый перепад давления между кислородом и водородом. Для твердополимерных ЭВ обычной конструкции этот перепад достигает 2-3 ати. Для ограничения нагрузки на мембрану используют различные регуляторы перепада давления или специальные схемные решения, например применение же специальных суппортов («GES/Dimensionally Stable High Perfomance Membrane», www.hydrogen.energy.gov; патент US 6/365/032 B1, 02.04.2002, МПК: C25B 1/12 (2006.01), C25B 11/02 (2006.01), C25B 11/04 (2006.01); заявка US 20090035631 A1, 05.02.2009, МПК: C25B 13/00 (2006.01), C25B 9/04 (2006.01), C25B 9/08 (2006.01)) позволяет работать при перепадах до 140 ати и более. В этом случае использовать схемные решения для выравнивания давлений водорода и кислорода на мембране электролизера необязательно.

После заполнения ГЖС (14) водой (процесс контролируется датчиком заполнения (9)) клапан на магистрали (1) закрывается, и включается циркуляционный насос (15), установленный на байпасной гидромагистрали (18). Последующая наработка газов происходит в процессе циркуляции воды по замкнутому контуру, включающему водяную полость ГЖС (14), насос (15), водородную полость ЭВ (12) и магистрали (6) и (18). Запас ее в контуре пополняется из РСВ (16) по показаниям датчика заполнения (9) в ГЖС (14), либо исходя из расчетного количества наработанного водорода (по показаниям датчика давления (8)). Для этого открывается клапан на магистрали (1), и водород через водородную полость ЭВ (12) вытесняет порцию воды из РСВ (16) в ГЖС (14). Падение давления водорода в РСВ (16) компенсируется по мере необходимости, исходя из показаний датчика давления (7), для чего открывается клапан на магистрали (2), и водород с выхода ЭКВ (13) через редуктор (17) поступает в газовую подушку РСВ (16) по магистрали (2). Полученный при электролизе водород из газовой полости ГЖС (14) по магистрали (19) поступает на вход ЭКВ (13) и далее по магистрали (4) - в БХВ (11). Клапан на байпасной разгрузочной пневмомагистрали (5) при этом закрыт. Последовательное размещение на водородной линии установки двух твердополимерных электрохимических агрегатов (ЭВ и ЭКВ) делает необходимым согласование режимов их работы. В противном случае возможно возникновение перепадов давления водорода, нарушающих нормальную работу одного из этих агрегатов, и выход из строя всей установки. Обеспечить согласованную работу ЭВ (12) и ЭКВ (13) можно с помощью соответствующей системы управления, однако проще и надежнее включить оба эти агрегата в общую цепь электропитания. В этом случае число протонов, т.е. атомов водорода, проходящих через мембрану ЭВ, равно числу протонов, проходящих через мембрану ЭКВ (13). При этом точный баланс соблюдается как в стационарном режиме, так и на переходных режимах работы, а количество водорода в ГЖС (14) поддерживается постоянным. Отсутствие дисбаланса в работе основных агрегатов РДУ естественно повышает ее надежность.

После заполнения БХВ (11) (контроль - по датчику давления (8)) электропитание ЭВ (12), ЭКВ (13) и насоса (15) отключается, закрывается клапан на пневмомагистрали (4), открывается клапан на байпасной разгрузочной пневмомагистрали (5), и давление водорода по всему тракту генерирующей части установки выравнивается. Впоследствии после отработки двигателя закрывается клапан на пневмомагистрали (3), открывается клапан на пневмомагистрали (4) и давление в РДУ падает до уровня остаточного давления в БХВ. Генерирующая часть установки возвращается в свое исходное состояние, а сама установка готова к запуску РД (10), который срабатывает по команде системы управления КА.


ИМПУЛЬСНАЯ РЕАКТИВНАЯ ДВИГАТЕЛЬНАЯ УСТАНОВКА КОСМИЧЕСКОГО АППАРАТА
ИМПУЛЬСНАЯ РЕАКТИВНАЯ ДВИГАТЕЛЬНАЯ УСТАНОВКА КОСМИЧЕСКОГО АППАРАТА
Источник поступления информации: Роспатент

Showing 171-180 of 370 items.
10.11.2015
№216.013.8f12

Способ управления движением космического объекта после отделения от другого космического объекта

Изобретение относится к управлению движением космического объекта (КО), например пилотируемого КО, после его отделения от другого КО, например ракеты-носителя (РН). Разворот КО в требуемую ориентацию начинают в момент Δt, отсчитываемый от момента его отделения от другого КО (далее - РН)....
Тип: Изобретение
Номер охранного документа: 0002568235
Дата охранного документа: 10.11.2015
20.11.2015
№216.013.8f53

Коммутатор напряжения с защитой от перегрузки по току

Использование: в области электротехники. Технический результат - повышение точности коммутации в условиях изменения температуры при снижении массы и габаритов коммутатора. Коммутатор напряжения с защитой от перегрузки по току содержит элемент И, последовательно соединенные электронный...
Тип: Изобретение
Номер охранного документа: 0002568307
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.8f6f

Способ измерения дальности до объектов по их изображениям преимущественно в космосе

Изобретение относится к способам измерения дальности и линейных размеров объектов по их изображениям. Согласно способу измеряют размеры и координаты центра изображения объекта до и после перемещения средства наблюдения под углом к оптической оси. Определение дальности производят в зависимости...
Тип: Изобретение
Номер охранного документа: 0002568335
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.8f86

Центробежное рабочее колесо

Изобретение может быть использовано в малорасходных насосах изделий ракетно-космической техники. Центробежное рабочее колесо содержит выполненный заодно со ступицей (1) ведущий диск (2) с лопатками (3) и покрывной диск (4) с центральным входным отверстием (5). Диск (4) контактирует с торцовыми...
Тип: Изобретение
Номер охранного документа: 0002568358
Дата охранного документа: 20.11.2015
20.01.2016
№216.013.a3cd

Способ эксплуатации электролизной системы, работающей при высоком давлении

Изобретение относится к «водородной» энергетике и может быть использовано на станциях заправки перспективного автотранспорта на топливных элементах. Способ эксплуатации электролизной системы, работающей при высоком давлении, включает процесс разложения воды электрическим током с раздельным...
Тип: Изобретение
Номер охранного документа: 0002573575
Дата охранного документа: 20.01.2016
27.01.2016
№216.014.bdc2

Многослойная трансформируемая герметичная оболочка

Изобретение относится к трансформируемым космическим структурам. Многослойная трансформируемая герметичная оболочка (МТГО) включает ЭВТИ с защитой от атомарного кислорода, противометеороидную защиту в виде защитных противометеороидных экранов с межэкранными разделителями, армирующий слой,...
Тип: Изобретение
Номер охранного документа: 0002573684
Дата охранного документа: 27.01.2016
20.06.2016
№217.015.042a

Устройство для определения параметров двухполюсника

Изобретение относится к электроизмерительной технике, а именно к измерению электрических параметров двухполюсников. Устройство содержит первый блок задания схемы замещения, преобразователь ток-напряжение, масштабный усилитель, аналогово-цифровой преобразователь, блок управления измерением,...
Тип: Изобретение
Номер охранного документа: 0002587647
Дата охранного документа: 20.06.2016
20.06.2016
№217.015.0500

Способ определения тензора инерции космического аппарата

Изобретение относится к определению массово-инерционных характеристик космических аппаратов (КА). Способ включает измерение острого угла между направлением на Солнце и плоскостью орбиты КА. При достижении этим углом максимального значения выставляют строительную ось КА, отвечающую максимальному...
Тип: Изобретение
Номер охранного документа: 0002587663
Дата охранного документа: 20.06.2016
10.05.2016
№216.015.2b0c

Способ тарировки датчика микроускорений в космическом полете

Изобретение относится к космической технике и может быть использовано при определении погрешности датчика микроускорений на космическом аппарате (КА). Технический результат - обеспечение тарировки датчика микроускорений в космическом полете. Способ тарировки датчика микроускорений в космическом...
Тип: Изобретение
Номер охранного документа: 0002583882
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.2b0d

Способ определения параметров двухполюсника

Изобретение относится к электроизмерительной технике, а конкретно к измерению электрических параметров двухполюсников, используемых в качестве датчиков физических процессов (температуры, давления, уровня жидких и сыпучих сред и др.) на промышленных объектах и транспортных средствах. Техническим...
Тип: Изобретение
Номер охранного документа: 0002583879
Дата охранного документа: 10.05.2016
Showing 171-180 of 295 items.
20.10.2015
№216.013.84fb

Ионный двигатель

Изобретение относится к области электроракетных двигателей. В крупногабаритном ионном двигателе, содержащем заключенную в корпус газоразрядную камеру, включающую узел подачи рабочего тела, ионно-оптическую систему, состоящую из плазменного и ускоряющего электродов, закрепленных на наружной...
Тип: Изобретение
Номер охранного документа: 0002565646
Дата охранного документа: 20.10.2015
27.10.2015
№216.013.87cf

Космический приемник-преобразователь лазерного излучения

Изобретение относится к области создания приемников-преобразователей на основе полупроводниковых фотоэлектрических преобразователей для преобразования электромагнитной энергии лазерного излучения высокой плотности. Заявлена конструкция космического приемника-преобразователя лазерного излучения...
Тип: Изобретение
Номер охранного документа: 0002566370
Дата охранного документа: 27.10.2015
27.10.2015
№216.013.87d8

Способ определения величины атмосферной рефракции в условиях космического полета

Заявляемое изобретение относится к навигационной технике, а именно к способу навигации космического аппарата (КА). Способ основан на измерении отклонения истинного и измеренного положения звезды, наблюдаемой сквозь земную атмосферу. Отклонение связано с атмосферной рефракцией. Для этого с...
Тип: Изобретение
Номер охранного документа: 0002566379
Дата охранного документа: 27.10.2015
10.11.2015
№216.013.8e25

Способ зондирования верхней атмосферы

Изобретение относится к космической технике и может быть использовано для зондирования верхней атмосферы. Способ зондирования верхней атмосферы основан на измерении и прогнозировании орбиты космического аппарата (КА) и измерении физических параметров атмосферы. Прогнозируется время...
Тип: Изобретение
Номер охранного документа: 0002567998
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8e49

Способ электролиза воды под давлением в электролизной системе

Изобретение относится к способу электролиза воды под давлением в электролизной системе, входящей в состав накопителей электроэнергии, работающих с замкнутым по воде рабочим циклом. Способ включает подачу постоянного напряжения от источника питания и воды, частичное разложение воды током в...
Тип: Изобретение
Номер охранного документа: 0002568034
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8ebf

Способ определения скорости движения фронтальной части ледника с космического аппарата

Изобретение относится к области дистанционного мониторинга опасных природных процессов и может быть использовано для определения скорости движения фронтальной части ледника. Сущность: определяют неподвижные характерные точки на склонах ледника. Осуществляют с космического аппарата съемку...
Тип: Изобретение
Номер охранного документа: 0002568152
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8f12

Способ управления движением космического объекта после отделения от другого космического объекта

Изобретение относится к управлению движением космического объекта (КО), например пилотируемого КО, после его отделения от другого КО, например ракеты-носителя (РН). Разворот КО в требуемую ориентацию начинают в момент Δt, отсчитываемый от момента его отделения от другого КО (далее - РН)....
Тип: Изобретение
Номер охранного документа: 0002568235
Дата охранного документа: 10.11.2015
20.11.2015
№216.013.8f53

Коммутатор напряжения с защитой от перегрузки по току

Использование: в области электротехники. Технический результат - повышение точности коммутации в условиях изменения температуры при снижении массы и габаритов коммутатора. Коммутатор напряжения с защитой от перегрузки по току содержит элемент И, последовательно соединенные электронный...
Тип: Изобретение
Номер охранного документа: 0002568307
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.8f6f

Способ измерения дальности до объектов по их изображениям преимущественно в космосе

Изобретение относится к способам измерения дальности и линейных размеров объектов по их изображениям. Согласно способу измеряют размеры и координаты центра изображения объекта до и после перемещения средства наблюдения под углом к оптической оси. Определение дальности производят в зависимости...
Тип: Изобретение
Номер охранного документа: 0002568335
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.8f86

Центробежное рабочее колесо

Изобретение может быть использовано в малорасходных насосах изделий ракетно-космической техники. Центробежное рабочее колесо содержит выполненный заодно со ступицей (1) ведущий диск (2) с лопатками (3) и покрывной диск (4) с центральным входным отверстием (5). Диск (4) контактирует с торцовыми...
Тип: Изобретение
Номер охранного документа: 0002568358
Дата охранного документа: 20.11.2015
+ добавить свой РИД